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Abstract: The influence of topological entropy (TS) on the effective transport coefficient (ETC) of a
two-phase material is analyzed. The proposed methodology studies a system of aligned bars that
evolves into a stochastic heterogeneous system. This proposal uses synthetic images generated by
computational algorithms and experimental images from the scanning electron microscope (SEM).
Microstructural variation is imposed for statistical reconstruction moments by simulated annealing
(SA) and it is characterized through TS applied in Voronoi diagrams of the studied systems. On the
other hand, ETC is determined numerically by the Finite Volume Method (FVM) and generalized by
a transport efficiency of charge (ek). The results suggest that our approach can work as a design tool
to improve the ETC in stochastic heterogeneous materials. The case studies show that ek decreases
when TS increases to the point of stability of both variables. For example, for the 80% surface fraction,
in the particulate system of diameter D = 1, ek = 50.81 ± 0.26% @ TS = 0.27 ± 0.002; when the system
has an agglomerate distribution similar to a SEM image, ek = 45.69 ± 0.60% @ TS = 0.32 ± 0.002.

Keywords: effective transport coefficient; topological entropy; aligned composites

1. Introduction

Composites allow the association of materials with different but complementary characteristics,
which combined synergistically generate an assembly with original properties. These materials find
a niche in applications where traditional materials cannot satisfy design criteria. Some examples of
its applications are to save weight while maintaining high-performance mechanical properties [1],
high corrosion resistance [2] and better electrical transport [3]. Different sectors such as aerospace and
energy industry are attracted to composite materials [4].

When composites materials align their phases, they can improve some of the physical properties [5].
For example, in electrochemical electrodes, there are many expectations of having unidirectional composite
materials that provide a reduction in internal resistance and facilitate ion diffusion. An aligned electrode
exhibits better electrochemical performance [5,6]. Currently, several strategies are developed to
manufacture electrolytic composites that provide high ionic conductivity. Tortuosity analyses suggest
that vertically interconnected ceramic particles are the optimal configuration for creating high
ionic conductivity pathways in lithium-ion batteries [7]. Liu et al. proved that aligning fibers of
Li0.33La0.557TiO3 vertically, increases ionic conductivity from 1.78 × 10−7 S cm−1 to 6.05 × 10−5 S cm−1 at
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30 ◦C [8]. Wang et al. present a study on rechargeable batteries with vertically aligned ceramic/polymer
composites where the alienated ceramic phase in the composite electrolyte allows rapid conduction of
lithium-ions, reaching a conduction of 1.67 × 10−4 S cm−1 at room temperature, 6.9 times higher than
the sample containing the ceramic composite dispersed in the electrolyte [7].

In polymer electrolyte fuel cells (PEFC), mass transport in the catalytic layer continues as the
primary characteristic that determines the cell performance, mainly because effective transport of
electrons, ions and reactants gases are prerequisites for complete electrochemical reactions to occur [9–11].
Transport phenomena are associated with the heterogeneous morphology of the composites that
form the catalytic layer, ionomer and pores. The use of platinum (Pt) supported in vertically aligned
carbon nanotubes (Pt/VACNT) is widely proposed as it improves the structure of the catalytic layer
at the nanoscale. By adopting the use of VACNT as carbon support, the catalytic layer can form
effective pathways for electron transport and continuous porous structures for mass transport [12,13].
Yasuda et al., who developed a catalytic layer of iron-nitrogen-doped carbon nanotubes using VACNT,
demonstrated that the catalytic layer supported in VACNT exhibited a more significant reaction to
the oxygen reduction compared to the conventional carbon supported catalytic layer, resulting in
improved mass transport efficiency [14]. Tian et al. reported that VACNT could significantly improve
the fabrication of membrane electrode assemblies (MEA) with low loads of Pt when used as carbon
support because there are suitable pathways for transport of electrons, protons and reactants in the
VACNT catalytic layer allowing better use of the catalyst [15]. Catalytic layers deposited on VACNT
exhibit similar performances to conventional catalytic layers even when very low Pt loads have been
used and deposited on the surface of VACNT. Murata et al. demonstrated that VACNT used as carbon
support allowed the operation of a PEFC at high current densities with a low Pt load, mainly due to
improved pore continuity and electric contact [16].

