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Abstract: Cu-doped K2Ti6O13 (Cu–KTO) nanowires were prepared using a combination of sol–gel
and hydrothermal methods to improve the photocatalytic and antibacterial performance of K2Ti6O13

(KTO) nanowires. The Cu–KTO nanowires maintained the monoclinic structure of KTO. The Cu2+

ions could enter into the lattice of KTO by substituting for certain Ti4+ ions and cause the formation
of defects and oxygen vacancies. The UV–Visible absorption spectra showed that after Cu doping,
the absorption edge of KTO moved to the visible region, indicating that the band gap decreased and the
ability to absorb visible light was acquired. The photocatalytic properties of the Cu–KTO nanowires
with different doping amounts were assessed by simulating the photodegradation of rhodamine
B (RhB) under simulated sunlight irradiation. The 1.0 mol% Cu–KTO nanowires showed the best
photocatalytic performance, and 91% of RhB was decomposed by these nanowires (the catalyst dose
was only 0.3 g/L) within 5 h. The performance of the Cu–KTO nanowires was much better than that of
the KTO nanowires. The Cu–KTO nanowires also showed high antibacterial activity for Escherichia coli
(ATCC 25922) of up to 99.9%, which was higher than that of the pure KTO samples. Results proved
that Cu doping is an effective means to develop multifunctional KTO nanomaterials. It can be used to
degrade organic pollutants and remove harmful bacteria simultaneously in water environments.
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1. Introduction

As human society rapidly grows, water pollution has become increasingly serious and has
caused widespread concern [1]. Organic contaminants and harmful bacteria in industrial wastewater
directly endanger the survival of organisms and humans [2]. The ecological imbalance between
humans and natural systems is increasing due to the random disposal of industrial wastewater and the
shortage of water sources [3]. Current sewage treatment methods include physical adsorption, chemical
flocculation, microbe degradation, chlorination, and UV irradiation [2–6]. However, the application of
sewage treatment technologies is limited by these technologies’ low efficiency, high cost, high energy
consumption, and secondary pollution such as the production of toxic by-products or large amounts of
sewage sludge rich in organic pollutants. Therefore, efficient and environmentally-friendly wastewater
treatment technologies must be developed to cope with the increasing water pollution. Since 1972 [7],
many reports have shown that photocatalytic technology is an effective method to remove organic
contaminants and harmful bacteria from wastewater solutions [1,7–11]. The success of photocatalytic
degradation depends primarily on the selection of suitable photocatalyst materials [12,13]. Many metal
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oxides and sulfides have good photocatalytic performance under UV-light irradiation [14–19]. Among
them, TiO2 is the most widely used class of photocatalyst material due to its effective photocatalytic
performance, excellent chemical stability, and low cost [15,20–23]. In addition, the photocatalytic and
antibacterial properties of TiO2 under UV light are well-known and have been mentioned in several
studies [24–26]. Meanwhile, UV irradiation is a harmful, high-energy light source, and its permeability
is limited to water. Metal ion doping can not only enhance the interfacial charge transfer at the interface,
but also limit the recombination of electron–hole pairs, thereby effectively improving the photocatalytic
performance of TiO2 under visible light. The most effective means to expand the optical response of
TiO2 to the visible range is doping or surface modification with transition metals [27–30]. Wu et al. [31]
proved that transition metal-doped TiO2 enhances photocatalytic performance due to the decreased
band gap. Cu, Zn, and Ag are transition metal elements, and they are known to have antibacterial
activity. Therefore, Cu, Zn, and Ag have become the preferred modification elements for improving
the photocatalytic and antibacterial properties of TiO2.

KTO is a semiconductor material with a wide band gap. KTO has excellent physical and chemical
properties, such as high chemical stability [32–34], good biocompatibility [35], acid and alkali corrosion
resistance [36], and satisfactory photoelectric properties [37]. Reports on KTO nanomaterials are
primarily on synthesis methods [32–38] and photocatalytic properties under UV light [34,39,40].
Few studies have been conducted on the photocatalytic and antibacterial activities of metal-doped
KTO. According to our theoretical calculation based on the first principle [41,42], Cu or Ag doping
can enhance the photocatalytic performance of KTO under visible light, but this finding still requires
experimental verification.

