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Abstract: The main design of this paper is to adopt potential functions for solving plane defect 
problems originating from two-dimensional decagonal quasicrystals. First, we analyze the strict 
potential function theory for the plane problems of two-dimensional quasicrystals. To clarify 
effectiveness of the method, we give some examples and the results which can be precisely 
determined, including the elasticity and fracture theories of two-dimensional quasicrystals. These 
results maybe play a positive role in studying the fracture of two-dimensional quasicrystals in the 
future. 
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1. Introduction 

A quasicrystal is seen as a new structure and was first observed by Shechtman et al. [1] and 
announced in 1984. As everyone knows, the physical basis of the elasticity of quasicrystals is 
considered to be the phenomenological theory of Landau and Lifshitz on the elementary excitation 
of condensed matters, in which two types of excitations, phonons and phasons, were considered for 
quasi-periodicity of materials [2]. The elastic properties of phonons and phasons of quasicrystals 
immediately led to widespread research, and theoretical and experimental solutions of a variety of 
defects and new physical thought play pivotal roles in the fracture mechanics of quasicrystalline 
materials [3–13]. In order to use fracture mechanics to solve practical problems, mastering the method 
of obtaining the solution of various defects in quasicrystalline materials is necessary. In the light of 
plane static problems of quasicrystals, the method of complex potential may be stringent and effective 
to obtain the analytic solutions. Of course, there are many numerical methods for obtaining the 
numerical solutions, for example, finite element method, finite difference method, etc. 

In recent years, many solutions have been acquired and deduced for the plane cases of 
quaiscrytalline materials [14–19]. These research works clarify that the basic governing equation of 
plane problem of decagonal quasicrystals is the quadruple harmonic equation. So, the mathematical 
solution is much more complicated than those for conventional structural and foam materials. 
Mariano and Radi et al. developed the new methods to solve the crack or dislocation problem of 
icosahedral quasicrystals [20–22]. Li et al. deduced fundamental solutions with regard to one-
dimensional hexagonal quasicrystals with some more complicated cracks, which are in thermo-elastic 
deformation [23,24]. Li et al. provided some solutions to two-dimensional quasicrystals by complex 
variable function method and finite difference methods [25,26]. A mass of models for the plastic 
deformation mechanism of quasicrystals was proposed by many researchers [27–33]. Moreover, other 
studies on plastic deformation of quasicrystals will not be listed here [34–36]. 

In this paper, the method of potential function theory is introduced for studying the plane 
problem of the quadruple harmonic equation. We will give some examples in following sections.  
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2. General Solution and Potential Function Theory 

A two-dimensional quasicrystal refers to a three-dimensional solid structure with the atom 
arrangement periodic along the z -direction and quasi-periodic on the xy  plane. Based on the plane 
elasticity theory of two-dimensional decagonal quasicrystals, it is clear that the deformation is limited 
in a plane perpendicular to the z-axis. Then, the equations of deformation geometry in plane strain 
or plane stress state can be expressed by [9,10,14]: 
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The displacement vectors are labeled as iu  for phonon field and iw  for phason field, 

respectively, which are both dependent on the spatial point ),,(),,( 321 xxxzyx =  in the real space. 
Similar to classical elasticity, these give rise to two displacement fields, so they are named elastic 
strain tensors ijε  and ijw  and can be expressed by Equation (1). 

Based on the stress tensors associated to strain tensors, the generalized Hooke’s law for 
decagonal quasicrystals is [14]: 

1 2

1 2

1 2

1 2 1 2

1 2 1 2

( ) 2 ( ) ( ),
( ) 2 ( ) ( ),

2 ( ) ( ),
( ) 2 ,
( ) 2 ,

xx xx yy xx xx yy xy yx

yy xx yy yy xx yy xy yx

xy yx xy yx xy xx yy

xx xx yy xx yy xy

yy yy xx xx yy xy

x

L M R w w R w w
L M R w w R w w

M R w w R w w
H K w K w R R
H K w K w R R
H

σ ε ε ε

σ ε ε ε

σ σ ε

ε ε ε

ε ε ε

= + + + + + −

= + + − + − −

= = + − + +

= + + − +

= + + − +

1 2 1 2

1 2 1 2

2 ( ),
2 ( ),

y xy yx xy xx yy

yx yx xy xy xx yy

K w K w R R
H K w K w R R

ε ε ε

ε ε ε









 = − − + −


= − + − −

 (2) 

where ijσ are the phonon stresses and ijH  are phason stresses and ijklijkl KC ,  and ijklR  denote 

the phonon, phason and phonon–phason coupling elastic constants, and the elastic constants are 