Composites can be studied as random heterogeneous materials (RHM). The coefficient proportionality,
or effective transport coefficient (ETC), for mass transport, charge and energy are affected by properties
of the phases that form them, the surface fraction of the phases and by the microstructure, as described
in the Equation (1) [17]:

Ke = f (K1, K2, . . . , KM; φ1,φ2, . . . , φM; Ω), (1)

where the subindex of the variables indicates the phase in question, K is the phase proportionality
constant, φ is the volumetric fraction of the phase, and Ω is the microstructural information of the
medium [18,19].

There are different mathematical relationships to determine ETC’s. Garnett [20] developed a
relationship to determine the optical properties of diluted uniform sphere dispersions. One of the
most widely used methodologies is the one proposed by Bruggeman [21], which applies for systems
random dispersions of spherical particles with different size ranges. However, stochastic reconstruction
allows defining the microstructure in a node mesh to study the ETC in more detail [17].

In previous works our research group has published strategies to study RHMs. Barbosa et al. [17]
reported an escalating method to determine ETC’s in RHM using stochastics reconstruction and
analytical techniques. Ortegon et al. [22] presented a method to classify the phases of the materials
using Support Vector Machines (SVM) which generates a binarized image from the obtained SEM
images of the studied microstructures. Ledesma-Alonso et al. [23] presented a theoretical analysis of
the effect of image reduction obtained from the reconstruction, using a progressive and sequential
method of the decimated image. Rodriguez et al. [24] analyzed the effect of size reduction in ETC’s
microstructure and implemented Simulated Annealing (SA) reconstruction for the study.

On the other hand, there are studies of structures and topological properties in 2D systems,
which exhibited that specific structural and topological properties reach a stable state when the
aggregation continues, due to the spatial ordering of the groups [25]. These properties can be studied
by construction of Voronoi diagrams, which allow a global description of the system’s aggregates.

This work analyzes the effect of topological entropy (TS) on the ETC in different composites,
with variations of the surface fraction. The SA method is used to reconstruct systems (microstructures)
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that evolve from a unidirectional composite aligned in vertical bars to an RHM. The moments of
the SA reconstruction are selected for post-process to characterize the TS and determine the ETC by
finite control volume. The proposed method allows analyzing the evolution of the systems, not only
quantifying the influence of TS on ETC but also proposing a design strategy to modify the response of
the ETC as a function of the TS. The algorithms were programed in C-language and developed by using
Dev-C++ IDE (Integrated Development Environment) (Free software Foundation, Inc., version 5.11,
Cambridge, MA, USA).

2. Materials and Methods

The process begins with the generation of a synthetic system, generated using our computational
algorithms, which has identifiable phases. SA is used to agitate the initial system (vertically aligned
composites) to a target system (randomly distributed composite). At specific points of the SA (ISA)
agitation, representative meshes are generated which are considered new target systems (study points).
The results in each study point present statistical characterization utilizing correlation, entropy and
ETC functions. Figure 1 shows the general diagram of the proposed methodology.
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Figure 1. Methodology outline.

The methodology begins with the generation of two digital systems; each system has identifiable
phases: j1) matrix phase, white color and j0) dispersed phase, black color. The systems are defined by
initial conditions: the size (n × n) and the surface fraction (Φ) of the phase matrix. The system origin
is conditioned to show vertically aligned bars (south to north). In the target system three different
configurations are studied, as described in the boundary conditions section.

The generated microstructures are characterized by the two-points correlation function (S j) and
the linear path (L j). SA is used to obtain an assembly (Ω) that characterizes a statistical moment of the
agitation SA (ISA). Each moment ISA is presented as a study system, where Ω is composed of 5 random
realizations ω (W = 5). The results represent the response of the correlation functions, TS and the
conduction efficiency (ek), applied to both phases: matrix (j1) and dispersion (j0).

2.1. Transport Effective Coefficient

The Finite Volume Method (FVM) is applied to the mesh of reconstructed control volumes,
where each node identifies the phase conductivity. FVM can be implemented in different scales
of synthesized materials and modeling of transport phenomena in 2D and 3D of a heterogeneous
medium [24]. The normalization and generalization of the results are performed by calculating the
resistivities to estimate a conduction efficiency ek (%) [17].

ek =
Γe f f

ΓM
, (2)
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where, Γe f f is the effective conductivity and ΓM the nominal conductivity.

