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Abstract: Poly acrylic acid (PAA) and polyepoxysuccinic acid (PESA) were investigated as scale
inhibitors. The static experiments certified that PAA was superior to PESA for the inhibition of calcium
carbonate in the low molecular weight range. The X-ray diffraction patterns suggest that the effect of
PAA on the calcite (1 0 4) and (1 1 0) crystal plane was more obvious. Scanning electron microscopy
was used to study the surface morphology of the depositions, which indicated that the addition of scale
inhibitors could disturb the normal growth of CaCO3 scale. The transmittance ratio of ferric oxide
demonstrated that PAA had a better dispersion performance than PESA. The molecular dynamics
simulation and quantum calculation were selected to theoretically explore the mechanism and
structure of scale inhibitors, indicating that the interaction of PAA with (1 0 4) and (1 1 0) calcite crystal
surfaces was stronger than PESA. In addition, the results indicated that the PAA with negative charge
more easily adsorbed free Ca2+ in the aqueous phase. Based on these observations, PAA exhibited
better scale inhibition and dispersion effects than PESA in the case of low molecular weight.
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1. Introduction

The main approach to alleviating the pressure on industrial water is to circulate cooling water [1,2].
However, the frequent use of circulating cooling water could inevitably result in the deposition of scale
in the pipeline due to some scale-forming ions like Ca2+, HCO3

−, CO3
−, and SO4

2− [3–5]. In this case,
the heat transfer efficiency of the pipeline would be detrimentally decreased [6–8]. The use of scale
inhibitors is one of the effective methods to prevent the growth of scale and extend the service life of
equipment [9–11].

At present, the phosphonate [12], carboxylic [13,14], sulfonic [15], and ether groups have proven
to be the most effective functional groups in inhibiting crystal nucleation [16,17]. The scale inhibitors
with carboxylic acid are currently used as green scale inhibitors, and the representative agents are
carboxylic acid polymers [18–21]. These scale inhibitors not only have a good inhibition effect on
crystalline compounds, but have also some dispersion effect [22,23]. Generally, the molecular weight
has a great influence on scale inhibition [24–26]. Few studies have detailed the effect of low molecular
weight (below 4000) on scale inhibition and dispersion.

In this study, two typical carboxylic polymers, poly acrylic acid (PAA) [27,28] and polyepoxysuccinic
acid (PESA) [29,30], were chosen to explore the performance in inhibiting calcium carbonate scale and
the inhibition mechanism. The crystal structures of calcium carbonate precipitation were examined
using X-ray diffraction and the morphology features were obtained by scanning electron microscopy.
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The adsorption behavior of carboxylic groups for the inhibition of calcium carbonate was exhibited
at the micro level through molecular dynamics (MD) simulations [31,32]. The quantum chemical
calculations [33,34] aimed to explore the mechanism of the intermolecular interactions of carboxylic
groups and calcium carbonate.

2. Materials and Instruments

2.1. Materials and Instruments

Na2CO3 (Tianjin Chemical Importing Corporation), NaHCO3 (Aklar Chemistry), sodium thiosulfate
(Aklar Chemistry), potassium persulfate (Aklar Chemistry), Fe2O3 (Aklar Chemistry), ethyl acetate
(Aklar Chemistry), and CaCl2·2H2O (Riedel-de Haen) were purchased from Sinopharm Chemical
Reagent Co. Ltd. (Shanghai, China), all of which were of analytical reagent grade. Meanwhile,
the analytical grade sodium tetraborate and tetraacetic acid disodium salt were bought from Sinopharm
Chemical Reagent Co. Ltd. (China). Acrylic acid and PESA solutions were purchased from Taihe
Water Treatment Co. Ltd. (Shandong, China), which comprised a 50 wt% aqueous solution. The water
used in the experiment was 18.2 MΩ cm (HITECH, Medium-E400, Beijing, China)

The patterns of the CaCO3 precipitations were recorded on a Bruker D8 Advance X-ray diffraction
(XRD) instrument (Ettlingen, Germany), wherein the diffraction angle (2θ) was scanned in the range of
20◦–70◦. The dried samples of the static scale inhibition tests were obtained by filtering the mixed
solutions, which were examined through scanning electron microscopy (SEM) on a SU8010 device
(Tokyo, Janpan) at the acceleration voltage of 15 kV. The Mw and Mn of the inhibitors were measured
by gel permeation chromatography.

