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Abstract: Background: In this study, the light output of a cadmium tungstate (CdWO4) single
crystal was measured under various X-ray radiographic energies. Methods: A CdWO4 single crystal
(10 × 10 × 10 mm3) was exposed to X-rays in the 50–130 kVp range. Measurements were evaluated
against published data for single crystals of equal dimensions (CaF2:Eu and Lu3Al5O12:Ce). Since the
crystal was examined for application in medical imaging detectors, the emitted optical spectrum was
classified with respect to the spectral compatibility of numerous commercial optical sensors. Results:
The luminescence efficiency (LE) was found to constantly increase with X-ray energy and was higher
than that of CaF2:Eu for energies above 90 kVp. However, the efficiency of the previously published
Lu3Al5O12:Ce was found to be constantly higher than that of CdWO4. The light emitted from CdWO4

can be optimally detected by certain charge-coupled devices (CCDs), amorphous silicon photodiodes,
and photocathodes. Conclusions: The high density (7.9 g/cm3) of CdWO4 and the luminescence
signal of this material make it suitable for medical imaging (such as dual energy), high-energy physics
or for applications of scintillators in harsh environments.
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1. Introduction

Cadmium tungstate (CdWO4 or CWO) is a scintillator with a long history as an energy converting
medium. CdWO4 attracted scientists’ attention due to its unique internal properties (Table 1) [1].
The first scientist who investigated properties regarding luminescence for this material was Kroger [2].
CdWO4 is one of the denser scintillating materials (ρ = 7.9 g/cm3), with one of the shortest radiation
lengths of 10.6 mm and exceeds about 30% to 50% of the light output of sodium iodide doped with
thallium (NaI:Tl) [2–12]. The attenuation coefficients of this material are very high, and the light
yield has been reported to range from 6200 to 28,000 photons/MeV depending upon the crystal
defects [6,8,13–18]. The emission of CdWO4 covers a wide band with the main peak at 490 nm,
which is ideal for coupling with a variety of sensors, such as photomultiplier tubes (PMTs) and
silicon photodiodes (Si) [4,7,19–22]. The reported energy resolution varies from 7.5% to 8.5% using
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Cs-137 gamma radiation (Eγ = 662 keV) [6,16]. Furthermore, CdWO4 is a non-hydroscopic, radiation
hard, cheap material, with short values of afterglow (0.05% after three milliseconds of exposure),
a high effective atomic number (Zeff values ranging from 61 to 66 were reported in the literature),
and a gamma ray detection efficiency (ρZ4e f f ) equal to 134 × 106 [1,3,4,7,8,13,14,18,23–26]. However,
there are certain drawbacks such as the fact that it is difficult to produce in large dimensions and it is
toxic due to cadmium [16,25–30]. These properties make CdWO4 suitable for various applications,
such as high-energy physics, spectroscopy, gamma-ray detectors, as well as in the search for dark
matter in the universe, neutrinoless 2β decay detection, and α decay of 180W experiments [8,31].

CWO has been also used in photoelectrochemical (PEC) water-splitting sensors, optical fibers,
introscopy, photocatalysis, radiometric devices, lasers, electronics, and photovoltaics [10–12,22,31,32].
Furthermore, CdWO4 has a high melting point (1272 ◦C) which is ideal for applications in harsh
environments such as in industrial applications for nondestructive testing (NDT) of welds on pipelines
and pressure vessels in the oil and gas industry, in dual-energy non-intrusive inspection of cargo
containers, in deep geology boreholes, in marine research and nuclear plants [3,4,6,10–12,30,33,34].

Furthermore, it has been used for dosimetric applications and as an X-ray scintillator in medical
imaging, especially in computed tomography (CT), in conjunction with charge-coupled devices (CCDs),
silicon photodiodes or photomultiplier tubes [1,3,4,6,7,13,14,16,18,25–29,35–38]. Regarding CT, CWO
has more attractive properties (afterglow, temperature coefficient, X-ray detection, radiation hardness)
than cesium iodide activated with thallium (CsI:Tl), which was initially used [9,15].

In the current study a CdWO4 single crystal was examined in the energy range employed in X-ray
imaging, in order to be integrated into sensors used in medical imaging such as in dual-energy imaging
detectors using novel methodologies [39–42].

Table 1. CdWO4, CaF2:Eu, and Lu3Al5O12:Ce crystal properties [1,3,4,6–8,13–18,23–25,43–47].

