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Abstract: The magnetic and magnetocaloric effects of potassium-substituted La0.8−xKxBa0.05Sr0.15MnO3

(0 ≤ x ≤ 0.20) manganite were explored. The samples in polycrystalline form were synthesized by the
sol–gel method, with a final sintering temperature of 1100 ◦C. Powder X-ray diffraction (XRD) patterns
refined by Rietveld refinement show that all samples crystallized in rhombohedral structure with R-3c
space group. The unit cell volume of the samples decreases with increasing potassium concentration.
In addition, small changes in average bond length and bond angle are also observed in the samples.
Scanning electron microscope (SEM) images reveal that the largest average grain size was observed
for x = 0.10. Field-cooled (FC) magnetization measurements show that the Curie temperature (TC) of
the samples increases from 320 K for x = 0 to 360 K for x = 0.2. The largest magnetocaloric (MCE)
effect, which is represented by maximum magnetic entropy change (−∆SM, MAX), reaches its greatest
value for the x = 0.10 sample. The monotonous increase in TC suggests that TC is mainly governed by
the ferromagnetic coupling between Mn ions induced by the changes on average bond length and
bond angle. The obtained −∆SM, MAX value suggests that MCE property is more sensitive to Zener
theory of double exchange, which is strongly related to the Mn3+/Mn4+ ratio of the samples.

Keywords: double exchange; magnetic; magnetocaloric; perovskite manganite

1. Introduction

The demand for alternative refrigerant technology has significantly increased in the last decade.
This is due to the use of harmful substances in conventional vapor compression technology, which
is also involved in the ozone depletion phenomenon. To overcome this issue, magnetic refrigerant
technology has been proposed and developed. Magnetic refrigerant technology uses the principle of
the magnetocaloric effect (MCE) property of ferromagnetic materials [1]. MCE can be defined as the
ability of ferromagnetic materials to change its temperature in the presence of an external magnetic
field [1]. This makes MCE an environmentally friendly technology and, thus, can contribute to limit the
use of harmful substances in the refrigerant system. MCE property of ferromagnetic materials can be
represented by two expressions which are magnetic entropy change (∆SM) and adiabatic temperature
change (∆Tad) [2]. These two expressions arise from two different methods, which were used to observe
the magnitude of the MCE property [3]. Of these two expressions, ∆SM is usually the most used
expression in research on the MCE property, due to the simplicity of the experimental set up.

The main objective in researching the MCE property of ferromagnetic materials is finding a
material that has a large ∆SM value. Additionally, this large ∆SM value needs to occur at near room
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temperature with a sufficiently large Relative Cooling Power (RCP) value. RCP value can be defined
as the efficiency of the MCE property. Large RCP values indicate the working temperature range
of the magnetocaloric material without losing more than 50% of its maximum ∆SM value. In the
beginning, pure Gd metals and Gd-based alloys were found to exhibit large ∆SM values near room
temperature [4,5]. However, the expensive cost of Gd (4000 $/kg) sets a limitation on the development
of magnetic refrigerant technology. To overcome this limitation, exploration to find another possible
candidate for magnetocaloric materials, such as MnAs-based alloys, LaFeSi alloys, and LaMnO3

(LMO)-based compounds, has been conducted [6–8]. Among these groups, LMO-based compounds
have been demonstrated to possess unique properties that are not found in the other mentioned
candidates, including colossal magnetoresistance (CMR), microwave absorbance, and solid oxide fuel
cells (SOFC) [9–11]. Additionally, its high chemical stability and simple sample preparation method
have led to an increase in the interest in further studying the MCE property of this material [12–15].

Currently, optimization in ∆SM value is the main objective in research regarding the MCE property
of LMO-based compounds. In LMO-based compounds, there are several factors that can be regarded
as the reason behind the increase in the −∆SM value. These factors are the Mn3+/Mn4+ ratio, average
A-site ionic radius (< rA >), and A-site cationic mismatch (σ2). According to previous research,
the −∆SM value of LMO-based compounds is expected to increase until the value of Mn3+/Mn4+

ratio reaches around 7/3 or 2/1 [16,17]. Beyond this ratio, the −∆SM value is expected to decrease
monotonously as Mn4+ content increases. Examples of this can be found in La1−xCaxMnO3 and
La1−xSrxMnO3 [18,19]. On the other hand, there are several cases where −∆SM value increases with the
increase in < rA > and σ2. Examples of this can be seen in La0.6Ca0.4−xSrxMnO3, La0.7−xDyxCa0.3MnO3,
and La0.5Ca0.5−xPbxMnO3 [20–22]. However, special consideration is needed when dealing with a
more complex LMO-based compounds, especially potassium (K+)-substituted LMO-based compounds.
This is due to the fact that monovalent ion converts twice the amount of Mn3+ to Mn4+ ion and the fact
that K+ ion has the largest ionic radius among monovalent ions, which is commonly substituted to
LMO-based compounds [23–26]. There have been some cases where substitution of K+ ion increased the
maximum −∆SM value of LMO-based compounds. Examples of this can be seen in La0.7Sr0.2M0.1MnO3