In this study, Cu was selected as the doping metal of KTO because of its low cost and antibacterial
effect. The photocatalytic property of Cu–KTO nanowires was compared with that of pure KTO. The
antibacterial activity against Escherichia coli (E. coli) of KTO and Cu–KTO nanowires irradiated with
300 W of UV light and without light was investigated. The synergistic antibacterial mechanism was
also discussed.

2. Materials and Methods

2.1. Synthesis of Materials

The chemicals used in the experiment such as tetra-n-butyl titanate (C16H36O4Ti), anhydrous
alcohol (C2H5OH), sodium polyacrylate [(C3H3NaO2)n], nitric acid (HNO3), potassium hydroxide
(KOH), and copper nitrate (Cu(NO3)2•xH2O) were of analytical grade. First, the Cu-doped TiO2

nanoparticles used for the hydrothermal method were prepared via the sol–gel method. In the sol–gel
process, 5 wt.% (C3H3NaO2)n and 2 wt.% HNO3 were added to quantitatively deionized water via
intense stirring for 30 min, which was named as solution A. Second, Cu(NO3)2•xH2O and C16H36O4Ti
with four Cu/Ti mole ratios of 0%, 0.5%, 1.0%, and 1.5% were added to C2H5OH at a volume ratio of 1:1
and vigorously stirred for 30 min, which was named as solution B. Finally, solution A was gradually
added to solution B with vigorous stirring for 2 h at room temperature until a white precipitate formed.
Pure and Cu-doped TiO2 nanoparticles were obtained by filtering. For hydrothermal synthesis, pure or
Cu-doped TiO2 was added to a KOH aqueous solution (10 mol/L), and the mixed solution was poured
into an autoclave. The reaction system was heated to 150 ◦C and operated for 12 h. Afterward, KTO or
Cu–KTO was rinsed and percolated until it became neutral and then dried. The 0.5 mol% Cu–KTO,
1.0 mol% Cu–KTO, and 1.5 mol% Cu–KTO samples were designated as 0.5 Cu–KTO, 1.0 Cu–KTO,
and 1.5 Cu–KTO, respectively.

2.2. Characterization

The phase compositions of all samples were determined via X-ray diffraction (XRD, Bruker AXS
D8 Advance, Germany). The elements and their valence states in the samples were analyzed through
X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi, Thermo Fisher Scientific Co., Ltd., Waltham,
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MA, USA). The morphologies and electron diffraction patterns of the samples were characterized
via field-emission scanning electron microscopy (FESEM, S-4800, Hitachi, Tokyo, Japan) at 1 KV and
transmission electron microscopy (TEM, JEM-2100F, JEOL Ltd., Tokyo, Japan) at 200 KV, respectively.
Raman spectra were obtained using a laser Raman spectrometer (HORIBA, LabRAM HR Evolution,
Darmstadt, Germany) with a 532 nm laser. UV–Vis diffuse reflectance spectroscopy was conducted
using a spectrophotometer (U-3900H, Hitachi, Tokyo, Japan) over a range of 240–800 nm with a diffuse
reflectance attachment that used BaSO4 as a reference. The Cu-ion release behavior was measured
with an atomic absorption spectrometer (ASD-6880, Shimadzu, Kyoto, Japan). The zeta potential of the
Cu–KTO nanowires was measured with a laser scattering particle analyzer (SURPASS 3, Anton Paar,
Graz, Austria).

