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Abstract: Crystallization via particle attachment was used in a unified model for both classical and
non-classical crystallization pathways, which have been widely observed in biomimetic mineralization
and geological fields. However, much remains unknown about the detailed processes and driving
mechanisms for the attachment. Here, we take calcite crystal as a model mineral to investigate the
detailed attachment process using in situ Atomic Force Microscopy (AFM) force measurements and
molecular dynamics simulations. The results show that hydration layers hinder the attachment;
however, in supersaturated solutions, ionic bridges are formed between crystal gaps as a result of
capillary condensation, which might enhance the aggregation of calcite crystals. These findings
provide a more detailed understanding of the crystal attachment, which is of vital importance for a
better understanding of mineral formation under biological and geological environments with a wide
range of chemical and physical conditions.

Keywords: crystallization; calcite; interface; aggregation; molecular dynamics simulation;
atomic force microscopy

1. Introduction

Crystallization is a pathway of condensation or organization of materials by their components from
a dispersed state or a different form, which is an important process in biological, geological, industrial,
and ecological systems. A monomer-by-monomer addition is envisioned in the classical understanding
of crystallization [1]. However, in recent years, a diverse set of “non-classical” crystallization pathways
has been revealed, enriching our understanding of material formation [2]. Crystallization by particle
attachment (CPA) has been suggested to unify the “classical” and “non-classical” crystallization
pathways, in which “particles” include ions, dimers and oligomers, complex and ionic clusters,
droplets and amorphous precursors, poorly crystalline nanoparticles, and nanocrystals, among
others [3]. Crystals can be formed from these particles via the polymerization, re-organization, phase
transformation, and (oriented) aggregation processes.

The classical crystallization (CC) pathway primarily contains the stages of nucleation and crystal
growth (and ripening) [4]. This crystallization pathway usually produces hundreds of seeds in a small
vial in the supersaturated solution during the nucleation process. As a result, small crystalline powders
instead of bulk brick are usually formed in a supersaturated solution. It is still a challenge to fabricate
a large single crystal via the CC pathway. The rich CPA pathways have opened the door to challenge
the limitations of the CC pathway. For example, one biomineralization system demonstrated a
pathway for fabricating a single calcite crystal via amorphous precursor phase-mediated crystallization,
which was revealed in sea urchin embryonic spicules [5]. An ionic oligomer polymerization-based CPA
pathway has shown its advantages in the fabrication of continuous bulk crystals [6], epitaxial repair
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of single crystals and tooth enamel [7], and nanodispersed and ordered organic–inorganic hybrid
materials [8]. A polymer-induced liquid precursor (PILP) process has been shown to be successful
in many biomimetic and bio-inspired materials fabrications [9]. CPA-based crystallization pathways
not only have profound effects and advantages in building materials, but also have great impacts on
the structures and properties of materials. For example, materials with elevated dopant ratios [10];
occlusions of organic polymers, which induce defects and enhance mechanical properties [11,12]; and
complex and hierarchical morphologies with rich interfaces and textured patterns [13,14] have been
widely observed by “non-classical” CPA pathways; however, these features are difficult to understand
in terms of the CC pathway because materials with these structures are in a high energy state, and thus
are thermodynamically unfavorable. Clearly, these rich and distinct structures will endorse materials
with distinct properties, such as stability, surface activities, and mechanical and optical properties,
which have advanced functions and will play important roles in energy harvesting and storage,
environment treatment, sustained development, and healthcare.

Increasing evidence is available and advances have been made to complement the mapping of
CPA-mediated crystallization pathways; however, much still remains unknown about the detailed
processes and their mechanism, which are of vital importance for material fabrication. In order to
better understand particle aggregation and attachment, the theory of Derjaguin, Landau, Verwey,
and Overbeek (DLVO) is widely applied in colloidal systems [15,16]. DLVO theory is successful for
microsized colloids and at micro-range distances. However, assumptions of continuous colloidal
materials and media in DLVO theory have limited its successful applications in the understanding
of the nano-range interactions of nanosized particles, which are of special interest in CPA processes.
In this respect, there are two primary concerns regarding the CPA process. First, samples of the same
kind of material usually have the same type of surface potential, meaning they will repel each other.
Second, highly structured (ice-like) water layers have been widely observed on mineral surfaces [17–20],
which will retard the direct lattice contact during aggregation. These two facts do not support the
successful (lattice) attachment of particles.