(M = Na, K), La0.7M0.2M’0.1MnO3 (M = Sr, Ba and M’ = Na, Ag, K), and La0.75Ba0.1M0.15MnO3

(M = Na, Ag, and K) [27–29]. On the other hand, there have been several cases where substitution
of K+ ion reduced the maximum −∆SM value of LMO-based compounds. Examples of this can be
seen in La0.8Ag0.2−xKxMnO3 and La0.65M0.3M’0.05MnO3 (M = Ba, Ca and M’ = Ba, Ag, K) [30,31].
The mentioned results show that the main factor behind the evolution of −∆SM value in K+ ion
substituted LMO-based compounds is still open to debate.

To investigate the most dominant factor behind the changes in the −∆SM value of a
K+ ion substituted LMO-based compounds, a comprehensive study on the MCE property of
La0.8−xKxBa0.05Sr0.15MnO3 (0 ≤ x ≤ 0.20) was performed. La0.8Ba0.05Sr0.15MnO3 was chosen to be
the parent compound, because the combination of Ba and Sr ions in La-Ba-Sr-MnO3 compound
is less studied than other substituted LMO-based compounds such as La-Ba-Ca-MnO3 and
La-Ca-Sr-MnO3 [4,8,32]. Additionally, the combination of Ba and Sr ions in the A-site of perovskite
structure has the potential to exhibit a large −∆SM value in perovskite manganite compounds. This is
proved by the results obtained by Phan et al. in La0.6Ba0.2Sr0.2MnO3 (−∆SM = 2.26 J/kg K at 1 T),
Banik et al. in Pr0.7Ba0.16Sr0.14MnO3 (−∆SM = 4.80 J/kg K at 5 T), and Pham et al. in Pr0.7Ba0.1Sr0.2MnO3

(−∆SM = 5.67 J/kg K at 5 T) [33–35]. Additionally, the composition of Ba ion was determined to be
less than Sr ion with the expectation that the resulting compound will demonstrate a large −∆SM

value as seen in Pr0.7Ba0.1Sr0.2MnO3. With a constant composition of divalent ions (Ba2+ and Sr2+),
the substitution of La3+ ion by K+ ion in La0.8−xKxBa0.05Sr0.15MnO3 will increase the population of
Mn4+ ion while simultaneously decreasing the population of Mn3+ ion to preserve charge neutrality.
This condition will affect the Mn3+/Mn4+ ratio of the samples. Additionally, the large ionic radius
of K+ ion will ensure that < rA > (<rA> =

∑
xi ri; xi is the fractional occupancy of A-site ions and ri

is the corresponding ionic radius) and σ2 (σ2 = <r2
A> − <rA>2; <r2

A> =
∑

xi r2
i ) will only increase as
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the concentration of K+ ion increases. This experimental setup will help to investigate which of the
mentioned factors (Mn3+/Mn4+ ratio, <rA>, and σ2) that is more dominant in affecting the evolution of
−∆SM value in La0.8−xKxBa0.05Sr0.15MnO3 (0 ≤ x ≤ 0.20).

2. Materials and Methods

Polycrystalline La0.8−xKxBa0.05Sr0.15MnO3 (0 ≤ x ≤ 0.20) samples, denoted as LKBS-0 (x = 0),
LKBS-05 (x = 0.05), LKBS-10 (x = 0.10), LKBS-15 (x = 0.15), and LKBS-20 (x = 0.20) in powder
form were prepared using the sol–gel method. A stoichiometric amount of La2O3, KNO3, BaNO3,
SrNO3, Mn(NO3)2·4H2O, and C6H8O7·H2O were initially dissolved in double-distilled water. In this
experiment, La2O3 needs to be converted into nitrate form by reacting with nitric acid. Citric acid
was used in the present work as a metal ion complexant and as a fuel during the combustion process.
The amount of citric acid can be calculated from the ratio of citric acid (CA) to total metal nitrate (MN)
equal to 1:1.2 [36,37]. All the dissolved precursors were mixed together into a single solution and
then heated until the temperature of the solution reaches 80 ◦C. Afterward, the pH of the solution was
adjusted until it reaches around 7 by adding ammonium solution, and then the solution was left to
evaporate under constant stirring until a viscous gel is formed. The resulting gel was dehydrated until
a dried gel was formed and then calcined at 550 ◦C to liberate the organic compound inside the gel.
Pre-calcination was done at 900 ◦C to make sure there was no organic compound left in the sample.
The powder samples were pressed into a pellet with axial pressure about 10 tons for approximately
10 min in order to obtain a square-shaped bulk with 12 mm sides. Sample preparation was completed
with sintering process at 1100 ◦C for 12 h.