Properties CdWO4 CaF2:Eu Lu3Al5O12:Ce

Wavelength (Max. Emission—nm) 490 435 535
Wavelength Range (nm) 380–800 395–525 475–800

Decay Time (ns) 5000 950 70
Light-Yield (photons/MeV) 6200–28,000 13,000–30,000 16,000–27,000

Photoelectron Yield (% of NaI(Tl)) 30–50 50 20
Radiation-Length (cm) 1.06 3.05 1.3

Refractive Index 2.2–2.3 (@max nm) 1.47 (@435 nm) 1.84 (@633 nm)
Density (g/cm3) 7.9 3.18 6.73

Atomic Number (Effective) 61–66 16.5 62.9
Melting Point (oK) 1325 1360 2020

Coefficient of Thermal Expansion (1/C) 10.2 × 10−6 19.5 × 10−6 8.8 × 10−6

Conductivity (Thermal, W/mK) 4.69(@300K) 9.7 9.6
Hardness (Mohs) 4–4.5 4 8.5

Hygroscopic No No No

To this aim, the output signal of CdWO4 under X-ray excitation was recorded and compared
with data for other materials (CaF2:Eu and Lu3Al5O12:Ce), of the same dimensions and thickness
(10 mm × 10 mm × 10 mm). CdWO4 was selected (i) because it had a light yield (LY) value of
28 photons/keV, higher than that of Lu3Al5O12:Ce (25 photons/keV) which was recently examined by
our group [47] and was found to have high luminescence efficiency values, and (ii) due to the fact that
it is a cheap material [44,45]. The spectrum of emitted light was also studied for its compatibility with
the optical sensitivities of various optical sensors.

2. Materials and Methods

For the experiments, a CdWO4 single crystal was used (Advatech) [45] with dimensions of 10 mm
× 10 mm × 10 mm. The surfaces of the crystal were polished. The X-ray tube (BMI, Merate, Curno,
Italy) that was used for the X-ray measurement was operated in the voltage range from 50 to 130 kVp.
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In the output of the X-ray tube, an aluminum filter was added (thickness 20 mm) in order to consider
the attenuation of the incident X-ray spectrum by a typical human chest [48].

2.1. Output Luminescence Signal

During X-ray excitation, the energy flux (power per unit of area) of luminescence light emitted by
the crystal was measured by placing the crystal sample in the input port of a sphere that integrates the
incident light, in order to correct for crystal light output spatial and angular distribution irregularities
(Oriel 70451) [49]. The light at the output port was collected by a PMT connected to an electric current
meter (Model 6430 Keithley Instruments Inc., Cleveland, OH, USA) [50]. Light energy flux data were
divided by the corresponding incident X-ray exposure rate (

.
X) data (at each tube voltage) directly

measured via an RTI Piranha P100B wireless digital multimeter. By combining the energy flux of
light (

.
Ψλ) (emitted by the crystal) with the exposure rate incident on the detector, the output signal

luminescence efficiency (LE) of the sample can be obtained using the following Equation (1):

ηA(kVp) =
.

Ψλ(kVp)/
.

X (1)

where ηA(kVp) is LE at a particular X-ray tube voltage, expressed in efficiency units (EU)
(µW × m−2/(mR × s−1).

2.2. Scintillator/Sensor Spectral Matching and Effective Luminescence Efficiency

Every optical sensor can detect to a different degree the optical photons produced by a scintillator.
The degree of overlapping between the spectral response SD(λ) of the sensor and the optical spectrum
distribution of photon fluenceφL(λ) produced by the scintillator can be quantified by a factor expressing
the spectral matching, as follows (2) [51,52]:

αs =

∫
∆λ
φL(λ)SD(λ)dλ∫
∆λ
φL(λ)dλ

(2)

A high-resolution HR2000 spectrometer (Ocean Optics Inc., Largo, FL, USA) was used to measure
crystals’ light, excited at 312 nm by a Vilber Lourmat (VL-215M, Paris, France) ultraviolet (UV) lamp.
The spectral response of various optical detectors that are used in a large number of medical applications
was obtained from manufacturers’ data [53–56]. The effective luminescence efficiency (ηe f f ) between
the output signal of the scintillator and the spectral response of various sensors was estimated by
multiplying the luminescence efficiency with the spectral matching factor [51].