12L C= , 66 11 12( ) 2M C C C= = − , respectively.  
If we neglect the body force, then the equilibrium equations can be expressed by:  
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Based on the deformation compatibility equations, 
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If we introduce three potential functions ( , )x yφ , 1( , )x yψ , 2 ( , )x yψ as follows, the 
equilibrium (Equation (3)) is automatically satisfied, 
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On the basis of the generalized Hooke’s law (Equation (2)), we rewrite the equations by using 
all stress components to express all strain components. If we let 
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The set of these equations, after simple manipulations, can be reduced to a quadruple harmonic 
equation for the stress potential ( , )G x y  as follows [14]: 
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It is clear that the general solution of Equation (7) is 
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Based on the fundamental solution (Equation (8)), by substituting Equation (8) into Equation (6), 
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Meanwhile, the displacement field components can also be expressed by:  
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change the stress and displacement field. So, we can get these complex functions written in the 
following form: 
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in which 1 2,σ σ  represent principal stresses at infinity, and α  denotes the angle of 1σ  and x -
direction. If we take z →∞ , it will obtain 
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where the generalized principal stresses at infinity are denoted as 1 2,σ σ′ ′ , and α′  denotes the 

angle between 1σ ′  and x -direction. 
As we all know, in order to solve some complicated configurations of the elastic materials, 

Muskhelishvili [34] had adopted two kinds of rational conformal mapping. The first is constructed 
by 
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This mapping can transform the exterior of the unit circle in the ζ -plane into the exterior of the 
material with defects in the z -plane. We can obtain series expansion of the logarithmic item 
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and so on. Based on these results, by inserting them into Equation (12), we have 
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of the material with defects in the physical plane. In light of a similar analysis with the first kind 
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are single valued analytical functions of 1ζ < . 
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The stress boundary conditions for plane elasticity of decagonal quasicrystals can be expressed 
by: 
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where the point ( , )x y L∈  denotes an arbitrary boundary point of a multi-connected 
quasicrystalline material, and meanwhile we need to consider:  

cos( , )l x dy ds= =n , cos( , )m y dx ds= = −n .  

Here ( , )x yT T T=  and ( , )x yh h h=  state the surface tractions and generalized surface 

tractions, and n  shows the outer unit normal vector of an arbitrary boundary point, respectively.  
Due to the Equation (9) and Equation (12) and the boundary conditions (Equation (15)), the 

boundary conditions on basis of our analytic functions can be written as:  
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3. Applications  

3.1. Problem and Analytical Solution of the Semi-Infinite Plane 

The physical problem considered in this paper is shown in Figure 1. The periodic is assumed to 
be orientated in the z -axis and the quasi-periodic plane is paralleled to the xy -plane. The problem 
we consider is the application of uniform compressive stress q  on an elastic semi-infinite plane of 
an isotropic body. In this case, the boundary conditions can be described by  
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Figure 1. A schematic figure for semi-infinite plane of quasicrystals. 

Performing the Fourier transform for Equation (7) and the boundary conditions, Equations (9) 
and (15), yield: 
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In this case, the general solution of Equation (18) is  
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The solutions of Equation (22) are: 
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where )(2)( λδπλ qQ =  is the Fourier transform of q . 
From Equations (5), (6) and (8), it is easy to obtain the expressions of stress field:  
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3.2. Solutions to Dugdale Hypothesis of a Semi-infinite Crack in a Decagonal Quasicrystal  

There is a semi-infinite crack embedded in a semi-infinite specimen of decagonal quasicrystals. 
The distance between the tip of the crack and the free boundary is b . Suppose the portion 

0,y b x a= < <  of the crack is subjected to an equilibrium pressure stress p . Meanwhile, we 
suppose a Dugdale cohesive force zone is in the crack tip, whose length is R  and in the zone a 
traction Yyyσ σ=  is subjected, in which Yσ  denotes the yield limit of the materials, as shown in 

Figure 2.  