The crystal structure and phase purity of the samples were examined using powder X-ray
Diffraction (XRD) using Cu-kα radiation (λ = 1.54059 Å) at room temperature. The diffraction angle
was recorded in an angular range from 10◦ to 90◦ with a step size of 0.02◦. In the present work, the
Rietveld refinement process was carried out using the General Structure and Analysis software II
(GSAS-II) [38]. The morphology of the samples was examined with a scanning electron microscope
(SEM). The chemical composition, as well as its distribution, was examined using Energy Dispersive
X-ray (EDX) with the elemental mapping method. The magnetic properties of the sample were
determined using magnetic properties measurement system (MPMS).

3. Results

3.1. Structural and Morphology Analysis

The powder diffraction patterns of La0.8−xKxBa0.05Sr0.15MnO3 (0 ≤ x ≤ 0.20) samples measured
at room temperature are shown in Figure 1. There is almost no significant difference in the powder
diffraction pattern of samples that were substituted by K+ ion. This implies that substituting up to
20% K+ ion into the samples does not affect the crystal structure of the samples. This argument is also
supported by the result of the Rietveld refinement process, which shows that the Miller indices of
all the samples belong to the rhombohedral structure with R-3c space group. Furthermore, Rietveld
refinement process also proves that all samples are single phase without any detectable impurities.
The structural parameters obtained through the Rietveld refinement process are listed in Table 1.

Substitution with K+ ion is observed to slightly reduce the unit cell volume. This can be correlated
with the increasing concentration of Mn4+ ion, which has the smallest ionic radius within the samples,
due to the substitution of La3+ by K+ ion. Similar cases where the unit cell volume of LMO-based
compounds decreased due to substitution by larger ion have been observed by Shaikh and Varshney in
La1−xKxMnO3 (x = 0.1; 0.125; and 0.15) compounds and Chebanee et al. in La0.65Ce0.05Sr0.3Mn1−xCuxO3

(0 ≤ x ≤ 0.15) compounds [39,40]. Substitution by K+ ion also increases the < rA > from 1.243 to 1.310
for LKBS-0 and LKBS-20, respectively. This, in turn, causes the values of Goldschmidt tolerance factor,
tG, and σ2 to have an increasing trend from 0.930 to 0.965 and 3.833 × 10−3 to 18.101 × 10−3, respectively.
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Figure 1. Powder diffraction pattern and the corresponding Rietveld refinement of
La0.8−xKxBa0.05Sr0.15MnO3 (0 ≤ x ≤ 0.20) samples. (a) LKBS-0; (b) LKBS-05; (c) LKBS-10; (d) LKBS-15
and (e) LKBS-20.

The average crystallite size of all samples was calculated using two different methods, namely the
Scherrer method and the Williamson-Hall method. The calculation of the average crystallite from the
Scherrer method can be performed by following the equation given as [41]:

CSCH =
0.9 λ
β cosθ

(1)

where CSCH is the average crystallite size from the Scherrer method, λ is the wavelength of Cu-Kα
radiation (1.5406 Å), θ is the corresponding diffraction peaks from powder diffraction patterns, and β
is the full-width at half maximum (FWHM) of each corresponding diffraction peaks. In the present
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work, only the prominent peaks were used to calculate the β cosθ value. Alternatively, the calculation
of average crystallite size can also be performed using the W-H plot. The average crystallite size can be
obtained from the linear fit of the 4 sinθ versus β cosθ graph according to the following equation [42]:

β cosθ =
0.9 λ
CW−H

+ 4ε sinθ (2)

where CW−H is defined as the average crystallite size from W-H method, β is defined as β =
√
β2

exp − β
2
s .

Here, βexp is the FWHM estimated from powder diffraction pattern and βs is the FWHM of a standard
silicon sample. The intercept with the y-axis will show the value of average crystallite size (CW−H),
and the gradient of the slope will show the strain effect (ε) on the crystallites. The average crystallite
size calculated using the Scherrer method and the W-H plot is listed in Table 1. The average crystallite
size obtained from the W-H plot is larger compared to that obtained from the Scherrer method. This is
due to the fact that the Scherrer method excludes the effect of strain and instrumental broadening on
the crystallite of the sample. The obtained CSCH and CW−H values are listed in Table 1.