2.3. Energy-Absorption Efficiency (EAE)

The scintillator’s general detection and absorption characteristics can be quantified using the
quantum detection efficiency (QDE) and the energy absorption efficiency (EAE). QDE is the fraction of
incident photons attenuated by the detector material and is traditionally used to evaluate detection
properties of all detector types; however, it is more suitable for photon-counting devices (e.g., those
used in nuclear medicine). On the other hand, in most applications of X-ray detection, the output
signal is proportional to the total energy absorbed in the detector material. Thus, EAE, being equal to
the fraction of energy deposited within the scintillator mass [51,52], is of particular interest.
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To calculate EAE, the ratio of the mass energy absorption coefficient over the total mass attenuation
coefficient is required:

EAE(E) =

E0∫
0

Φ0(E)E
(
µtot,en(E)
µtot,t(E)

)
(1− e−(µtot,t(E)/ρ)W)dE

E0∫
0

Φ0(E)EdE

(3)

Φ0(E)E is the X-ray photon fluence (photons per unit of area) incident on the scintillator, multiplied
by the corresponding energy (E), giving the incident X-ray energy fluence. µtot,t(E)/ρ is the X-ray
total mass attenuation and µtot, en(E)/ρ is the total mass energy absorption coefficient. W denotes
crystal thickness.

The coefficient of energy absorption represents the average fraction of the kinetic energy of
secondary charged particles that is locally deposited in the detector mass [57]. The coefficients of total
attenuation and energy absorption of CdWO4 were obtained from the National Institute of Standards
and Technology (NIST) data regarding cadmium (Cd), tungsten (W) and oxygen (O) using the XmuDat
photon attenuation database software [57–60].

3. Results

The variation of the CdWO4’s LE with X-ray energy is shown in Figure 1, for X-rays from 50 to 130 kVp.
Results were compared with data for CaF2:Eu and Lu3Al5O12:Ce crystals (10 × 10 × 10 mm3) [46,47].
The LE values showed a tendency to increase, with both CdWO4 and Lu3Al5O12:Ce crystals within the
examined energy range following a similar trend. However, for the examined samples (preparation
method, impurity levels, etc.), CdWO4 values were in all cases lower than those of Lu3Al5O12:Ce,
from 9.65% to 16.95%. On the other hand, CaF2:Eu showed a plateau at 80 kVp (luminescence efficiency
equal to 22.22 Efficiency Units-E.U.) and decreased thereafter. This may be explained by taking into
account the effect of significant and continuous decrease of the absorption efficiency of this material
with increasing peak voltage. This in turn is due to the low density and low effective atomic number of
CaF2:Eu resulting in low light yield, when interacting with higher energy photons [46,61].
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Figure 2 shows the light output curves of CdWO4, CaF2:Eu, and Lu3Al5O12:Ce single crystals,
relating the light output signal with the incident X-ray exposure rate. A linear response can be depicted
between the output LE and incident exposure in the examined range of exposures, with R2 values
higher than 0.9974 in all cases. The three curves followed the same trend with the luminescence
efficiency results, in which CdWO4 showed high light output values across the examined range, close
to those of Lu3Al5O12:Ce.
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Figure 2. Output signal (µW/m2) of the CdWO4 single crystal. Comparison with CaF2:Eu and
Lu3Al5O12:Ce crystals.

Figures 3–6 show the emitted light spectrum of the CdWO4 crystal, obtained after irradiation
using a UV lamp, along with the normalized spectral sensitivities of several optical sensors, across
visible wavelengths [53–56]. The CdWO4 spectrum shows the main luminescence peak at 490 nm
(2.54 eV), associated with transitions in the tungstate group (WO6) and a low intensity peak at about
595 nm (2.09 eV) [14,36,62].
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charge-coupled devices.

Table 2 shows spectral matching factor (SMF) values of the CdWO4 with light sensors, such as PMT
photocathodes, with position sensitive photomultipliers (PS-PMTs), silicon PMT (SiPMs), etc. The light
emitted by the CdWO4 scintillator shows an 85% overlap with the (E-S20) photocathode (SMF = 0.85)
that was used in our experimental setup. This value was considered for correcting the luminescence
efficiency measurements. CdWO4 light makes a perfect match with CCD sensors (SMF = 0.97) and
also with hydrogenated amorphous silicon (a-Si:H) photodiodes (SMF = 0.97). Furthermore, the SMF
with photomultiplier photocathodes was also excellent, showing an SMF value of 0.96 with a gallium
arsenide photocathode (GaAs).
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Table 2. Spectral matching values.