2.2. Microstructure Reconstruction

Reconstruction is employed as a strategy to generate a mesh of control volumes that characterizes
the microstructure of an RHM and can be described mathematically through correlation functions.
Torquato offers a methodology to characterize the microstructure and estimate the effective
properties [26]. This proposal uses a reconstruction method based on the SA optimization technique.
SA generates a system that is statistically the same as the target system. This study allows the user to
set the initial and target systems at the beginning. Details of SA reconstruction appears in S. Torquato’s
book [27]. This work presents the evolution of the error during the SA reconstruction process, which is
reconstructed (W = 5) to obtain an average value. The SA error (ESA) is defined by Equation (3):

ESA =
∑

r
[F(r) − F(r)]2, (3)

where F(r) is the reference system and F(r) is the statistical descriptors of the moment SA [27].
The correlation functions are detailed in previous works [23], two-point correlation function (S j) and
the linear path (L j) will be used in this work to rebuild the microstructure.

The two-point correlation function S(2)
j (xa, xb) is the probability that the initial point xa and the

final point xb of a line of length r fall into the same phase j. Considering an isotropic and homogenous
medium, S(2)

j statistically can be defined as a function of the distance r:

S(2)
j (r) = 〈TJ(x)TJ(x + r)〉, (4)

where 〈〉 refers to the statistical average that results when evaluating the entire computing domain
of each one of the realizations ω. TJ is the index function of the computing domain, which is TJ = 1
when the node belongs to the conductive phase (study phase) and TJ = 0 when the node is in the
non-conductive phase.

The function L j(xa, xb) is the probability that a segment of a line r with its initial point xa and
the final point xb fall completely in the phase j. Considering an isotropic and homogenous medium
statistically, L j as a function of the distance r, is:

LJ(r) = 〈
∑r

0
TJ(x + r)〉, (5)

The procedure for LJ is simply reduced to identify the length of the strings for the corresponding

phase. In this work, the evaluation of S(2)
j and LJ is done with integer values of r in orthogonal directions.

2.3. Topological Entropy

The topological Entropy technique was used to characterize the microstructural changes of a system
with vertically aligned phases that transforms into a system with randomly dispersed phases. Such a
technique generates random polygons with the center at each pixel of each j phase. The polygons arise
from Voronoi diagrams, an interpolation method, based on Euclidean distance [28]. The construction of
Voronoi diagrams allows a global description of the system aggregates, representing them by irregular
cells whose shape depends on their neighboring cells. The number of sides per cell (n) provides the
number of close neighbors surrounding the aggregate. The area of the polygon (A) represents the area
occupied by the aggregate plus its depletion zone [29]. The generated polygons can be defined by
their shape, which is a topological property. The number of sides is considered as a random variable
to describe the topological randomness of polygons. The TS can be characterized by the state of the
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polygonal network, considering the frequencies (pn), as the probability of finding n-sided polygons
within an observation area (microstructure domain).

TS = −
∑
n=1

pnInpn (6)

The TS measures a degree of arbitrariness. The entropy value for a perfectly regular pattern is
always equal to zero and grows with increasing disorder. The entropy is caused by the appearance
of polygons with several different edges of six. Furthermore, regardless of the degree of disorder,
the average area of n-sided polygons grows. This property is derived from Equation (6). TS values for
their corresponding dispersions are shown in Figure 2.
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Figure 2. Topological entropy (TS) for different planes: (a) microstructure with aligned bars;
(b) microstructure characterized by Voronoi diagrams with TS = 0; (c) zoomed section of the
characterized microstructure to observe the order of the phases; (d) randomly agitated microstructure;
(e) microstructure characterized by Voronoi diagrams with a TS = 0.18; (f) zoomed section of the
characterized microstructure, which shows a polygons deformation.

Figure 2 shows the characterization of a sample, (a) shows the original microstructure
(vertically aligned bars), (b) shows the same microstructure characterized by the polygons used in
the Voronoi diagrams which in turns are used to calculate the TS. The zoomed area presented in (c) shows
the polygons with four sides and the order of the phase, which after its characterization, gives a TS equal
to zero. On the other hand, (d) and (e) show the randomly agitated microstructure, (f) shows a zoom to
the polygons which can be seen as having deformities in their sides, giving a TS of 0.18.