Figure 2 shows the typical SEM images for La0.8−xKxBa0.05Sr0.15MnO3 samples in the secondary
electron (SE) mode. It can be seen that there is an increasing trend of grain size for sample LKBS-0,
LKBS-05, and LKBS-10. However, the grain sizes of LKBS-15 and LKBS-20 are smaller compared to
LKBS-10. A similar case where larger grain size exists due to K+ ion substitution has been reported by
Thaljaoui et al. in Pr0.6Sr0.4−xKxMnO3 and Jerbi et al. in Pr0.55Sr0.45−xKxMnO3 [43,44]. Figure 2 also
reveals the fact that the observed grain size varies between 0.4 µm and 1.92 µm.

Table 1. Results of Rietveld refinements obtained from powder diffraction pattern measured at room
temperature for La0.8−xKxBa0.05Sr0.15MnO3 (0 ≤ x ≤ 0.20).

Structural Parameters
Sample Code

LKBS-0 LKBS-05 LKBS-10 LKBS-15 LKBS-20

a = b (Å) 5.526 5.523 5.515 5.506 5.506
c (Å) 13.398 13.403 13.398 13.394 13.4

V (Å3) 354.296 354.076 352.959 351.667 351.720
tG 0.930 0.938 0.947 0.956 0.965

< rA > 1.243 1.260 1.276 1.293 1.310
σ2 (×10−3 Å2) 3.833 8.237 12.083 15.371 18.101

CSCH (nm) 38.57 61.75 58.66 58.37 58.86
CW-H (nm) 133.32 211.07 156.61 172.08 173.88

RWP (%) 9.681 9.220 9.303 8.623 9.035
χ2 (%) 1.13 1.14 1.09 1.19 1.21

The difference in the crystallite size and the grain size observed from SEM measurement can be
explained in terms of the method to determine the crystallite size of the sample. Zhou and Greer
mentioned that the calculation of crystallite size from powder diffraction pattern will be in good
agreement with the grain size observed from an electron microscope (either SEM or TEM) when the
particle size of the sample is within the nanometer scale [45]. This is clearly not the case in the present
work. Additionally, Uvarov and Popov also proved that in cases where two different crystal sizes
exist—big crystals several microns in size and small crystals with a size of around 100 nm—the powder
diffraction pattern would tend to detect only the presence of the small crystals [46]. Although the
crystallite size of the samples reaches a resolution that can be detected through SEM measurement,
it can be seen that the smallest grain size that can be seen in Figure 2 is 0.4 µm. This result indicates
that each grain observed with SEM measurement comprises a secondary grain, which has aggregated
into a single large grain. To determine this secondary grain, more sophisticated measurements, such as
Atomic Force Microscopy (AFM) and Lateral Force Microscopy (LFM), will be needed [47].
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Figure 2. SEM micrograph of (a) LKBS-0, (b) LKBS-05, (c) LKBS-10, (d) LKBS-15, and (e) LKBS-20.

To confirm the existence of K+ ion in the samples, EDX analysis together with elemental
mapping analysis was performed. The elemental maps for each sample also demonstrate that each
element is distributed evenly in the samples, hence proving that the sample has a high homogeneity.
The elemental mapping of K+ ion for LKBS-15 sample is brighter compared to LKBS-05. This proves
that the concentration of K+ ion in LKBS-15 sample is indeed higher compared to LKBS-05 sample.
It is noteworthy to mention that the collection time in the elemental mapping of K+ ion in LKBS-15
sample is shorter than LKBS-05. This result suggests that the concentration of K+ ion in LKBS-15
sample is higher compared to the LKBS-05 sample, and the measurement result was not influenced by
the collection time. Representative EDX spectra and elemental maps of LKBS-05 and LKBS-15 samples
shown in Figure 3 ensure that K+ ion was successfully substituted inside the samples. EDX quantitative
analysis further confirms that K+ has been successfully substituted in the samples. The results of EDX
quantitative analysis for La0.8−xKxBa0.05Sr0.15MnO3 (0 ≤ x ≤ 0.20) are listed in Table 2.
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Figure 3. EDX spectra and elemental maps for six different elements of (a) LKBS-05 and
(b) LKBS-15 samples.

Table 2. Weight percent of each element of La0.8−xKxBa0.05Sr0.15MnO3 (0 ≤ x ≤ 0.20) samples obtained
from EDX quantitative analysis.

Elements

Weight Percent (%)

Sample Code

LKBS-0 LKBS-05 LKBS-10 LKBS-15 LKBS-20

O 22.49 22.09 22.89 22.64 21.62
Mn 22.11 22.91 23.23 23.02 23.3
K 0 0.51 0.75 0.86 0.9
Sr 5.29 5.1 6.21 6.65 6.43
Ba 2.48 2.7 2.07 3.21 3.46
La 47.63 46.7 44.85 43.62 44.29