In this work, we will take the calcite crystal (an extensively studied crystal for geology and
biomineralization) as a model crystal to give a detailed understanding of the CPA process by using
molecular dynamics simulations, as well as Atomic Force Microscopy (AFM) force measurement
and solution chemistry experiments. We found that the capillary gap formed during attachment can
facilitate ionic bridge formation, enriching the understanding of the CPA process of mineral formation
in geological environments, as well as in biomineralization.

2. Materials and Methods

2.1. Preparation and Characterization of Calcite

Calcite was synthesized following the work of Addadi et al. [21]. Briefly, calcite was grown by
slow diffusion (about 2 days) of (NH4)2CO3 vapor into beakers containing 20 mL of 7.5 mM CaCl2 in
desiccators (25 cm in diameter). Then, (NH4)2CO3 powder was placed at the bottom of the desiccators.
CO2 and NH3 gases were diffused into a beaker through three needle holes on its aluminum foil cover.
The room temperature was set to 25 ± 2 ◦C. Following the same method but using 2.0 mM CaCl2, larger
calcite (>50 mm) crystals could be obtained. After crystallization, the calcite crystals were obtained
after decantation and then washed with a calcite saturation solution (prepared by calcite suspension
one week earlier) and water–ethanol mixture (1:2 in volume) three times. The solids were dried in
air. Well-shaped 5–10 µm rhombohedral crystals were selected to prepare a calcite probe for AFM
force measurements and 50–100 mm rhombohedral crystals were selected as the substrate (see below).
All calcite crystallites were freshly prepared before use. The morphology of the large crystallites was
observed using an optical microscope (Eclipse 80i, Nikon, Japan). Calcite probes were characterized by
a scanning electron microscope (SEM, S-4800, Hitachi, Japan).
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2.2. AFM Force Measurement

Crystal probes were fabricated by mounting a {104} facet-exposed rhombohedral calcite crystal
on a tipless cantilever (NSG11 tipless, with resonant frequency and force constant of 150 kHz and
5.5 N/m, respectively; NT-MDT, Moscow, Russia) by using urethane glue (Hardman, Inc.). The edge
of the rhombohedral calcite was oriented parallel to the cantilever. Another {104} facet-exposed
rhombohedral calcite crystal was glued on a silicon wafer as the calcite substrate. Calcite crystals
of the probe and the substrate were aligned in the same orientation, which was confirmed by using
optical microscopy. The force curve was measured from the deflection of the cantilever during the
approaching and retracting processes. All force measurements were performed in aqueous solutions
with a commercial atomic force microscope (Nanoscope Multimode IVa with PicoForce controller,
Veeco and DI, USA). The fluid flow was stopped for sensitive force measurements. Supersaturated
solutions were freshly prepared for each force measurement by using CaCl2 and NaHCO3 solutions
with equal concentrations of calcium and bicarbonate. The supersaturations were calculated by using
VMINTEQ [22]. The approach and retraction forces were measured at different contacting times
and in different solutions. The rates of approach and separation were less than 400 nm/s to reduce
the hydrodynamic force. The same calcite probe and substrate were applied for different solution
conditions and contacting times to rule out the possible effects of the crystal topology, orientation,
and contacting gap on force measurement. The room temperature was controlled at 25 ± 2 ◦C.
More than 100 force curves for each crystal–crystal interaction were captured.

2.3. Molecular Dynamics Simulations

For all molecular dynamics (MD) simulations, the GROMACS program was used [23]. The X-ray
crystal structures of calcite were applied as the initial configuration [24]. A water slab (520 molecules)
with or without randomly inserted ions was placed between the calcite crystals, which contained 8
× 8 × 4 CaCO3 units. The size of the whole system was 2.514 × 2.459 × 4.957 nm3. The force field
parameters of calcite were taken from [25], reproducing the crystal and interfacial structure well.
The single-point charge (SPC) water model was applied following [25]. Periodic boundary conditions
were applied in all directions. Particle mesh Ewald (PME) summation was applied for the treatment
of long-range Coulombic interactions [26]. The cut-off distance was chosen to be 1.1 nm. The NpT
ensemble with anisotropic Berendsen method [27] and V-rescale method [28] was applied for pressure
control and temperature control, respectively. Model building and MD trajectory snapshots were
performed with VMD [29]. The interfacial structures could be described by using local density profiles,
which were obtained by dividing the space into slices parallel to the crystal–solution interface and
counting the density of each slice. The hydration numbers of ions were calculated by the integration of
the radial distribution function for the first peak.