2.3. Photocatalytic Experiments

For the activity measurement of photocatalytic degradation, RhB (analytical reagent) was selected
as a degradation target. The photocatalytic reaction was implemented in a quartz reactor with a cold
water bath. The simulated solar light source was provided by a xenon long-arc lamp (CEL-LAX500)
as a built-in light source. In this photodegradation experiment, 0.3 g/L of Cu–KTO was dispersed
thoroughly in 10 mg/L RhB aqueous solution. At the beginning of the photodegradation experiment,
the suspensions were magnetically agitated in a darkroom for 1 h to ensure adsorption/desorption
equilibrium so that the adsorption error could be revoked. The xenon long-arc lamp was turned
on, and its power was set to 300 W. The light intensity reaching the sample equaled 25 mW/cm2.
The suspensions were continuously stirred at various time intervals (1, 2, 3, 4, and 5 h). Mixed solutions
(4 mL) were obtained at every time interval, and the solid catalyst was removed via centrifugation.
Then, the absorbance values (At) of the clear solutions were analyzed with a UV–Vis spectrophotometer
with a characteristic wavelength of 554 nm. UV–Vis absorption spectra between 400 and 700 nm were
collected to analyze the gradual degradation process of RhB. Analogous experiments were conducted
with KTO under similar conditions. The same photocatalysis experiments were repeated three times to
reduce random errors.

2.4. Antibacterial Activity Tests

The effect of KTO and Cu–KTO samples on Gram-negative bacterium (E. coli, ATCC 25922) was
studied. Before the antibacterial experiments, all glass instruments, the distilled water, the phosphate
buffer solution containing 0.1% Tween-80 (PBS, 0.03 mol/L, pH = 7.2–7.4), and the nutrient agar (NA)
medium were sterilized, and the experiments were performed in an aseptic environment. Before all
samples were placed in the bacterial culture medium, they were divided into two groups for different
treatments. One group was irradiated with a 300 W high-voltage mercury lamp for 1 h, and the other
group was not irradiated. In a typical experiment, E. coli was transferred to PBS and diluted to make a
1.2 × 105 CFU/mL bacterial suspension. Only 0.03 g of the sample was added to a triangle flask with
49 mL of PBS and evenly mixed. Then, 1 mL of the prepared bacterial suspension was added to the
triangle flask with the sample and PBS mixture. The triangle flasks were placed in a 37 ◦C constant
temperature culture oscillator (150 r/min) and cultured for 24 h in the dark. The group without a
sample was used as a blank control. Afterward, 0.1 mL of the medium was coated on an NA plate,
which was cultured in a 37 ◦C incubator for 24 h. Three parallel samples were set for each material to
reduce the random error and other uncertain factors that may affect the experiment [43]. The same
experiment was repeated three times. The standard plate count method was used to determine the
number of viable bacteria and evaluate the antibacterial activity against E. coli in the as-prepared
samples. The colony number was recorded. The antibacterial rates of different photocatalysts were
calculated using the equation

Antibacterial rate (R, %) = (N0 − N)/N0 × 100%, (1)
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where N0 and N represent the average colonies of the blank control group and the experiment group
on the NA plates, respectively [44].

3. Results and Discussion

3.1. Microstructure

Figure 1 describes the XRD spectra of the KTO and Cu–KTO nanowires prepared with the
combination of sol–gel and hydrothermal methods. In accordance with the PDF card of the XRD
database (40-04032), the XRD peaks at 2θ = 11.484◦ (200), 29.257◦ (310), and 47.887◦ (020) were identified
as characteristic diffraction peaks of the K2Ti6O13 monoclinic phase. All Cu–KTO and KTO samples
exhibited a monoclinic structure of K2Ti6O13, and no other Cu or Cu-related peaks were observed.
Cu ions could be doped into the TiO2 lattice and substituted for Ti ions via the sol–gel method,
as reported by Meng et al. [34] and Yang et al. [45]. Considering the process of preparing Cu–KTO
in this study, we believe that Cu ions can replace some Ti ions in KTO and enter into the lattice of
KTO. The diffraction peak (200) of the Cu–KTO samples slightly shifted to a lower 2θ diffraction angle
compared with that of the KTO nanowires. This result can be ascribed to the increase in the interplanar
distance induced by the doped Cu ions because the radius of Cu2+ (0.73 Å) is larger than that of Ti4+

(0.605 Å). In addition, the diffraction peak intensity at (200) increased slightly and then decreased
with the increase in the Cu doping amount. This result indicates that the crystallinity of the samples
increased in different degrees or the crystallite size decreased [46,47], which can be attributed to the
slight inhibition effect of doped Cu on the growth of the KTO crystal during thermal treatment [48].
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Figure 1. XRD spectra of KTO and Cu–KTO nanowires with different Cu doping amounts.