Total 100 100 100 100 100

3.2. Magnetic Property Analysis

The temperature dependence of magnetization measured at an applied field of µ0H = 0.05 T for
La0.8−xKxBa0.05Sr0.15MnO3 samples (Figure 4a) shows that all samples exhibit a clear ferromagnetic-
paramagnetic (FM-PM) transition. The Curie temperature (TC) of La0.8−xKxBa0.05Sr0.15MnO3 samples
were determined from the minimum value obtained from the first derivative of temperature dependence
magnetization with respect to temperature (inset of Figure 4a). The results show that TC increases
monotonously with the increasing concentration of K+ ion. The increasing trend of TC can be interpreted
in terms of the increase in Mn4+ concentration from 20%, for LKBS-0, to 40%, for LKBS-20. According
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to the Zener theory of double exchange, the TC of perovskite manganite-based material is expected
to increase until it reaches a maximum value, which happens at a certain ratio of Mn3+/Mn4+ [48].
According to several reports, the optimum value of Mn3+/Mn4+ ratio was found to be around 7/3 or
2/1 [49–51]. The optimum value of Mn3+/Mn4+ will favor the double exchange interaction between
Mn3+-O2−-Mn4+ ions while an excessive amount of Mn4+ will favor the superexchange interaction
between Mn4+-O2−-Mn4+ ions [52,53]. It is interesting to note that LKBS-20 sample with an expected
Mn3+/Mn4+ ratio of 3/2 has a higher TC compared to LKBS-15 sample, which has an expected Mn3+/Mn4+

ratio closer to optimum value. This can be interpreted in terms of electronic bandwidth (W) which can
be calculated by the following equation [54]:

W ∝
cos 1

2 [π−< Mn−O−Mn >]

d3.5
< Mn−O >

(3)

where d<Mn−O> and < Mn−O−Mn > is the average bond length and bond angle, respectively. These
two values can be obtained from Rietveld refinement analysis of powder diffraction pattern. A larger
value of W implies that there is an enhancement in the exchange coupling of neighboring Mn ions,
which results in higher TC value [55]. The obtained d<Mn−O>, < Mn−O−Mn >, W, and TC are listed
in Table 3.
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Figure 4. Temperature dependence of (a) magnetization and (b) inverse of magnetic susceptibility for
La0.8−xKxBa0.05Sr0.15MnO3 samples. Inset shows the first derivative of magnetization with respect
to temperature.

The inverse of magnetic susceptibility of the La0.8−xKxBa0.05Sr0.15MnO3 samples was calculated,
and the result can be seen in Figure 4b. A linear trend in the high-temperature region suggests that the
La0.8−xKxBa0.05Sr0.15MnO3 samples follow the Curie–Weiss law, defined as [14]:

χ =
C

T − θCW
(4)

here, χ is the magnetic susceptibility, C is the curie constant and θCW is the Curie–Weiss temperature.
The value of C can be obtained from the slopes of the graph while θCW can be obtained from the
intercept of the slope with the temperature axis.

Fitting the high-temperature region of the inverse molar magnetic susceptibility with Curie–Weiss
law will give valuable information regarding the magnetic property of the samples such as θCW and
effective paramagnetic moment. The obtained θCW values of all samples were positive, which confirms
the FM interactions between spins in the La0.8−xKxBa0.05Sr0.15MnO3 samples [56]. The value of θCW
is higher compared to the value TC. This result suggests that there is a presence of short-range FM
ordering in the temperature range slightly above TC [57]. The presence of short-range ferromagnetic
order can also be related to the presence of magnetic inhomogeneity in the samples [57].
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The experimental effective paramagnetic moment (µexp
e f f ) can be calculated using the following

equation [58]:

µ
exp
e f f =

√
3 kB

NA
µB =

√

8 C µB (5)

where NA = 6.023 × 1023 mol−1 is the Avogadro number, kB = 1.38016 × 10−23 J·K−1 is the Boltzmann
constant, and µB = 9.274 × 10−21 emu is the Bohr magneton. According to the chemical formula
La3+

0.8−xK+
x Ba2+

0.05Sr2+
0.15

(
Mn3+

0.8−xMn4+
0.2+x

)
O2−

3 , the theoretical effective paramagnetic moment (µtheo
e f f ) can

also be calculated using the following equation:

µtheo
e f f =

√
(0.8− x)

[
µe f f (Mn3+)

]2
+ (0.2 + x)

[
µe f f (Mn4+)

]2
(6)

with µe f f
(
Mn3+

)
= 4.9 µB and µe f f

(
Mn4+

)
= 3.87 µB [59]. The obtained θCW , µexp

e f f , and µtheo
e f f for

La0.8−xKxBa0.05Sr0.15MnO3 samples are listed in Table 3. The difference between the value µexp
e f f and

µtheo
e f f for all La0.8−xKxBa0.05Sr0.15MnO3 samples suggest that there is an existence of FM clusters within

PM phase [44].

Table 3. Magnetic parameters of La0.8−xKxBa0.05Sr0.15MnO3 samples.