2.2. Synthesis of Polyacrylic Acid

The purpose of this experiment was to synthesize low molecular weight polyacrylic acid [27,35].
First, the four-neck bottle contained deionized water and an acrylic monomer, which consisted of a
mechanical agitator, a reflux condenser, a thermometer, and nitrogen. A stream of nitrogen was applied
to the solution for 1 h to flush out the dissolved oxygen in the mixture. Equal amounts (wt%) of sodium
thiosulfate and potassium persulfate were added to the solution while stirring (300 rpm). The nitrogen
gas flow was maintained throughout the reaction. The polymer was isolated by precipitation by mixing
the aqueous solution with ethyl acetate, and drying at 40–50 ◦C in vacuo for three days.

The characterization and molecular weights of PAA were obtained and analyzed by GPC (gel
permeation chromatography, Waters, Milford, USA) to sustain the results of the synthesis.

2.3. Static Experiment

The scale inhibition performance of the selected polymers was estimated according to the Chinese
National Standard (GB/T16632-2008) [36]. Experiments were carried out in a 0.5 L conical flask heated
at different temperatures (30 ◦C and 80 ◦C) in a water bath for 10 h, respectively. The initial solution
contained 6-mmol/L Ca2+ and 12-mmol/L HCO3

−, which were adjusted to a certain value (pH = 9.0)
using 0.4-mmol/L Na2B4O7 (buffer solution). Subsequent to cooling to room temperature, the solutions
were filtered through a 30-µm filter paper. Then, the concentration of Ca2+ was measured by EDTA
titration and the scale inhibition efficiency η were obtained using the following formula [37]:

η =
X2 −X0

X1 −X0
× 100%, (1)

where X0 is the initial concentration of Ca2+. X1, X2 represent the concentration of Ca2+ with and
without the addition of the scale inhibitor in the test solution, respectively.
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2.4. Dispersion Experiment

The dispersion characteristics of the ferrous solution at 420 nm were analyzed by a spectrometer
(722 spectrophotometer, UV-1750, SHIMADZU, Kyoto, Japan) whose wavelength range was between
330–800 nm [1]. First, 150 mg/L Ca2+ (calcium chloride solution) and 10 mg/L (ferrous sulfate solution)
were mixed in a flask. Then, different amounts of scale inhibitors were injected into the solution,
and the solution’s pH was adjusted to 9.0 with borax buffer solution. The solutions were stirred
at room temperature for 15 min and kept in a constant temperature water bath at 50 ◦C for 5 h,
respectively. Finally, the solution was cooled to room temperature and the supernatant taken out after
constant volume. The dispersion property was evaluated by measuring the light transmittance of the
ferrous solution.

2.5. Molecular Dynamics Simulation

Molecular dynamics (MD) simulations (Accelrys Inc., San Diego, CA, USA) were applied to
explore the behavior between the CaCO3 scales and additives, which uses the visualizer Forcite module
along with a COMPASS (condensed-phase optimized molecular potential for atomistic simulation
studies) forcefield [38]. Calcite belongs to the R 3(-) C space group, and the lattice parameters are listed
as follows: a = b = 0.4991 nm, c = 1.7061 nm, α = β = 90◦, and γ = 120◦ [39]. The calcite (1 0 4) and (1 1 0)
crystal faces were chosen for the major research objects due to the XRD data. According to the actual
experimental results, the degree of polymerization of both polymers was set to 30. All the experiments
were carried out at 313 K with the NVT ensemble and Berensen method. Then, all optimized molecules
were freely distributed in the box. A vacuum slab was built along the Z-axis(c) direction with thickness
of 10 Å to separate the central slab and avoid the effect of additional free boundaries [40]. In addition,
the CaCO3 molecules at the bottom were fixed, so only the CaCO3 at the top and 500 water molecules
were allowed to move freely within the periodic system boundary. The non-bonding interactions were
respectively computed using an atom-based and the Ewald summation method, with a cut off radius
of 0.95 nm. The time step was set to 1 fs, and the MD simulation ran for 500 ps: the first 300 ps for the
equilibration stage and the last 200 ps for the production stage. The interaction energy Einter between
the scale inhibitor and calcite was calculated using the following equation [41]:

Einteraction = Etotal − (Esurface + Epolymer)+Ewater (2)

where Etotal is the total energy of the optimized surface additive complex, and Esurface and Epolymer are
the energy of the calcite crystal and water. Ewater is the total energy of water. The binding energy Eb is
defined as the negative value of the interaction energy:

Eb = −Einter (3)

2.6. Quantum Chemical Method

The quantum chemical method was performed to explore the density functional theory calculation
between Ca2+ and the scale inhibitors. First, starting with structures in which Ca2+ and organic
molecules were randomly arranged, they were optimized by B3LYP/6-31G (d) with density functional
theory (DFT) in Gaussian 09 software (Gaussian Inc., Wallingford, CT, USA) [42,43]. Then, the final
geometry and structural parameters were obtained. The frequency analysis was conducted to ensure
the minimum point of the calculated structure without imaginary frequency.

3. Results and Discussion

3.1. Molecular Weight

The Mw and Mn of the inhibitors were measured by gel permeation chromatography (GPC).
The weight-average molecular weight (Mw) and the number-average molecular weight (Mn) of PAA
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were 6043 g/mol and 3798 g/mol, respectively. As a reference, the values of PESA were 4119 g/mol
and 2541 g/mol, respectively. These results indicate that the measured values were within the range
required [44].

3.2. Static Scale Inhibition Analysis

As shown in Figure 1, the relationship between the concentration of scale inhibitors and the ability
to inhibit the calcium carbonate scale was investigated [45]. Meanwhile, considering the effect of
temperature on the scale inhibition efficiency, two temperatures of 30 ◦C and 80 ◦C were selected for
the experimental research. The scale inhibition efficiency reached 90% and 95% for PESA and PAA at
3.33 µM, respectively. Notably, the inhibition efficiency of PAA increased more rapidly, which showed
that it was better at inhibiting the calcium carbonate in water. Interestingly, both scale inhibitors were
affected at high temperature. Curiously, the inhibition efficiency of both additives at 80 ◦C at the
same concentration range was similar. Thus, the inhibition efficiencies by both polymers seem to be
correlated with the type of polymorph precipitated.
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Figure 1. The inhibition efficiency of the two inhibitors at 30 ◦C and 80 ◦C.

To prove the effect of different scale inhibitors on the crystal structure of calcium carbonate,
the transformation was identified using XRD. The results of XRD for precipitates with different
concentrations of inhibitors at 30 ◦C and 80 ◦C are presented in Figure 2. What was observed was
a similar tendency in the precipitation of the polymorphs of calcium carbonate, but at different
concentrations of both inhibitors in the crystallization media. As presented in Figure 2, the crystal
structure was in the form of calcite in the absence of PESA and PAA. With the addition of a low
concentration of two scale inhibitors, what happens is that PAA and PESA are efficient in favoring
the metastable polymorphs aragonite and vaterite in different concentration ranges of the additive.
In the high concentration range, a higher concentration or equal to 1.33 µM, is more effective in favoring
vaterite at 30 ◦C, while at 80 ◦C, the behavior of both additives was more similar. For PAA, it was
obvious that vaterite was favored more quickly at 30 ◦C than at 80 ◦C, which was the same for PESA.
This indicates that the crystal structure of calcium carbonate is influenced by different temperatures.
It is obvious that the inhibition effect of PESA and PAA on the surface of (1 0 4) (2θ = 29.45◦) and (1 1 0)
(2θ = 35.96◦) was more effective than that on other surfaces of calcite. The XRD analysis also confirmed
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that the form of the CaCO3 deposit changed from the more stable calcite crystal to the unstable vaterite
in the presence of PESA and PAA.Crystals 2020, 10, x FOR PEER REVIEW 5 of 13 
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Figure 2. The X-ray diffraction (XRD) results for the depositions with different concentrations of
(A) polyepoxysuccinic acid (PESA), (B) poly acrylic acid (PAA) at 30 ◦C, and 80 ◦C. c, a, and v represent
calcite, aragonite, and vaterite, respectively.