Optical Detectors CdWO4 Optical Detectors CdWO4

CCD broadband anti
reflective coating 0.97 Photocathode GaAsP 0.76

CCD infrared anti-reflection coating 0.69 Photocathode E-S20 0.85
CMOS hybrid with blue

anti-reflection coating 0.74 Si-PM MicroFC30035SMT 0.72

Hybrid CMOS blue emission 0.93 Si-PM MicroFB30035SMT 0.66
CMOS (monolithic 0.25 µm) 0.84 Si-PM MicroFM10035 0.88

passivated a-Si:H 0.75 Si-PM S10985050C 0.87
non-passivated a-Si:H 0.97 Si-PM S1036211025U 0.85

CCD with indium tin oxide gates
and microlenses 0.78 Si-PM S1036211050U 0.87

CCD with indium tin oxide gates 0.68 Si-PM S1036211100U 0.86
CCD poly-gates 0.46 PS-PMT Flat panel H8500C03 0.56

CCD no poly-gates 0.66 PS-PMT Flat panel H8500D03 0.43
CCD traditional poly-gates 0.70 PS-PMT Flat panel H10966A 0.43
CMOS (photo-gate array) 0.60 PS-PMT Flat panel H8500C 0.53

CMOS Rad-Eye high resolution 0.82 Photocathode Bi-alkali 0.45
GaAs Photocathode 0.96 Photocathode Multi-alkali 0.64

CdWO4 also showed good compatibility with a monolithic CMOS sensor (SMF = 0.84) and
a high resolution RadEye CMOS (SMF = 0.82), used in medical and industrial radiography systems.
With silicon photomultipliers, it showed SMF values in the range from 0.66 to 0.88 (MicroFM-10035
SMF = 0.88).

Figures 7–10 show LE values of the CdWO4 as was effectively degraded by various optical
detectors. These values are always less than the nominal light efficiency, since the matching of the light
emitted by the examined crystals is registered differently by the various photodetectors due to their
inherent light photon sensitivity. The optimum values for this study were obtained when CdWO4 was
coupled with a CCD with broadband AR coating and with an a-Si:H (non-passivated) photodiode.
When silicon, or flat panel position sensitive photomultipliers, bi- or multi-alkali photocathodes are
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used, having maximum detection efficiency in lower wavelengths (Figures 3, 4, 7 and 8), CdWO4

shows higher SMF values, (ranging from 10.13% to 48.28%) compared to Lu3Al5O12:Ce. This in
turn results in higher effective efficiency (EE), showing the importance of this factor when designing
an optical detection system. In detail, the increase (with kVp) in the detected luminescence signal
ranged from 26.47% to 34.91% when CdWO4 was coupled with the H10966A PS-PMT flat panel
position sensitive photomultiplier, from 23.53% to 31.78% when CdWO4 was coupled with the bi-alkali
photocathode, and from 8.52% to 15.55% when CdWO4 was coupled with the MicroFB-30035-SMT
silicon photomultiplier, with respect to the corresponding values when these optical sensors were
coupled to Lu3Al5O12:Ce [47].
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Figure 11 illustrates the variation of calculated energy absorption efficiency values of the CdWO4

in comparison with CaF2:Eu and Lu3Al5O12:Ce crystals of equal dimensions. The energy absorption
efficiency of CdWO4 was lower than that of both CaF2:Eu and Lu3Al5O12:Ce in the low-energy range
(40 kVp) (0.67 for CdWO4, 0.87 for Lu3Al5O12:Ce and 0.82 for CaF2:Eu crystals). Thereafter, CdWO4

shows a tendency to increase up to 70 kVp (EAE = 0.73), and after 80 kVp, it shows higher EAE values
than both CaF2:Eu and Lu3Al5O12:Ce crystals. The CaF2:Eu crystal, having the lowest density value
of 3.18 g/cm3, shows a clear tendency to decrease in the whole examined energy range. The higher
density of CdWO4 (CdWO4 d = 7.9 g/cm3, Lu3Al5O12:Ce d = 6.73 g/cm3) and the influence of the
K-edge of the material (Figure 11 inset) contribute to the higher overall energy absorption efficiency
values after 80 kVp.
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Taking into consideration the absorption properties of CdWO4, it would be of interest to mention
previous relevant studies and possible applications. When high X-ray energies are considered, it has
been previously demonstrated that for dual-energy applications, such as in material recognition
imaging, the CsI-CdWO4 dual detector combination performed sufficiently well when CdWO4 acted
as the high-energy component of the detector [63]. In diagnostic radiology X-rays, CdWO4 has been
studied as part of a Gd2O2S-CdWO4 combination detector by Juste et al. [64] in the energy range from
10 to 160 keV and has been reported to exhibit adequate contrast between the low and the high-energy
dual-energy spectral component. In addition, the ZnSe/CdWO combination has also been theoretically
studied by Grinyov et al. [65] in 80–140 kV tube voltages. Finally, the two X-ray absorption edges
of CdWO4 at approximately 30 and 75 keV make it a suitable candidate for a dual-energy radiation
detector either for single or double shot technique [66–68]. For single shot applications where the
incident X-ray spectrum could be an 80 kVp filtered by 900 µm cerium (Ce) or a 90 kVp spectrum
filtered with 2500 µm barium (Ba), which are presenting exposure peaks at the aforementioned
energies, CdWO4 would perform rather well [66–69]. Dual-energy applications are currently used in
computed tomography (CT) systems in clinical practice. These can be regarded as either dual-energy
or dual-source irradiation [70–72]. The X-ray tube voltages used are 80 kV (low-energy component)
and 140 kV (high-energy component) [70–72], to satisfy the range of CT tube voltages [73]. As we can
observe from Figure 1, at 80 kV, CdWO4 is comparable to the CaF2 scintillator, while for the higher kV
energies, its efficiency characteristics are superior and present an increasing tendency. This may lead
to improved signal to noise ratio (SNR) for the dual-energy CT high X-ray tube voltages, contributing
to dose savings. The improved efficiency in high kV of CdWO4 can be further exploited in dual-energy
CT with a contrast agent [70,72], where in the low-energy region, the contrast-to-noise ratio is mainly
affected by the contrast agent X-ray absorption characteristics, while in the high-energy part, a sensitive
image detector can contribute to noise minimization through adequate dose management.