Magnetic Parameters
Sample Code

LKBS-0 LKBS-05 LKBS-10 LKBS-15 LKBS-20

Mn3+ (expected) 0.8 0.75 0.7 0.65 0.6
Mn4+ (expected) 0.2 0.25 0.3 0.35 0.4

Mn3+/Mn4+ 4/1 3/1 7/3 13/7 3/2
d<Mn−O> (Å) 1.97 1.97 1.96 1.97 1.95

< Mn−O−Mn >(◦) 164.10 163.30 164.60 162.50 168.03
W (× 10−2) 9.38 9.42 9.48 9.53 9.56

TC (K) 320 335 345 355 360
θCW 328 341.6 353.1 361.5 361.8

µtheo
e f f (µB) 4.676 4.62 4.564 4.508 4.452
µ

exp
e f f (µB) 5.471 5.710 5.88 5.301 5.21

3.3. Magnetocaloric Effect (MCE)

The isothermal magnetization curves at various temperatures near FM-PM transition under
an applied magnetic field of up to µ0H = 5 T are presented in Figure 5. The magnetization of all
samples increases rapidly at temperatures below TC, which implies a ferromagnetic state. On the other
hand, the magnetization measured at temperatures higher than TC shows a linear tendency. This can
be related to the thermal effect that ruins the ferromagnetic order of the samples, thus implying a
paramagnetic state.
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The magnetic entropy change of La0.8−xKxBa0.05Sr0.15MnO3 samples can be calculated indirectly by
calculating the magnetic entropy change (∆SM(T, µ0H)) from the measured isothermal magnetization.
According to Maxwell’s relation, the magnetic entropy change can be calculated from the following
equation [60]:

∆SM(T, µ0H) =

µ0H∫
0

(
∂M(T, µ0H)

∂T

)
d(µ0H) (7)

The −∆SM values for the La0.8−xKxBa0.05Sr0.15MnO3 samples were calculated using Equation (7),
and the results are presented in Figure 6. It can be noticed that the largest −∆SM value for all samples
occurred around the TC of each corresponding sample. The broad −∆SM curves of all samples suggest
that each sample exhibits a second-order phase transition nature [61]. The maximum values of the
magnetic entropy changes at 5 T (−∆SM, MAX) were 4.21, 4.96, 5.18, 4.83, and 3.90 J/kg K for LKBS-0,
LKBS-05, LKBS-10, LKBS-15, and LKBS-20, respectively. It is noteworthy to mention that according to
Equation (7), the value of −∆SM is directly controlled by the first derivative of magnetization with
respect to temperature (dM/dT). Referring to the dM/dT graph shown in the inset of Figure 4a, it can
be seen that the slope reveals an increasing tendency until it reaches a maximum value, which belongs
to the LKBS-10 sample. This fact is in a good agreement with the comparison of maximum −∆SM

value at 5 T shown in Figure 6f which demonstrates that the largest −∆SM value is shown by the
LKBS-10 sample.

Additionally, the evolution of −∆SM value is in accordance with the study of Hueso et al., which
showed that in substituted LMO-based compounds the −∆SM value can also be affected by the grain
size of the sample [62]. According to Hueso et al., the correlation between magnetocaloric property and
the grain size of the sample is influenced by the presence of a magnetically disordered layer located
at the outer part of the grain. This disordered layer will influence the magnetic phase transition at
TC resulting in a more gradual slope in the magnetic phase transition. The effect of the disordered
layer is more pronounced in samples with smaller grain size, hence resulting in a smaller −∆SM value.
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The consistency between the SEM micrograph (Figure 2) and the largest −∆SM value (Figure 6f) proves
that the evolution of −∆SM value of La0.8−xKxBa0.05Sr0.15MnO3 samples is also influenced by the grain
size of the sample.
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(f) The comparison of the largest magnetic entropy changes of each sample obtained at 5 T.

It is clear that the −∆SM(T, µ0H) graphs also show a maximum value at a certain temperature,
which usually known as Tpeak. Focusing the discussion on the −∆SM(T) at an applied magnetic field of
5 T, it can be seen that the value of Tpeak increases monotonously with increasing K+ ion concentration.
The values of Tpeak obtained in the present work were 320, 340, 351, 356, and 361 for LKBS-0, LKBS-05,
LKBS-10, LKBS-15, and LKBS-20, respectively. The obtained Tpeak values were slightly different
compared to TC, except for the LKBS-0 sample. Differences between Tpeak and TC are often found in
substituted LMO-based compounds [51,55]. According to Franco et al., the difference between the
value of TC and Tpeak in magnetocaloric compounds can be correlated with the critical behavior of
the corresponding sample [63]. Furthermore, Franco et al. also mentioned that for magnetocaloric
compounds with a critical behavior close to the mean-field model, the value of TC can coincide with
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Tpeak [63]. The discussion regarding the critical behavior of La0.8−xKxBa0.05Sr0.15MnO3 samples will
not be presented here, as this would require a different approach.