 

Figure 2. A schematic figure for a semi-infinite crack in a decagonal quasicrystal. 

According to the superposition principle, the problem can be decoupled as the following two 
problems, in which the boundary conditions can be expressed as follows: 
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0, 0, .

xx xy xx xy

yy xy yy xy

yy xy yy xy

xx yy xy xx yy xy

H H x y
H H y b x b R

H H y x b R

H H H x y

σ σ
σ σ σ

σ σ

σ σ σ

 = = = = = −∞ < < +∞
= = = = = < < +

 = = = = = > +


= = = = = = + → +∞

 (26b) 

3.2.1. Exact Solutions for Dugdale Hypothesis of a Semi-infinite Crack Based on Conformal 
Mapping 

The conformal transformation has a form for this problem: 

a

x

y

O

b

p−

Yσ

Yσ
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1 1 1( ) ( )
2 4

z bω ζ ζ
ζ

= = − +  (27) 

It can transform the upper half ζ  plane in the mapping plane into the region of the physical 
plane. Under the transformation (Equation (27)), the crack tip z b=  is mapped to 1ζ = − , while 

the points ( ,0 )z a ±=  and ( ,0 )z b R ±= +  are mapped to 1,2ζ σ=  and 1,2ζ σ ′= , i.e.,  

2 2
2

1 2 2

2 21 (1 ) 1a a
b b

σ = − + − − , 2 2 2
2

2 2

1
2 21 (1 ) 1a a
b b

σ =

− + − −

 
(28a) 

 
and 

2 2
2

1 2 2

2( ) 2( )1 (1 ) 1b R b R
b b

σ + +′ = − + − − , 

2 2 2
2

2 2

1
2( ) 2( )1 (1 ) 1b R b R

b b

σ ′ =
+ +

− + − −

 
(28b) 

For the plane problem of the materials, we have the following functional equations from the 
boundary conditions (Equation (16)) 

04
4 3

04
3 4

( )1 ( ) 1( ) ( 1)
2 2( ) ,

( )1 ( ) 1( ) ( 1)
2 ( ) 2

L

L

fhh h d d
i i

fhh h d d
i i

γ

γ

σω σζ σ σ
π σ ζ π σ ζω σ

σω σζ σ σ
π ω σ σ ζ π σ ζ

′
+ − + =

′ − − 


′ 
+ − + = ′ − − 

∫ ∫

∫ ∫
 (29) 

in which  

0

( ),
0, else

p b x a
f

ω σ− < <
= 


 

for Equation (26a) and  

Y
0

( ),
0, else

b x b R
f

σ ω σ < < +
= 


  

for Equation (26b). 

In order to solve the stress intensity factor, it needs to have the function 4 ( )h ζ′ . We only give 
the results, ignoring the similar analysis and solving process with the above example:  

1

2

1

2

0
4 2

1

1

( )
( )

2 2( ) ln ( )( )
2 22 2 2 2 2 2

1 1
32 2

1 1 1 1
32

fh d
c i

pb
c i

σ

σ

σ

σ

ζ σ
σ ζ

σ ζ
σ ζζ σ ζ ζ

π

ζ ζ
π

′
−

 − − −
= + 

− +− − + − −  

= ⋅ ⋅

+ −⋅ ⋅

∫
 (30a) 

for Equation (26a), and 
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1

2

1

2

0
4 2

Y

1

1

( )
( )

2 2( ) ln ( )( )
2 22 2 2 2 2 2

1 1
32 2

1 1 1 1
32

fh d
c i

b
c i

σ

σ

σ

σ

ζ σ
σ ζ

σ ζ
σ ζζ σ ζ ζ

π

σ ζ ζ
π

′

′

′

′

′
−

 − − −
= − + 

− +− − + − −  

= ⋅ ⋅

+ −⋅ ⋅

∫
 

(30b) 

for Equation (26b). 
Meanwhile, on the basis of the complex definition of stress intensity factor, 

4 4
1

1 1

( ) ( 1)2 lim ( ) ( 1)
16 ( ) 16 ( 1)I II

h hK K iK
c cζ

ζπ πω ζ ω
ω ζ ω→−

 ′ ′ − = − = − − = ′ ′′ −  
 (31) 

We substitute Equations (27) and (30) into Equation (31), and it yields: 