3. Results and Discussion

This work quantifies the influence of TS on ek (%) in composites that evolve from an aligned
system to a stochastic system through three microstructural characteristics. The systems are defined as
follows, (1) random systems of one-pixel diameter particles (D1); (2) random systems with a diameter
distribution simulating images obtained from SEM; and (3) experimental systems obtained by SEM
from a PEFC electrode. The nomenclature corresponding to each system is D, E, and S, respectively;
Table 1 summarizes the studied systems, the numbers in the nomenclature correspond to the studied
surface fraction.

All samples originate from a vertical bars structure (ordered pixels) of random widths.
Samples D20–D82 are synthetic microstructures of 300 × 300 pixels, generated by computational
algorithms that control the surface fraction of the phase, with particles of D = 1. The target
microstructures of the samples “E” are synthetic as well but generated with random dispersion
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of diameter higher than one pixel. Samples “S” are two experimental systems obtained from SEM
images of a fuel cell electrode, for samples E and S, the images size of the images is 350 × 350.
The samples S13k and s800x are SEM images taken from fuel cell electrodes; the electrode was prepared
by depositing 30 µL of sonicated catalytic ink for 40 min on a 5 mm diameter graphite substrate.
The ink is made up of 20 mg of electrocatalyst, 30 µL of Nafion®, and 1mL of isopropanol. For image
acquisition, the JEOL model JSM 6010 PLUS scanning electron microscope (Manufacturer JEOL,
Chetumal, QRoo, México) was used. The samples were coated with a thin layer of gold to improve the
conductivity of the samples.

Table 1. Studied structures characteristics.

Name Φ Matrix Φ Dispersion Diameter Size

D20 20.10 79.80 1 300 × 300
D30 30.33 69.55 1 300 × 300
D40 40.25 58.91 1 300 × 300
D50 50.27 49.61 1 300 × 300
D60 60.24 39.64 1 300 × 300
D70 70.55 29.34 1 300 × 300
D82 82.18 17.71 1 300 × 300
E20 20.81 79.19 Random 350 × 350
E30 30.25 69.75 Random 350 × 350
E40 40.61 59.39 Random 350 × 350
E50 50.50 49.50 Random 350 × 350
E60 60.21 39.70 Random 350 × 350
E70 69.90 30.01 Random 350 × 350
E80 80.16 19.75 Random 350 × 350

S13kX 77.88 22.03 SEM 350 × 350
S800X 80.16 19.75 SEM 350 × 350

Figure 3 represents the original SEM images of a electrodes of PEFC and their processing (zone cut,
SVM) for the analysis. Sample S13kX corresponds to the SEM image of a fuel cell electrode, taken at
13kX magnification. Sample S800X corresponds to the SEM image of a fuel cell electrode, taken at 800X
magnification. Both SEM images were processed using SVM [22].
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The binarized SEM images in Figure 3 are characterized by S j and L j in the two phases, to be
used as reference statistical descriptors F(r) (Equation (3)). The microstructures reconstructed in
the assembly Ω, allow the statistical analysis of the ETC response in 5 realizations ω (W = 5).
Conversely, seven monodispersed synthetic systems with diameter D = 1 and polydispersed synthetic
systems with random diameters were studied. Figure 4 shows representative images of the systems
studied. The rows refer to the evolution of the microstructure, from a system of vertically aligned bars
to a system with randomly distributed particles. The columns refer to the specific configurations of the
study cases. Although different surface fractions were studied, Figure 4 only shows D30, D70, E20,
S13kX and S800X.Crystals 2020, 10, x FOR PEER REVIEW 8 of 17 
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The first column presents the initial system with the vertically aligned unidirectional composites,
which are characterized with TS = 0. The columns 2 to 3 present the moments ISA representative of SA
agitation. The last column shows the target system or reference system used by the SA methodology
for the reconstruction.

In all cases, there is an increase in TS when the SA reconstruction advances towards the optimization
of the desired system (reference systems). The values presented correspond to the average obtained of
W = 5 for all cases.

3.1. Reconstruction Process

This section presents the results obtained during the SA reconstruction process. Figure 5 shows
the two-point correlation functions S j, of the system S800X as an example of the process that was
applied to all systems. In order to highlight the changes in the statistical information, only the functions
S j are presented for the matrix phase (white color phase).
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Figure 5. Correlation functions of Sj during the reconstruction process of S800X.