The free energy profiles (potential of mean force, PMF) of the attachment of ions were obtained by
umbrella sampling with the umbrella integration method [30]. About 120 umbrella windows were
set along the reaction coordination to ensure the accuracy of the integration of free energy. Replica
exchange of neighboring windows was applied to enhance the quality of the sampling [31]. The error
(standard deviation) was estimated from variances of mean forces [32]. The total simulation time
was more than 24 ns for each free energy profile of ionic attachment. The adsorption free energy
was obtained by measuring the difference of the free energy for the bulk solution and the adsorbed
state in the free energy minimum. The PMF of the nanocalcite attachment was obtained by umbrella
sampling with the weighted histogram analysis method (WHAM) [33], with a larger bin size of
windows (n = 50) and longer simulation time (2 ns) for each window (compared with the simulation
of the single-ion system as given above), because a slower relaxation of the hydration structure was
found for a nanocrystal than that for a single ion. The free energy errors were estimated by using 20
Bayesian bootstrap analyses [34]. The simulation time was more than 100 ns for the free energy profile
of the attachment of nanocalcite.



Crystals 2020, 10, 463 4 of 13

3. Results and Discussion

3.1. Retardant Effects of Hydration Layers on Attachment

3.1.1. Mineral Hydration Layers

During biomimetic mineralization, crystals are formed in a water solution. Therefore, the surfaces
of inorganic crystals are surrounded by water molecules. Unlike molecules in the bulk crystal phase,
molecules at the surface contain many unbalanced bonds, which can interact with water molecules by
ionic, coordinate, or hydrogen bonds [35,36]. These interactions will change the orientation, freedom,
and organization of water molecules near a crystal surface, and as a result one to several hydration
layers will be formed, which can be detected by X-ray reflectivity (XRR) [37,38], grazing incidence
X-ray diffraction (GIXRD) [39], solid-state NMR (ssNMR) [40], and frequency/force modulation atomic
force microscopy (FM-AFM) [41–43]. These water layers cover crystal surfaces and will affect the
particle attachments during crystallization [44].

Taking the most stable mineral facets of calcite (104), hydroxyapatite (010), and brushite (010) as
examples, MD simulation results revealed that there were 2 or 3 water layers on their surfaces [45–48].
For calcite (104), its hydration structures are well-established [38,41–43,45], in which the first hydration
layer was coordinated with surface calcium ions by oxygen (Ow). The second water layer formed a
hydrogen bond with the carbonate ions [38]. In comparison with the geometry of the calcite structure,
Ow in the first hydration layer occupied the lattice site of carbonate oxygen (Oc), and Ow in the second
hydration layer occupied the lattice sites of calcium ions (Figure 1) [45,46]. We take this phenomenon as
the transformation of the structure information from crystals to water layers. Because the surface lattice
sites were occupied by hydration water molecules, a dehydration process was needed to replace water
by inorganic ions during crystallization. These processes will be analyzed in detail in the next section.
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Figure 1. Water density distribution for the hydration layers of the calcite (104) face. Miller indices
correspond to the hexagonal cell (a = 5 Å, c = 17 Å). (a) Atomic point-cloud images of side views of the
calcite (104) interface along [0 1 0] (left), and [4 2 −1] axes, respectively. The atomic number density is
proportional to the brightness of the point cloud. Red: O; white: H; cyan: Ca or C. Dashed lines are
drawn to guide the view for the adsorption sites (cyan for calcium lattice sites; green for oxygen lattice
sites); (b) The density profile at the calcite (104) interface (red: carbonate; black: calcium; blue: water).
For comparison, the density profile is replicated but is shifted to a distance of one calcium carbonate
layer in calcite (see the lower one). The structures of the hydration layers parallel to the crystal surface
match the periodicity of the crystal.
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3.1.2. Dehydration during Particle Attachment