Figure 3 presents the SEM images of CaCO3 in the absence and presence of different concentrations
of the examined scaling inhibitors. The crystal structures of CaCO3 displayed regular rhombohedral
shapes in the absence of PESA and PAA. Due to the addition of the concentration of 0.67 µM of the
scale inhibitors, the crystal started to become loose and porous. Furthermore, Figure 3C shows that the
CaCO3 precipitate transformed into an irregular sphere with a sheet structure when the concentration of
the scale inhibitors reached 3.33 µM. Simultaneously, with the addition of the scale inhibitor, the crystal
morphology and size of the calcium carbonate were remarkably changed. In particular, the crystals
were more dispersed and had smaller sizes in the presence of PAA.
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Figure 3. The scanning electron microscopy (SEM) images of CaCO3 in the absence and presence of
PESA and PAA at 80 ◦C. (A) blank, (B1,B2) (C1,C2) had 0.67 and 3.33 µM PESA and PAA, respectively.

It was found that both polymers had a certain dispersion effect based on the SEM data.
Figure 4 reveals the dispersion capacity of the inhibitors for ferric oxide. Obviously, the transmittance
ratio decreased with the increasing concentration of the inhibitors [1]. As shown in Figure 4, the order
of the transmittance ratio at the same concentration was PAA > PESA. For PESA, it showed a worse
dispersion performance and the transmittance ratio decreased from 95.69% to 36.215% with the
concentration increasing from 0.33 mg/L to 3.33 mg/L. PAA showed a better dispersion performance,
wherein its transmittance ratio decreased from 69.67% to 29.63%, which indicates that PAA has a better
dispersion performance than PESA within this molecular weight range.
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3.3. Analysis of Theoretical Calculations

Molecular simulation software was used to simulate the interaction between calcium carbonate
crystals and additives under the compass force field. The XRD data revealed that the (1 0 4) and
(1 1 0) crystal surfaces of calcite were two obvious acting planes. To verify whether the system
reached equilibrium, the fluctuation range of energy and temperature should be confined to 5–10% [46].
In the last 100 ps of the equilibrium period, the temperature and energy fluctuation curves in the
molecular dynamics simulations of the two scale inhibitors on the surface of the CaCO3 crystals (1 0 4)
and (1 1 0) are shown in Figure 5. The system was found to be in equilibrium by observation, which
indicates that the subsequent analysis results were reliable. As presented in Figure 6, the organic
molecules established contact with the outermost layer of the calcite crystal. Moreover, the carboxyl
groups of the organic molecules were closest to the crystal surface, overcoming the steric effect.
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The interaction energies and the binding energies of both scale inhibitors and calcite systems are
shown in Table 1. The positive binding energies show that the combination of the organic materials
with calcite crystal surfaces are a stable phenomenon, and the more positive values suggest higher
inhibition efficiencies [46,47]. The binding energy of the two polymers with the calcite (1 1 0) plane is
high, which implies the ability of both to prevent the growth of the calcite crystal surface. The binding
energies for PESA were 69.698 kcal/mol and 86.212 kcal/mol of calcite for the (1 0 4) and (1 1 0) surfaces,
respectively. For PAA, the binding energies of the two calcite crystal faces were 106.229 kcal/mol and
141.308 kcal/mol, respectively. In comparison, it was found that the effect of PAA on calcite was more
effective than PESA. These consequences are consistent with the conclusions of static scale inhibition
experiments, which demonstrated that PAA had a better inhibition efficiency.
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Table 1. The interaction energy (kcal/mol) of the two compounds with calcite (1 0 4) and (1 1 0) surfaces.