Another factor that holds a high degree of significance in the development of a magnetic refrigerator
system is the cooling efficiency of the material, which is usually known as Relative Cooling Power
(RCP). The RCP value can be calculated using the following equation [1]:

RCP = −∆SM, MAX × δTFWHM (8)

where −∆SM, MAX is the largest magnetic entropy change of the material and δTFWHM is the full-width
at half maximum (FWHM) of the corresponding magnetic entropy curve. The RCP for all samples
at 5 T are 254, 219, 249, 301, and 173 J/kg for LKBS-0, LKBS-05, LKBS-10, LKBS-15, and LKBS-20,
respectively. The large value of RCP obtained for all samples can also serve as a proof for the existence
of second-order phase transition nature in the samples [61]. The obtained −∆SM and RCP value for all
samples, as well as the values of other substituted LMO-based compounds are summarized in Table 4.

Table 4. Summary of −∆SM, MAX and RCP value of LKBS samples compared with several
related compounds.

Sample TC (K) −∆SM, MAX (J/kg. K) RCP (J/kg) ∆µ0H (T) Re

LKBS-0 320 1.15 166.1 1 this work
LKBS-05 335 1.55 130 1 this work
LKBS-10 345 1.65 132 1 this work
LKBS-15 355 1.61 103 1 this work
LKBS-20 360 1.18 112 1 this work

La0.7Ba0.2K0.1MnO3 311.5 0.74 - 1 [64]
La0.75Ba0.1K0.15MnO3 259 1.28 - 1 [29]
La0.6Ba0.2Sr0.2MnO3 354 2.26 - 1 [33]

LKBS-0 320 4.21 254 5 this work
LKBS-05 335 4.99 219 5 this work
LKBS-10 345 5.19 249 5 this work
LKBS-15 355 4.83 301 5 this work
LKBS-20 360 3.90 173 5 this work

La0.8(Ag0.25Sr0.75)0.2MnO3 336 3.4 275 5 [65]
La0.7Sr0.2Na0.1MnO3 340 4.07 118.4 5 [28]
La0.67Ba0.22Sr0.11MnO3 345 2.258 193 5 [66]

It is interesting to note that substitution by K+ ion increases the −∆SM, MAX of the sample until
it reaches the maximum value of 5.189 J/kg K, which corresponds to the LKBS-10 sample. Beyond
this value, the −∆SM, MAX decreases with the increase in K+ ion concentration. This result is in good
agreement with the Zener theory of double exchange, which suggests that the physical properties of
substituted LMO-based compounds are greatly influenced by Mn3+/Mn4+ ratio [48]. As mentioned
earlier, substitution by K+ ion changes the Mn3+/Mn4+ ratio from 4/1 for LKBS-0 sample to 3/2 for
LKBS-20 sample. Within this range, LKBS-10 is expected to have an optimum Mn3+/Mn4+ ratio, which
is equal to 7/3. Thus, it can be concluded that Zener theory of double exchange is proven to be reliable
in explaining the −∆SM, MAX value of La0.8−xKxBa0.05Sr0.15MnO3 samples.

Previously, there have been several works that report the effect of K+ ion substitution on the
magnetic entropy change of LMO-based compounds. Roughly, the parental compound used in
previous works can be classified into three different groups which are La-Cd-MnO3, La-Ca-MnO3,
and La-Sr-MnO3 [55,67–70]. In La-Cd-MnO3 and La-Ca-MnO3 compounds, substitution by K+ ion
increased the TC of the samples, accompanied by a monotonous increase in the value of −∆SM, MAX.
According to the work of Dhahri et al., the TC for La0.8Cd0.2−xKxMnO3 increases from 260 K to 282 K [69].
Meanwhile, Messaoui et al. reported that the TC for La0.78Cd0.22−xKxMnO3 increased from 202 K
to 326 K [68]. In line with the result of La-Cd-MnO3 compound, a similar result was also found in
the work of Koubaa et al. and Ben Rejeb et al. According to the work of Koubaa et al., the TC of
La0.65Ca0.35−xKxMnO3 increased from 248 to 310 K with K+ ion concentration [55]. This increasing
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trend of TC was also followed by an increase of −∆SM, MAX. An almost similar trend was also
reported by Ben Rejeb et al., who also explored the effect of K+ substitution on the −∆SM, MAX value
of La0.65Ca0.35−xKxMnO3 compound. In their work, Ben Rejeb et al. even proved that substitution of
the K+ ion increased the values of TC (from 248K to 310 K and 275 K to 320 K for samples prepared
using the solid–solid and sol–gel method, respectively) and −∆SM, MAX, despite the difference in
the sample preparation method [67]. It is important to note that in both of these groups, the value
of < rA > and σ2 were increasing monotonously with K+ concentration. This trend is in line with
La0.8−xKxBa0.05Sr0.15MnO3 samples. However, La0.8−xKxBa0.05Sr0.15MnO3 samples do not reveal a
similar trend for the −∆SM, MAX value. Furthermore, it is important to mention that the increase of
TC and −∆SM, MAX values for both La-Cd-MnO3 and La-Ca-MnO3 groups seems to disagree with the
Zener theory of double exchange. In fact, the increasing value of −∆SM, MAX in La-Cd-MnO3 and
La-Ca-MnO3 groups happened when the Mn4+ fractions were greater than the optimum values, which
were 30% or 33%. In their work, Dhahri et al. suggested that the reason behind this result could be
ascribed to the enhancement of spin-lattice coupling arising from a variation in the value of d<Mn−O>
and < Mn−O−Mn > [69].