2 2
2

2 2

2 2
2

2 2

2 22 1 (1 ) 1
4

3 2 22 (1 ) 1
I

p

a a
b bpbK

a a
b b

π

 
− − + − −  

 = ⋅

− + − −

 (32a) 

Y

2 2
2

2 2

Y
2 2

2
2 2

2( ) 2( )2 1 (1 ) 1
4

3 2( ) 2( )2 (1 ) 1
I

b R b R
b bbK

b R b R
b b

σ σ
π

 + +
− − + − −  

 = − ⋅
+ +

− + − −

 (32b) 

The fact of the stresses at the crack tip must be finite, i.e., it needs total stress intensity factors 
equal to zero. Then it will result in the following equality that can determine the size of the cohesive 
force zone 

2 2 2 2
2 2

2 2 2 2

2 2 2 2
Y2 2

2 2 2 2

2( ) 2( ) 2 21 (1 ) 1 1 (1 ) 1

2( ) 2( ) 2 22 (1 ) 1 2 (1 ) 1

b R b R a a
b b b bp

b R b R a a
b b b b

σ

   + +
− + − − − + − −      

   = ⋅
+ +

− + − − − + − −

 (33) 

3.2.2. Exact Solutions for Dugdale Hypothesis of a Semi-infinite Crack Based on Conformal Mapping  

The conformal transformation has a form for this problem: 

2
( )

1
bz ω ζ
ζ

= =
−

 (34) 

It also can transform the upper half ζ  plane in the mapping plane into the region of the 
physical plane. Under the transformation (Equation (34)), crack tip z b=  is mapped to 0ζ = , 

while points ( ,0 )z a ±=  and ( ,0 )z b R ±= + are mapped to  

2
1 1 ( )b

a
σ = − − , 2

2 1 ( )b
a

σ = + −  and 2
1 1 ( )b

b R
σ ′ = − −

+
, 

2
2 1 ( )b

b R
σ ′ = + −

+
. 
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On the similarity of the previous section, for the plane problem of the materials, we have the 
following functional equations from the boundary conditions (Equation (16)): 

04
4 3

04
3 4

( )1 ( ) 1( ) (0)
2 2( ) ,

( )1 ( ) 1( ) (0)
2 ( ) 2

L

L

fhh h d d
i i

fhh h d d
i i

γ

γ

σω σζ σ σ
π σ ζ π σ ζω σ

σω σζ σ σ
π ω σ σ ζ π σ ζ

′
+ + =

′ − − 


′ 
+ + = ′ − − 

∫ ∫

∫ ∫
 (35) 

in which 

0

( ),
0, else

p a x b
f

ω σ− < <
= 


 

for Equation (26a) and  

Y
0

( ),
0, else

a x b R
f

σ ω σ < < +
= 


  

for Equation (26b). 
After the similar analysis and solving process with the above example, we only give the results 

of 4 ( )h ζ′ , i.e., 

1

2

0
4 2

1
( ) ,

( )
1 1

32 2
fh d

c i
σ

σ
ζ σ

σ ζπ
′

−
= ⋅ ⋅ ∫  (36a) 

for Equation (26a) and 

1

2

0
4 2

1
( ) ,

( )
1 1

32 2
fh d

c i
σ

σ
ζ σ

σ ζπ
′

′
′

−
= ⋅ ⋅ ∫  (36b) 

for Equation (26b). 
If we let 0ζ =  in Equation (36), it will yield 

2

1

2

4
1

1(0) 1
32 2

h pb
c i

σ

σ

σ
π σ

−′ −= ⋅ ⋅ , (37a) 

2

1

2
Y

4
1

1(0) 1
32 2

h b
c i

σ

σ

σσ
π σ

′

′

−′ = ⋅ ⋅  (37b) 

Meanwhile, on the basis of the complex definition of stress intensity factor: 

4 4
0

1 1

( ) (0)2 lim ( ) (0)
16 ( ) 16 (0)I II

h hK K iK
c cζ

ζπ πω ζ ω
ω ζ ω→

 ′ ′ = − = − = ′ ′′  
 (38) 

We substitute Equations (34) and (37) into Equation (38) and it yields 

2 2

4
2I

p b bK
a bπ

= ⋅
−

, (39a) 
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Y
2 2

4
2 ( )

I
b bK

b R b
σ

π
= − ⋅

+ −
 (39b) 

Based on the same approach of the preceding section, we can determine the size of cohesive 
force zone. 