Surfaces Molecules Einter Eb

(1 0 4) PESA −69.698 69.698
PAA −106.229 106.229

(1 1 0) PESA −86.212 86.212
PAA −141.308 141.308

Both polymers were optimized using the B3LYP-6-31G (d) method and the optimal minimum
energy values of the structures are shown in Figures 7 and 8. From the negative charge value
obtained in Table 2, they were mainly distributed on the O atoms of the carboxylic acid group of
polymers. Negatively charged atoms will be associated with Ca2+ on the surface due to the electrostatic
interaction. The Coulomb interaction energy (F) is dependent on the distance (r) and charges (q) as per
the following equation:

F =
n∑

i<j

qiqj

4πεrij
2 (4)

where ε is the dielectric constant; qi represents the calcium ion; and qj represents the negative charge of
the atoms in inhibitor molecules. F < 0 indicates an electrostatic attractive force, while F > 0 represents
an electrostatic repulsive force.
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Table 2. Negative charge distribution of two molecules.

Inhibitors O(–H) (C=)O

PESA −0.554 −0.389
PAA −0.610 −0.438

As listed in Table 2, the oxygen atoms of the carboxylic acid moieties of PESA and PAA exhibit
negative charges, which are able to adsorb Ca2+. Furthermore, the amount of negative charge is the
key to affect the capacity of electrostatic interaction [48]. The more negative the charge, the easier it is
to adsorb calcium ions. Hence, the carboxylic groups of PAA have more negative charge, which is
more likely to interact with calcium ions.
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3.4. Scaling Inhibition Mechanism

In this study, PAA displayed better scale inhibition efficiency and dispersion effect than PESA.
As shown in Figure 9, the SEM data demonstrated that PAA could induce a lattice distortion of calcium
carbonate crystals from calcite to vaterite formation. The inhibition efficiency and dispersion capacity
were completed in the dissolved state. Subsequent to the addition of the scale inhibition, it tends to be
adsorbed on the nucleus of the calcium carbonate crystal during the scale formation process. Due to
the occupation of the active growth position, inhibitors hinder the normal growth of the crystal and
changes the lattice parameter, which shows the inhibition of scale formation. At the same dosage,
PAA contains more carboxylic acid groups, which leads to a better scale inhibition efficiency than PESA.
The organic carboxylic scale inhibitor is relatively large in molecular size and is easy to wrap around the
generated small particles, which controls the growth of small particles. Moreover, PAA dissociates into
anions in an aqueous solution that can adhere to calcium carbonate through electrostatic interactions to
achieve dispersion and stabilization effects of inorganic scale. Hence, PAA with more negative charges
is shown to effectively chelate with free Ca2+ ions in the aqueous phase. Meanwhile, the chelation
power of PAA with respect to Ca2+ is higher than that of PESA, which shows that PAA has a better
scale inhibition performance.
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4. Conclusions

In this study, the key conclusions can be summarized as follows:

1. The static experiments revealed that at normal temperatures, PAA exhibited a better inhibition
performance than PESA at low molecular weights, while in elevated temperatures, the behavior
of both additives was more similar.

2. PAA was demonstrated to exhibit better dispersion performance than PESA within this
investigated molecular weight range.

3. Results of the XRD and SEM revealed that PAA and PESA inhibited the growth of the calcite
phase at the (1 0 4) and (1 1 0) crystal planes, and favored the nucleation of vaterite.
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4. The stronger binding energies of PAA rendered the interaction of PAA with (1 0 4) and (1 1 0)
calcite crystal surfaces stronger than that of PESA.

5. Due to the different number of free carboxylic groups of PAA and PESA, PAA had more carboxylic
acid groups, which led to a better scale inhibition efficiency than that of PESA.
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