The magnitude of the function S j is normalized to r/n where r is the magnitude of the line segment
evaluated by the functions, and n is the length of the image domain, both values evaluated in pixels.
The S j values of the initial system (black dotted curve) show a periodic response oscillating with a
maximum in the surface fraction. The curves marked in red and blue represent the statistical moments
ISA 10 × 103 and 20 × 103, when the system is agitated the magnitude of S j decreases, observed in
the height of the peaks that represent the vertical alignment of the composite; while the green line
represents the reconstructed system in comparison with the target function. The function S j of the
reconstructed system and the target function are similar, responding to the general convergence term
(SA) ESA = 1 × 10−6, with a standard deviation of less than 0.03%.

Figure 6 shows the evolution of the ESA error as a function of the iterations ISA of the reconstructed
microstructures corresponding to D30, D70, S13kX and S800X, presented as examples. All the studied
cases converged.

The error is presented in multiples of ISA = 1 × 103. The evolution of the ESA error (Equation (3))
can be observed as a function of the statistical moments of the SA methodology. Figure 6a shows
the average errors of D30 and D70; it is observed that the error drops drastically to the convergence
error (ESA = 1 × 10−6) to the few moments ISA. This observation is because the SA method agitates
intrinsically from a high temperature to a lower temperature, which corresponds to the random systems
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with a diameter of one. Figure 6b shows the evolution ESA of the samples S13kX and S800X, and it
is noted that a higher number of iterations ISA is required to reach the convergence ESA = 1 × 10−6,
maybe due to the need for “agglomerates” formation to reach the target function.
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Figure 7 shows the average entropy value as a function of the ISA iteration. They were obtained in
the methodology stage corresponding to the original agitation. Systems D with agglomerates with a
diameter of one, and systems E, S13kX and S800X with agglomerates of a diameter greater than one
are presented separately for the Matrix phase in both cases.

Figure 7a shows that the entropy reaches a maximum value in all cases. Relating Figure 6;
Figure 7, we can see that since we are dealing with a dispersion of elements of diameter D = 1,
entropy and minimum error are reached in a faster way compared to microstructures with larger
diameter agglomerates. TS achieves stability at approximately 250 ISA iterations for system D, as for
systems E and S it takes up to approximately 1250–1500 ISA iterations to achieve stability of TS since
the system first disperses all the particles and then begins to generate the agglomerates.
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3.2. Effective Transport Coefficient

FVM is applied to determine ek (%) (Equation (2)) [17]. Five repetitions were performed for each
ISA moment in each microstructure, for a total of 1200 reconstructions. Figure 8a,c show the average
values of ek (%) as a function of the iteration ISA determined in the matrix phase (J1, white color) for
samples D; Figure 8b,d show the average values of ek (%) in the matrix phase of the samples S and E.
The figures show the results for all the assembliesω.

In all the studied cases, the ek (%) value, when ISA = 0 corresponds to the percentage value
of the surface fraction Φ of matrix phase, which is presented in Table 1. This result validates the
initial boundary condition of the SA reconstruction, where the phases are aligned vertically and
unidirectionally, as shown in Figure 4. The magnitude of ek (%) in the samples “D”, shows a fast decline,
until reaching a constant value during all the SA reconstruction. This behavior is visible in Figure 8a,c,
which show that ek (%) is constant after ISA = 250 × 103, with a standard deviation of 0.02% for sample
D20, and obtaining a standard deviation of 0.45% for sample D70. These two values correspond to the
minimum, and maximum standard deviations, respectively, for samples D. Figure 8b,d show that a
higher number of ISA iterations are required for ek (%) to stabilize in samples S and E, which is related
to Figure 6; Figure 7, due to the agitation process and then the formation of the agglomerates.