2 2 2 2Y( ) ( )R a b b b
p
σ

= ⋅ − + −  (40) 

4. Discussion and Conclusions 

A very important subject in the study of the mechanical behavior of decagonal quasicrystals are 
the defect problems. Of course, it is very difficult to treat the problems including notch and crack due 
to the complicated configuration. By introducing potential function theory, we analyze the strict 
theory for the plane problems of two-dimensional quasicrystals. As examples for applications, one is 
a semi-infinite plane in a decagonal quasicrystal, the other is the Dugdale hypothesis of a semi-infinite 
crack in a decagonal quasicrystal. Meanwhile, the obtained results in this paper are expressed in some 
exact analytical expressions, which maybe provide a useful theoretical base for the plane problems 
of decagonal quasicrystals. In the process, the successful application of potential function theory 
plays a leading role in solving these problems. We further obtain some important analytical solutions 
for decagonal quasicrystals. For example, the size of the cohesive force zone of the generalized 
cohesive force model of decagonal quasicrystals and the stress intensity factors (Equations (32) and 
(39)) are useful to the next works which are correlative to the study of the fracture mechanics of 
decagonal quasicrystals. Significantly, the two results of Equations (33) and (40) are approximately 
equal. These facts show that the potential function theory is very successful in solving such 
mechanical fracture problems. 
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authorship and/or publication of this paper. 

Appendix: The calculation process of Equation (25) of Section 3. 

Performing the Fourier transform for the above results in the x direction 
7 5 3

2 4
7 5 3

ˆ ˆ ˆ
( ) 2 3xx

d G d G d GF D
dy dy dy

σ λ λ
 

= ⋅ − − +  
 

 (1a) 

6 4 2
3 5

6 4 2

ˆ ˆ ˆ
( ) ( ) 2 3xy yx

d G d G d GF F D i i i
dy dy dy

σ σ λ λ λ
 

= = ⋅ − + −  
 

 (1b) 

5 3
2 4 6

5 3

ˆ ˆ ˆ
( ) 2 3yy

d G d G dGF D
dy dy dy

σ λ λ λ
 

= ⋅ − −  
 

 (1c) 
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3 5 7
2 6 4 2

1 2 1 2 1 3 5 7
1

2 4 6
5 3

1 2 1 2 4 6

ˆ ˆ ˆ ˆ1( ) ( ) ( 2 )( ) 2 3 3

ˆ ˆ ˆ
( )( ) 3 10 3

xx
dG d G d G d GF H MK R L M K K R

R dy dy dy dy

d G d G d GL M K K R i
dy dy dy

λ λ λ

λ λ λ

 
 = − − + − − − + − +    

 
 

+ + − ⋅ ⋅ + +  
 

 
(1d) 

2 4 6
2 7 5 3

1 2 1 2 1 2 4
1

3 5
6 4 2

1 2 1 3 5

ˆ ˆˆ( ) ( ) ( 2 )( ) 2 3 3

ˆ ˆ ˆ
( )( ) 3 10 3

xy
i d G d G dF H MK R L M K K R G
R dy dy dy

dG d G d GL M K K R
dy dy dy

λ λ λ λ

λ λ λ


 = − − + − − − + −  


 

− + − ⋅ + +  
 

 (1e) 

2 4 6
5 3

1 2 1 2 4 6

ˆ ˆ ˆ
( ) ( )( ) 3 10 3yx

d G d G d GF H L M K K R i
dy dy dy

λ λ λ
 

= + − ⋅ ⋅ + +  
 

 (1f) 

3 5
6 4 2

1 2 1 3 5

ˆ ˆ ˆ
( ) ( )( ) 3 10 3xy

dG d G d GF H L M K K R
dy dy dy

λ λ λ
 

= + − ⋅ + +  
 

 (1g) 

From Equation (21), we obtain the n partial derivative of Ĝ as follows ( 1,2, ,7n =  ), 

| | | |
2 1 3 2

2 | | 3 | |
4 3 4

ˆ
( ) (2 )