A classical crystallization process can be understood as the balance of the dynamic
attachment–detachment of water molecules and ions on crystal faces. Therefore, the differences
and barriers of the free energy for water molecules and ions are the keys to understanding the detailed
crystallization process. The adsorption free energies of ions are larger than that of water (Figure 2a),
which indicates that thermodynamically, water molecules will be replaced by ions and lead to crystal
growth. However, in kinetics, the adsorption and desorption barriers of ions are much larger than that
of water. These local barriers are correlated to the dehydration of ions during attachment (Figure 2b).
In this regard, hydration water molecules play vital roles in the kinetics of crystal growth via ionic
attachments, which has been corroborated by the analysis of the step-growth rate of supersaturated
solutions with different ratios of Ca2+/CO3

2− [49–51] and background electrolytes [52], and the spatial
distribution of adsorbed mineral ions in hydration layers [53]. As a more complicated result, the
anomalies in the crystal growth kinetics can be affected by the adsorption layer [54,55], which contains
adsorbed mineral ions and hydration layers.
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Figure 2. (a) Potential of mean force (PMF) of the adsorption of water, calcium ion, and carboxylate ion.
The standard deviations of PMF are marked by transparent filled bands. (b) Dehydration of ions is
accompanied by the attachment of ions on calcite surface lattice sites.

In the CPA model, in addition to ions, nanocrystallites can also act as the building block. Therefore,
the attachment of nanocalcites on calcite (104) is also evaluated. The PMF of the attachment of
nanocalcites (4 × 4 × 4 unit cells, area = 3.2 nm2) on a bulk calcite (104) face is investigated using
umbrella sampling. Figure 3 reveals that a free energy barrier of 100 kJ/mol (~40 kBT) is needed to
dehydrate and make lattice contact between two calcite faces. The hydration layers are attached so
strongly that only under strong external surface pressure can they be broken through, and thereby be
detected (either by using sharp AFM tips measuring just a few nm in diameter or just a few atoms
on the tip, with strong cantilever (spring constant > 20 N/m) [56,57] or force measurement between
two cross-stacked curved mica crystals with a surface force apparatus equipped with strong springs
(>1000 N/m) [58]). Considering the much larger calcite particles in the suspension and the weak
external driving force of Brownian motion (~1 kBT), the hydration water layers will prevent the direct
lattice attachment of microcrystallites in solution.

3.2. Promotion Effect of Ionic Bridge on Attachment under Supersaturated Condition

3.2.1. Formation of Ionic Bridges during Attachment

Crystallite aggregates are widely observed in crystallization systems, which seems to conflict
with the above conclusion that hydration layers will prevent the attachment of crystals. However, care
should be taken, as the aggregated crystallites could also result from the heterogeneous nucleation on
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mother crystals. A direct force measurement of calcite–calcite interaction was performed by using AFM
(Figure 4a). Considering that the electrical double-layer repulsion force might prevent the attachment
of calcite, 50 mM NaCl was introduced into solutions to screen this effect. It turned out that the
attraction force was very small (<1 nN) between the two calcite crystallites in the saturated solutions
(Figure 4b), which is consistent with other reports [59].Crystals 2020, 10, x 6 of 13 
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Figure 4. Calcite–calcite force measurement: (a) scheme of the force curve measurement of
calcite interactions; (b) a representative force curve of calcite in 50 mM NaCl saturated solutions;
(c) a representative force curve of calcites in supersaturated solutions (supersaturation index, SI = 3.0);
(d) the histogram analysis of the rupture forces.