Figure 9 shows the results for the dispersion phase; Figure 9a,c, present the results for systems
D; Figure 9b,d present the results for systems E and S. Similar behavior is observed in the matrix
phase because ek (%) stabilizes at less than 250 ISA iterations for systems D. In the case of systems
E and S, they present a rapid drop in iteration 125 where ek (%) reaches the minimum value in the
reconstruction process. The value of ek (%) increases and stabilizes in all cases. The minimum value
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of ek (%) is attributed to the dispersion of the pixels in a diameter of one; the increase indicates the
formation of agglomerates.
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Figure 10 shows the values of ek (%) as a function of the TS for all samples. Figure 10a,b show
the results determined for the matrix phase and Figure 10c,d show the results determined for the
dispersion phase. This figure presents the average values of all the realizations ω for all studied
systems; the entropy corresponds to the study phase.
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The surface fraction influences, in a meaningful manner, the magnitude of ek (%) but maintaining
a tendency as a function of the microstructural configuration. In all graphs, comparing the first and
second evaluated point, which corresponds to ISA = 0 and ISA = 1 × 103 in the SA process, we can
see that the TS and ek (%) magnitude change drastically. These tendencies are related to Figure 8;
Figure 9. Figure 10a,c show the results of the systems D, where ek (%) shows a quick semi linear
drop and agglomerates at maximum entropy. Quantitatively, it can be proved that ek (%) has the
same tendency and magnitude for similar surface fractions. For example, for the maximum TS of
the sample D30 and D70 ek = 20.36 ± 0.8%, and in D40 and D60, ek = 4.18 ± 0.14%. Figure 10b,d
show the tendencies of ek for the samples with agglomerates of diameter greater than one. In this
microstructural configuration, ek at the beginning has a linear tendency; then, in a moment of agitation
when the entropy is low, a semi-loop is observed and attributed to the formation of agglomerates that
are features of the reconstructed system. In the trends, it is observed that in the systems with a surface
fraction smaller than 50%, ek has a magnitude close to zero. For example, ek = 0.24% @ E20; ek = 0.73%
@ S13kX and ek = 0.26% @ S800X.

Figure 11 shows the ek (%) results at the end of the SA reconstruction process, as a function of the
surface fraction. D(J1) and D(J0) represent samples D of the matrix and dispersion phase, respectively.
E(J1) for the matrix phase and E(J0) represents the dispersion phase.
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Figure 11 shows the behavior of the two phases (matrix and dispersed) of systems D and E
about the surface fraction of the matrix phase. When comparing systems D (system with diameter
D = 1 pixel) and E (system with polydispersed diameter), we can observe a similar general trend,
but there are significant differences: (1) for porosities higher than Φ = 40%, the ek (%) value of systems
D and E increase in a similar way. This response is expected due to the increase in the surface fraction
of the matrix phase. (2) For Φ = 70% and Φ = 80% the ek value of system D is higher than system E in
the matrix phase. This observation indicates that particulate systems, under these conditions of surface
fractions, have better transport than "agglomerated" systems. For example, ek = 20.39% @ Φ = 70%
of the matrix phase for system D, compared to the ek of the same phase in system E with a value of
ek = 15.87% @ Φ = 70%, and ek = 50.81% @ Φ = 80% for system D, compared to ek = 45.69% @ Φ = 80%.
When comparing the values ek(%) based on the surface fraction, an increasing trend is obtained, as the
surface fraction of the matrix phase increments, the value of ek(%) gradually increases, while the value
of ek(%) for the dispersed phase decreases proportionally. For example, the D82 system has a dispersed
ek of 0.11%, while for the matrix phase, it has an ek of 50.81%. This is contrary to sample D20 where the
dispersed phase is the dominant one and presents ek values of 41.83% dispersed and ek values of 0.18%
for the matrix. The same effect occurs in samples E, S13kX and S800X.

4. Conclusions

A technique that allows the analysis of ek (%) is proposed, as a function of the entropy throughout
the reconstruction process by SA in vertically aligned composites that are agitated until reaching a
target function. The SA method allows simulating the evolution of the agitation of the aligned system
until a dispersed system of particles with a diameter of one or likewise agglomerates of diameters
greater than one is reached. The process can be carried out inversely.

The entropy affects the ETC; as the entropy increases, the ETC decreases until it stabilizes at
maximum entropy. In the case of "D" systems, ek (%) decreases in a semi linear manner until the
maximum entropy. In the case of samples with target systems and agglomerates of particles with a
diameter greater than one (E, S13kX and S800X systems), the coefficient first decreases linearly and
then forms a semi-cycle that is attributed to the formation of agglomerates to eventually stabilize at the
maximum TS.
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This tool would allow the design of better microstructures of any RHM because it is possible to
know which point of the agitation presents the highest percentage of conduction efficiency.
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