(3 )

y y

y y

dG e A A ye A A
dy

y e A A A y e

λ λ

λ λ

λ λ λ λ λ

λ λ λ λ λ

− −

− −

= − + − ⋅

+ − ⋅ − ⋅ ⋅

 (2a) 

2
| | 2 | | 3

1 2 3 2 3 42

2 | | 3 3 3 | |
3 4 4

ˆ
( 2 2 ) ( 4 6 )

( 6 )

y y

y y

d G e A A A ye A A A
dy

y e A A A y e

λ λ

λ λ

λ λ λ λ λ λ λ λ

λ λ λ λ

− −

− −

= − ⋅ + + − ⋅ +

+ − ⋅ + ⋅

 (2b) 

3
| | 3 2 | | 3 3

2 1 3 4 2 3 43

2 | | 3 3 3 3 | |
3 4 4

ˆ
(3 6 6 ) ( 6 18 )

( 9 )

y y

y y

d G e A A A A ye A A A
dy

y e A A A y e

λ λ

λ λ

λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ

− −

− −

= − ⋅ − ⋅ + + − ⋅ + − ⋅

+ − ⋅ + − ⋅ ⋅

 (2c) 

4
| | 3 4 3 | | 5 3 3

2 1 3 4 2 3 44

2 | | 5 3 5 3 | |
3 4 4

ˆ
( 4 12 24 ) ( 8 36 )

( 12 )

y y

y y

d G e A A A A ye A A A
dy

y e A A A y e

λ λ

λ λ

λ λ λ λ λ λ λ λ λ λ

λ λ λ λ

− −

− −

= − ⋅ + + − ⋅ + − ⋅ +

+ − ⋅ + ⋅

 (2d) 

5
| | 5 4 3 3 | | 5 5 3

2 1 3 4 2 3 45

2 | | 5 5 5 3 | |
3 4 4

ˆ
(5 20 60 ) ( 10 60

( 15 )

y y

y y

d G e A A A A ye A A A
dy

y e A A A y e

λ λ

λ λ

λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ

− −

− −

= − ⋅ − ⋅ + + − ⋅ + − ⋅

+ − ⋅ + − ⋅ ⋅

 (2e) 

6
| | 5 6 5 3 | | 7 5 5

2 1 3 4 2 3 46

2 | | 7 5 7 3 | |
3 4 4

ˆ
( 6 30 120 ) ( 12 90

( 18 )

y y

y y

d G e A A A A ye A A A
dy

y e A A A y e

λ λ

λ λ

λ λ λ λ λ λ λ λ λ λ

λ λ λ λ

− −

− −

= − ⋅ + + − ⋅ + − ⋅ +

+ − ⋅ + ⋅
 

(2f) 

7
| | 7 6 5 5 | | 7 7 5

2 1 3 4 2 3 47

2 | | 7 7 7 3 | |
3 4 4

ˆ
(7 42 210 ) ( 14 126

( 21 )

y y

y y

d G e A A A A ye A A A
dy

y e A A A y e

λ λ

λ λ

λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ

− −

− −

= − ⋅ − ⋅ + + − ⋅ + − ⋅

+ − ⋅ + − ⋅ ⋅

 (2g) 
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8
| | 7 8 7 5 | | 9 7 7

2 1 3 4 2 3 48

2 | | 9 7 9 3 | |
3 4 4

ˆ
( 8 56 336 ) ( 16 168

( 24 )

y y

y y

d G e A A A A ye A A A
dy

y e A A A y e

λ λ

λ λ

λ λ λ λ λ λ λ λ λ λ

λ λ λ λ

− −

− −

= − ⋅ + + − ⋅ + − ⋅ +

+ − ⋅ + ⋅

 (2h) 

Substitute Equation (2) into Equation (1) to get  
| | 7 5 5 | | 7 5

2 3 4 3 4

2 | | 7
4

( ) [ ( 8 64 108 ) ( 16 192 )