To test if there is adhesion force in supersaturated solutions, the interaction force between the
two calcite crystals was measured by AFM. In contrast to those in saturated solutions, the adhesion
forces between calcite were much larger (>10 nN) in supersaturated solutions (Figure 4c). In addition
to the adhesion force, during the detachment, an unexpected zig-zag force curve pattern (step-like
feature) was frequently observed (inset in Figure 4c), which was understood as multiple rupture events.
The rupture force was then defined as the abrupt change of the force at the rupture event, which was
in the range of hundreds of pN to 1 nN (see the force histogram in Figure 4d). The magnitude of the
rupture force was similar to a rupture of an ionic bond [60]. We suggest that the rupture force might be
correlated with the formation of ionic bonds between two crystals.
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MD simulations were performed to test if ionic bonds could be formed between two calcite
crystals. Here, parts of randomly selected water molecules between two calcite crystals were replaced
by calcium and carbonate ions (40 ion-pair). It turned out that as the calcium and carbonate ions were
added, which formed a nanosized ionic bridge between the two crystals and remained stable for longer
than 60 ns (Figure 5a). When an external force was applied to pull the ionic bridge apart, multiple
rupture events were reproduced (Figure 5b). We found that the last rupture event was the breaking of a
calcium–carbonate ionic bond between two clusters of calcium carbonate ions (Figure 5b). The rupture
force measured in the MD simulation was about 1 nN, which was quite close to those values found in
our AFM measurement (about 0.5 nN) (Figure 5c) and previous reporting [60]. Thereby, the breaking
of ionic bonds can be applied to explain the rupture events in AFM force measurements.
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Therefore, in supersaturated solutions, ionic species can penetrate through the hydration layers,
aggregate at the gap of two calcite crystallites, and connect them. This scenario is unexpected in the
electrical double layer model but is important for the understanding of the adhesion force and the
detailed CPA process.

3.2.2. Mechanism of Ionic Bridge Formation

In classical crystallization, the association of ions into ionic clusters in a solution does not occur
readily (the probability of its formation decreases exponentially with molecular number in an ionic
cluster). Even if ionic clusters could be formed in a metastable [61] or stable state [62], the hydration
layers near a crystal surface may prevent the direct attachments of these ionic clusters, as explained
in Section 3.1.2. Crystallization by the attachment of ionic clusters in calcite crystal growth has not
been observed in AFM experiments. Instead, crystallization by classical ionic attachment has been
widely reported (the step growth). This situation might be changed when two calcite crystals move
closer and form a capillary gap that contains the hydration layers. Ionic clusters may keep bouncing
between two walls until they penetrates through water layers. Once ionic clusters enter the hydration
layers or an ionic bridge is formed throughout the hydration layers, this will lead to the release of the
structured water (hydration water), which will gain in entropy (water has more freedom in bulk than
in a hydration layer) [63]. These factors may be the reason for the formation of ionic bridges in the
gaps between two calcite crystallites.

Heterogeneous nucleation in a capillary gap can also be applied to understand the formation of
ionic bridges. The free energy of the formation of an ionic bridge (∆G) is given by:

∆G = −n∆µ+ ∆(Sγ) = −
∆µ
Ω

Vb + [Sbsγbs + 2Sbc(γbc − γcs)] (1)

where γij is the surface free energy between i and j phases (b for the ionic bridge, s for the solution,
c for crystal); Sij is the surface area between i and j phases; Vb is the volume of the bridge phase; Ω is
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the volume per unit of the ionic bridge phase. The chemical potential change for the formation of the
ionic bridge phase, ∆µ, is given by:

∆µ = kBTln
(

KIAP
Ksp

)
(2)

where KIAP and KSP represent the ionic activity product and the solubility product, respectively; kB is
the Boltzmann constant; and T is the absolute temperature.

In line with the previous work on heterogeneous nucleation on a substrate [64], the interfacial
tension terms can be expressed as an effective interfacial tension (γeff). Here, we first introduce a factor,
m, as:

m =
(γcs − γbc)

γbs
= cos(θ) (3)

Here, θ is the contact angle (if we consider that the initial new phase has a liquid-like behavior).
Now, γeff can be expressed as:

γe f f =

(
1−

2mSbc
Sbs

)
γbs (4)

For simplicity, we take an ionic bridge as a cylinder between two flat surfaces, as shown in
Scheme 1. In such a case, θ = π/2 and m = 0. Equation (1) can be simplified as:

∆G = −
∆µ
Ω

Vb + Sbsγbs
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The volumes of the bridge and surface areas can be determined by their radii r and the gap
space H. Here, we define a specific height as h ≡ H/r, giving:

Vb = πr3h, Sbs = 2πr2h (5)

To obtain the free energy barrier of the formation of the ionic bridge (∆G*bridge), we get:

∂∆G
∂r

= 0 (6)

By using Equations (1), (4), and (5), we get:

r∗bridge = wr∗ (7)