On the other hand, Cheikh-Rouhou Koubaa et al. studied the effect of K+ ion substitution
on the TC and −∆SM, MAX value of La0.7Sr0.3−xKxMnO3 [70]. According to their work, the TC of
La0.7Sr0.3−xKxMnO3 decreased monotonously with an increase in the concentration of K+ fraction from
365 K to 328 K, from x = 0 to x = 0.2, respectively. Additionally, the increasing concentration of K+ ion
in La0.7Sr0.3−xKxMnO3 further reduced the value of −∆SM, MAX, with a minimum value of 1.2 J/kg K
for x = 0.15. In their work, Cheikh-Rouhou Koubaa et al. suggested that the reduction in TC and
−∆SM, MAX value could be ascribed to the weakening of the double exchange mechanism due to the
increase of the Mn4+ fraction, which is expected to be greater than 30%. This result also suggests that
the behavior of TC and −∆SM, MAX of La-Sr-MnO3 which have been substituted by K+ ion is in good
agreement with the Zener theory of double exchange.

Summarizing the points mentioned above, it seems that the Zener theory of double exchange is
less prominent in LMO-based compounds composed of at least one ion with small ionic radii such
as Ca2+ and Cd2+ ions, with an ionic radius of 1.18 Å and 1.03 Å [26]. In such a compound, other
factors such as <rA>, σ2, and spin-lattice coupling from d<Mn−O> and < Mn−O−Mn > apparently
outperform the double exchange mechanism. On the other hand, the Zener theory of double exchange
seems to be more prominent compared to other factors if the LMO-based compounds is composed of
at least one ion with large ionic radii such as Sr2+ ion with ionic radius of 1.31 Å [26]. Returning to the
current topic, it is clear that La0.8−xKxBa0.05Sr0.15MnO3 samples are composed of ions with large ionic
radii. The ionic radii of each A-site ion in the La0.8−xKxBa0.05Sr0.15MnO3 samples are 1.22 Å, 1.31 Å,
1.47 Å, and 1.55 Å for La3+, Sr2+, Ba2+, and K+ ion, respectively [26]. Hence, it is expected that in
La0.8−xKxBa0.05Sr0.15MnO3 samples, the Zener theory of double exchange will become a prominent
factor in controlling the −∆SM, MAX value of La0.8−xKxBa0.05Sr0.15MnO3 samples. Comparisons of
TC and −∆SM, MAX values for La0.8−xKxBa0.05Sr0.15MnO3 samples in graphical form, as well as the
comparison with < rA > and σ2 value, are presented in graphical form in Figure 7.
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To support the previous argument whereby all of the La0.8−xKxBa0.05Sr0.15MnO3 samples belong
to the second-order phase transition type, a universal master curve based on the phenomenological
approach proposed by Franco et al. was constructed [71]. According to Franco et al., the measured
−∆SM as a function of temperature under different applied magnetic fields will coincide with a single
master curve for a material with second-order phase transition. In detail, this approach was carried
out by normalizing magnetic entropy change to its maximum value for each applied magnetic field.
Additionally, the temperature axis needs to be modified by rescaling the temperature with new variable
θ, defined by the following equation:

θ = −(T − TC)/(Tr1 − TC) f or T ≤ TC
θ = (T − TC)/(Tr2 − TC) f or T > TC

(9)

where Tr1 and Tr2 are references temperature taken when the value of ∆SM is approximately half of
the maximum value. The universal master curve for all La0.8−xKxBa0.05Sr0.15MnO3 samples is shown
in Figure 8. It is obvious that the universal master curve of all La0.8−xKxBa0.05Sr0.15MnO3 samples
coincides into a single curve. This result confirms that all La0.8−xKxBa0.05Sr0.15MnO3 samples belong
to the second-order phase transition.
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