( 24 )]

y y
xx

y

F D e A A A y e A A

y e A

λ λ

λ

σ λ λ λ λ λ λ λ

λ

− −

−

= ⋅ − + ⋅ + + ⋅ − + ⋅

+ ⋅ −
 (3a) 

| | 7 5 5 | | 7 5
2 3 4 3 4

2 | | 7
4

( ) [ (8 32 72 ) (16 96

24 ]

y y
yy

y

F D e A A A y e A A

y e A

λ λ

λ

σ λ λ λ λ λ λ

λ

− −

−

= ⋅ − ⋅ + + ⋅ − ⋅

+ ⋅ ⋅
 (3b) 

| | 6 6 4 | | 6
2 3 4 3

2 | | 6
4

ˆ( ) [ ( 8 48 168 ) ( 16

( 24 )]

y y
xy yx

y

F D i e A A A y e A

y e A

λ λ

λ

σ σ λ λ λ λ λ λ λ

λ λ

− −

−

= = ⋅ ⋅ − ⋅ + − ⋅ + ⋅ − ⋅ +

+ ⋅ − ⋅
 (3c) 

2 5 | |
1 2 1 2 4

1
| | 7 6 6

1 2 1 1 2 3

| | 8 6 6 2 | | 8
2 3 4 3 4

3 | | 8
4

1( ) ( )[( 2 )( ) 2 ](48 )

( )( ) [ (16 64 216 600

(16 128 648 ) (16 192

16 ]

y
xx

y

y y

y

F H MK R L M K K R A e
R
L M K K R i e A A A A

y e A A A y e A A

y e A

λ

λ

λ λ

λ

λ

λ λ λ λ

λ λ λ λ λ λ

λ

−

−

− −

−

= − − + − − ⋅

+ + − ⋅ ⋅ ⋅ ⋅ − ⋅ + −

+ ⋅ − ⋅ + + ⋅ −

+ ⋅ ⋅

 (3d) 

2 | | 4 | | 7
1 2 1 2 1 4 2

1
2 | | 7 8 3 | | 7 8

3 3 4 4

| | 6 7 5 5
1 2 1 1 2 3 4

| |

( ) ( )[( 2 )( ) 2 ][ ( 60 ) (

( ) ( )]

( )( ) [ ( 16 48 120 240 )

( 1

y y
xy

y y

y

y

iF H MK R L M K K R e A y e A
R
y e A A y e A A

L M K K R e A A A A

y e

λ λ

λ λ

λ

λ

λ λ λ

λ λ λ λ λ λ

λ λ λ λ λ λ

− −

− −

−

−

= − − + − − ⋅ − ⋅ + ⋅ ⋅

+ ⋅ ⋅ − + ⋅ ⋅ −

− + − ⋅ ⋅ ⋅ − ⋅ + − ⋅ +

+ ⋅ − 7 7 5 2 | | 7
2 3 4 3 4

3 | | 7
4

6 96 360 ) ( 16 144

( 16 )]

y

y

A A A y e A A

y e A

λ

λ

λ λ λ λ λ λ λ λ

λ λ

−

−

⋅ + − ⋅ + ⋅ − ⋅ +

+ ⋅ ⋅ − ⋅

 (3e) 

| | 7 6 6
1 2 1 1 2 3

| | 8 6 6 2 | | 8
2 3 4 3 4

3 | | 8
4

( ) ( )( ) [ (16 64 216 360

(16 128 648 ) (16 192

16 ]

y
yx

y y

y

F H L M K K R i e A A A A

y e A A A y e A A

y e A

λ

λ λ

λ

λ λ λ λ

λ λ λ λ λ

λ

−

− −

−

= + − ⋅ ⋅ ⋅ ⋅ − ⋅ + −

+ ⋅ − ⋅ + + ⋅ −

+ ⋅ ⋅

 (3f) 

| | 6 7 5
1 2 1 1 2 3

| | 7 7 5 2 | | 7
2 3 4 3

3 | | 7
4

( ) ( )( ) [ ( 16 48 120 240

( 16 96 360 ) ( 16

( 16 )]

y
yy

y y

y

F H L M K K R e A A A A

y e A A A y e A

y e A

λ

λ λ

λ

λ λ λ λ λ

λ λ λ λ λ λ λ

λ λ

−

− −

−

= + − ⋅ ⋅ ⋅ − ⋅ + − ⋅ +

+ ⋅ − ⋅ + − ⋅ + ⋅ − ⋅ +

+ ⋅ ⋅ − ⋅

 (3g) 

Then ( ), ( )ij ijHσ 
 
can be obtained by substituting Equation (23) into Equation (3). By 

taking the Fourier inversion transform, the stresses ,ij ijHσ  are determined. 
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