∆G∗bridge = f ∆G∗ (8)

w =
2
3

, f =
2h
9

(9)
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where rbridge* is the critical size for bridge formation. Here, r* and ∆G* are the critical homogeneous
nucleation radius and free energy barrier, respectively, which are given by:

r∗ =
2γbsΩ

∆µ
, ∆G∗ =

16πγ3
bsΩ

2

3(∆µ)2 (10)

In comparison, for heterogeneous nucleation of a crystal phase, we have:

∆G∗hetero = f ∆G∗, f =
(1−m)2(2 + m)

4
(11)

Considering the same interfacial relationship as the bridge formation, we get m = 0 and f = 0.5.
Comparing this with Equation (9), when the specific gap space h < 9/4, a bridge formation in a capillary
gap is more likely than that of homogeneous nucleation in solution or heterogeneous nucleation on a
crystal surface. This phenomenon can be understood as capillary condensation [65].

In this work, there are about 10–20 rapture events during the separation of two calcites with a
contact area of 20 µm2. Considering that one salt bridge can produce multiple rupture events (n = 2–6,
Figure 5b), the number density of ionic bridges is in the range of 0.2–1 µm-2 min−1 (the contacting time
is 0.5 min), which is comparable to the heterogeneous nucleation rate of calcite on templated substrates
(0.2–1.4 µm−2 min−1) [66]. This result corroborates the model, showing that salt bridge nucleation is
the result of the heterogeneous nucleation in a capillary gap.

Therefore, the rupture events in AFM force measurement can be understood as follows. Ions
in a solution can be either enriched at the crystal surface or stochastically aggregated into ionic
clusters [61,62]. However, the hydration layer may kinetically hinder the penetration of ion aggregates
with the crystal lattice. Ion aggregates may be diffused away from the surface or be dissociated during
this period. As the tip and substrate crystallites move closer, ion aggregates can bounce between walls
and be confined by the capillary gap. A capillary condensation effect may facilitate the heterogeneous
nucleation of mineral clusters, where the initial ionic bridge is formed. Multiple ionic bridges will be
formed during the “contacting” period. As the separation of crystallites increases, ionic bridges are
elongated and broken, leading to multiple rupture events during force measurements.

3.2.3. Capillary Bridges Promoted CPA Process

Several factors were observed to affect the formation of ionic bridges between crystallites. We found
that increasing the “contacting” time and the supersaturation leads to the increase of the magnitude of
rupture events, which can be understood by the heterogeneous nucleation in a capillary gap. These
ionic bridges can facilitate the aggregation of crystallites during crystal growth.

During force measurements, there is an external force that facilitates the contacting of crystallites.
However, for suspended colloidal crystallites, there is no such external force. The electrical double layer
and the hydration layers may prevent colloidal crystallites moving closer. We found two strategies that
can be applied to promote the CPA process. One is to use nanosized crystallites and the other is to use
ultrasonic agitation. For the first case, the Brownian motion of a colloidal will be enhanced by reducing
the size. Nanosized crystallites increase the collision velocity, which may make them reach a critical gap
space where heterogeneous nucleation would happen. We directly observed the formation of bridges
between nanogold particles before they had lattice contact with each other [67]. The aggregation-based
crystallization of nanovaterite was also observed [68,69]. For the second case, calcite crystallites ay
have collided with each other under ultrasonic agitation, resulting in the aggregation of micron-sized
calcite crystallites or the attachment of smaller calcite crystallites on a larger calcite surface (Figure 6).
The ultrasonic agitation is usually applied to suspend aggregates, but in supersaturated solutions
it promotes aggregation. This abnormal phenomenon can be understood as the ionic bridge being
facilitated the CPA process.
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of crystallization processes, providing new pathways to break through the limitations of classical
crystallization. However, the mechanism of attachment is not straight forward. The classical DLVO
model is limited at the nanoscale. The hydration layers, the ionic aggregation behaviors near the crystal
interface, and the capillary condensation effect have to been taken into account for a better understanding
of the mechanism of attachment. As revealed in this work, even for a simple calcite crystallization
system, the attachment is not only dependent upon the natural surface properties (electrical double
layers and hydration layers), but is also dependent upon the solution condition, particle size, contacting
time, and the capillary gap space. Detailed understanding of the mechanism of calcite attachment
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