XPS analyses of KTO and 1.5 Cu–KTO nanowires were performed to confirm the valence state of
Cu ions and whether these ions were doped into the KTO nanowires. The XPS spectra of Ti 2p and
O 1s of KTO and 1.5 Cu–KTO are shown in Figure 2a,b, respectively. The peaks of Ti 2p3/2 and Ti
2p1/2 for KTO were located at 457.9 and 463.7 eV, respectively, corresponding to the tetravalent state
(Ti4+) [45,49]. For 1.5 Cu–KTO, the binding energies of the Ti 2p3/2 and Ti 2p1/2 states increased slightly
to 458.1 and 463.9 eV, respectively, indicating that Cu ions were doped into the KTO lattice. The XPS
spectrum of O 1s for KTO showed that the peak at the binding energy of 529.5 eV was attributed to
the lattice oxygen (Olatt) of the Ti–O species, whereas the one at 531.4 eV was assigned to the oxygen
adsorbed (Oads) on the catalyst surface [45,50]. The binding energy of O 1s attributed to Olatt for 1.5
Cu–KTO exhibited a clear shift toward a higher energy level of up to 529.7 eV in Figure 2b, indicating
that Cu–O bonds were formed due to Cu doping. The peak at 531.3 eV for 1.5 Cu–KTO was also