Dual-energy chest radiography improves the diagnostic value of an X-ray by separating soft tissue
from bones, producing two different images using either a single or a double exposure technique.
In the single exposure technique, two phosphor plates are exposed to X-rays, separated by a copper
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filter. The front plate receives the unfractionated beam and produces a standard chest X-ray [74].
The high-energy photons are received by the back plate, while the lower energy photons are removed
due to the front plate and copper filter. In the dual exposure technique [74–76], two images are obtained
at different kVs, mainly at 60 and 120 kV [74,75], for the low and high energy, respectively. The resulting
images are subtracted to produce the tissue-selective and bone-selective images. Although dual energy
requires higher radiation doses, higher diagnostic accuracy can be achieved [74]. The higher X-ray
energy absorption characteristics of CdWO4 above 80 kV, as shown in Figure 11, make it a promising
candidate for DE X-ray imaging that can contribute to dose saving when the high X-ray energy
component is considered.

The use of crystalline scintillators in large detector arrays should address the problem of internal
light scattering and crosstalk at the crystal edges [15,77]. The effect should be considered in positron
emission tomography (PET) imaging and is affected by the photon energy [77]. When separated
crystals are used, thickness separators, placed between the crystals, may be utilized to prevent the
effect of internal light scattering and crosstalk. These separators should be thin and possess good
reflectivity and low transparency [15]. A thin aluminum foil of 0.01 mm thickness has been reported to
reduce light scatter [78]. In addition, 2D back illuminated photodiode arrays have been reported to
adequately meet CT performance characteristics, including the effect of crosstalk, when large area CT
detection systems are considered [79].

The differences between CdWO4 and Lu3Al5O12:Ce in the tube voltage range of 40–70 kVp
(Figure 11) can be explained by taking into account the ratios of the mass energy absorption coefficients
over the total mass attenuation coefficients that are used for the EAE calculation, see Equation (3) and
Figure 12. This range corresponds to energies of about 34–51 keV. From Figure 12, it can be seen that
in the 34–51 keV energy range, the ratio of the mass energy absorption over the mass attenuation
coefficients for Lu3Al5O12:Ce is higher that the corresponding ratio of CdWO4, despite the fact that the
absolute values of mass energy absorption and the mass attenuation coefficients of CdWO4 are higher
in this range. Thereafter, the ratio of the coefficients for CdWO4 is higher than that of Lu3Al5O12:Ce,
and this is reflected in EAE results of Figure 11. By contrast, CaF2:Eu starts with competitive values,
in the low-energy range, but thereafter, the ratio of the coefficients is lower than for the other two
materials, also resulting in lower EAE properties.
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4. Conclusions

The output luminescence signal of a CdWO4 single crystal was examined within the radiographic
energy region for possible applications in novel radiographic applications (such as dual energy).
With this aim, the spectral compatibility with various commercial sensors was also considered. CaF2:Eu
and Lu3Al5O12:Ce crystals of equal dimensions, were used in order to be compared with CdWO4.
The maximum luminescence efficiency was obtained at the maximum examined X-ray energy (130 kVp)
since the output of the crystal constantly increased in the examined energy range. The emitted optical
photons of CdWO4 were found to be optimally detected by charge-coupled devices and amorphous
hydrogenated silicon photodiodes employed in medical flat panel detectors. These values are perfectly
matched for various imaging and non-imaging applications, such as dual-energy imaging, high-energy
physics detectors, or applications of scintillators in harsh environments.
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