Crystals 2020, 10, 400 5 of 14

attributed to Oads on the surfaces of 1.5 Cu–KTO [45,50]. The ratios of Oads/Olatt refer to the amount of
surface oxygen vacancies [51]. A high ratio suggests a large amount of surface oxygen vacancies [52].
The ratio of Oads/Olatt was 0.6957 in the 1.5 Cu–KTO sample, which was higher than that in the KTO
sample (0.4741). The XPS spectrum for Cu 2p of 1.5 Cu–KTO is shown in Figure 2c. The binding
energies of Cu 2p3/2 and Cu 2p1/2 peaks were located at 932.2 and 951.8 eV, respectively. These binding
energies are consistent with that of Cu+ [50,52]. However, the observation of Cu+ is attributed to the
reduction of Cu2+ due to either Ar cleaning or extended X-ray irradiation [52–58]. Low Cu2+ loading
samples are easily susceptible to X-ray-induced beam damage [53].
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FESEM images of the Cu–KTO nanowires with different doping amounts are shown in Figure 3a–d.
The morphologies of all the KTO samples before and after Cu doping showed typical nanowire features.
The nanowires were entangled with one another and grouped into bundles because of the nanosize
and surface effect. The KTO and 1.5 Cu–KTO samples were analyzed via TEM to further distinguish
the structure of KTO and Cu–KTO nanowires (Figure 3e,f). The nanowires for both samples were
not uniform in size. The diameter distributions of KTO and 1.5 Cu–KTO were 5–7 and 3–4 nm,
respectively. A slight decrease in diameter was observed, and this decrement may have been induced
by Cu doping. The Cu2+ ions were doped into the TiO2 lattice via the sol–gel method in this work,
and they tended to be distributed at the edge of the grain boundary or on the particle surface to restrain
the growth of TiO2 crystals [48]. The size of the TiO2 nanocrystals directly affected the diameter scale
of the KTO nanowires during the hydrothermal process. Thus, the Cu-doped TiO2 could induce
small KTO nanowires. In addition, the selective area electron diffraction (SAED) pattern of the 1.5
Cu–KTO nanowires showed a typical polycrystalline diffraction ring, as presented in the insert of
Figure 3f. After careful measurement and calculation, this set of diffraction rings from the inside to the
outside could be combined with KTO crystal planes (200), (20-1), (002), (110), (310), (311), and (31-2).
TEM investigations proved that Cu doping affected only the nanomorphology of KTO and retained the
monoclinic structure of KTO, which is in accordance with the XRD result in Figure 1.
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Figure 4a shows the Raman spectra of the KTO and Cu–KTO nanowires with different amounts
of Cu doping. Each sample had six main peaks that corresponded to KTO at the Raman shift from
100 cm−1 to 1000 cm−1 on the Raman spectra, which is consistent with the literature [48]. The peaks
below 500 cm−1 were ascribed to K–O–Ti extending vibration. The peak near 660 cm−1 was attributed
to the Ti–O–Ti stretch in the edge-shared TiO6 [59]. The peak close to 870 cm−1 was due to a short
Ti–O stretching vibration in distorted TiO6 [59,60]. No peaks relevant to Cu or Cu compounds were
observed, and this outcome is in accordance with the XRD result. Further observation of the Raman
peaks at about 290 cm−1 (Figure 4b) revealed three different aspects. First, the peak positions of
the Cu–KTO samples shifted to a wavenumber that is lower than that of KTO. Second, Cu doping
narrowed the width of the Raman peak. Third, the peak intensity decreased dramatically after Cu
doping. Previous studies [61–64] have proven that Cu doping can cause peak shifting, reduce the peak
intensity, and decrease the peak width exhibited in Raman spectra. The difference in the ionic size of
Cu2+ and Ti4+ causes a mismatch in the lattice structure. Cu2+ ions may substitute for Ti4+ ions, thereby
generating a new bond in the lattice. This new bond could be Cu–O–Ti or Cu–O–Cu, as claimed by
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Choudhury et al. [64]. This claim further proves that Cu ions entered the lattice of KTO in the current
study. After Cu doping, the vibration strength decreased because of the creation of oxygen vacancies
nearby, which reduced the intensity of the Raman scattering peaks. The differences in the intensity of
the Raman spectra could be ascribed to the change in the number of surface oxygen vacancies [65,66]
resulting from the lattice defects of KTO caused by the substitution of Cu2+ for Ti4+. This finding
is also consistent with the XPS result. The surface oxygen vacancy can be used to capture electrons
and reduce the recombination of electron–hole pairs. As shown in Figure 4b, the peak intensity of
1.0 Cu–KTO was the lowest, which reveals the potentially high photocatalytic activity of 1.0 Cu–KTO.
The crystal size of KTO reduced by Cu doping can cause a shift in the location of the Raman peaks and
narrow their widths; this is referred to as the quantum size confinement effect [59,60,67]. Guo et al. [68]
explored the relationship between the size and shape of CdSe nanocrystals and their Raman shifted
through theoretical calculation and experimental measurement. They found that as the size of these
crystals decreases, the bond length shortens, and the Raman shift moves toward a low wavenumber.
The results in Figure 4 demonstrate that Cu doping could inhibit the growth of KTO nanocrystals,
which is consistent with the TEM result.
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3.2. Optical Properties

The UV–Vis diffuse reflection spectra of the pure KTO and 1.0 Cu–KTO samples are explained in
Figure 5a. The 1.0 Cu–KTO sample had a higher lighting performance reflected by its UV absorbance
peak, which simultaneously enhanced the light absorbance covering the entire visible range. The red
shift of the band gap could be obtained from the plot of (Ahν)2 versus hν (Eg) in Figure 5b, where A is
the absorbance, h is the Planck constant, and ν is the frequency of incident light. The band gap shifted
from 3.31 eV for pure KTO to 3.26 eV for 1.0 Cu–KTO. Thus, Cu doping could decrease the bandgap of
KTO. Although the decrease in the band gap was minimal, Cu doping could introduce an impurity
energy level to KTO at the top of the valence band (VB), which can be used as a bridge for electronic
transitions [42]. In addition, a new absorption peak was observed at 1.9 eV, which is attributed to the
absorbance peak of oxygen vacancies, as presented in the inset of Figure 5b [51]. This helps increase
absorption in the visible range. The defect levels introduced by doping between CB and VB are one
of the important strategies to improve the photocatalytic activity of a semiconductor under visible
light [27,51]. Accordingly, Cu–KTO nanowires are expected to exhibit photocatalytic activity in the
visible region.
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3.3. Photocatalytic Properties

The photocatalytic activities of the as-prepared samples were evaluated by degrading RhB under
simulated sunlight. Prior to the photocatalytic reaction, all samples were immersed in the reactor
and kept in the dark for 1 h to achieve equilibrium adsorption of RhB. The degradation of dyes was
determined by monitoring the absorption peak intensity of RhB at 554 nm. Absorptive capacity is a
key factor for photocatalytic activities of the photocatalyst [69,70]. Figure 6a shows the degradation
rate of RhB in different conditions with respect to time. A time-dependent photoactive performance
was observed from RhB degradation. With the prolongation of the photocatalysis reaction, the gradual
degradation of RhB led to a subsequent reduction in the absorption peak intensity. The degradation rate
is expressed as At/A0, where A0 is the initial absorbance value of RhB and At is the absorbance value of
the remaining RhB. The degradation rate of RhB was almost unchanged under dark conditions with the
photocatalyst and under light irradiation without the photocatalyst. The Cu–KTO samples had excellent
photocatalytic characteristics compared with the KTO sample. Among all the samples, 1.0 Cu–KTO
showed the best photocatalytic activity, and its degradation rate of RhB was 91% (only 0.3 g/L catalyst
concentration) under simulated sunlight for 5 h. However, the dye degraded up to only 74.8% for KTO.
The UV–Vis absorption spectra of RhB collected using 1.0 Cu–KTO as the photocatalyst under simulated
sunlight irradiation are shown in Figure 6b. The intensity of the RhB characteristic absorption peaks
decreased obviously, and the peak wavelength shortened with increasing exposure time. This result
suggests the decomposition of RhB by the photocatalyst under simulated sunlight irradiation [71].Crystals 2020, 10, x FOR PEER REVIEW 9 of 16 
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3.4. Antibacterial Properties

The antibacterial activities of the Cu–KTO nanowires were evaluated against Gram-negative
bacteria E. coli by using the standard plate counting method to observe the bacterial growth quantities
on the plates, as shown in Figure 7a,b. The amount of bacteria in the Petri dish of the KTO nanowires
before and after Cu doping decreased significantly when compared with that of the control group.
The number of bacterial colonies for the group irradiated by UV light was significantly smaller than
that for the group irradiated without light. This result shows the effect of photocatalysis on the
antibacterial activity of the materials. Moreover, Cu doping improved the antibacterial activity of the
KTO nanowires. The higher the Cu doping amount, the higher the antibacterial activity. This finding
can be attributed to the effect of released Cu2+ ions on antibacterial performance. The 1.5 Cu–KTO
showed the highest antibacterial activity.

Figure 7c shows the antibacterial rate of the different samples against E. coli. On the basis of the
standard reduction of bacteria criterion, 50–70% and greater than 70% reductions are known to exert
an expressive bactericidal effect and an effective antibacterial effect, respectively [34]. In accordance
with this criterion, the KTO without light irradiation exerted an expressive bactericidal effect, and
all Cu–KTO samples without light irradiation had powerful bactericidal effects, as proven further
by the antibacterial effect of Cu2+ ions. Moreover, the antibacterial rates of the group irradiated
by UV light were higher than those of the group irradiated without light. This result is attributed
to the photocatalytic antibacterial performance of the KTO and Cu–KTO samples. The synergistic
antibacterial effect of photocatalysis and Cu2+ ions is thus fully demonstrated. The antibacterial
mechanism of Cu-doped KTO nanowires is shown in Figure 7d.
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To further understand the antibacterial mechanism of the Cu–KTO nanowires, the zeta potential
of 1.0 Cu–KTO was investigated with a laser scattering particle analyzer to determine the stability
of the sol solution. Graphite furnace atomic absorption spectrometry was performed to analyze the
Cu-ion release behavior of the Cu–KTO nanowires. Sol is stable when the zeta potential (ζ, mV) is
greater than |±30| mV [72]. The electrokinetic behavior of the 1.0 Cu–KTO nanowires in deionized
water (pH = 7) is shown in Figure 8a. The zeta potential of the nanowires was −43.5 mV, indicating
that the nanowires could spontaneously disperse in water. This phenomenon is helpful for the organic
contaminants or bacteria in the bacterial suspension fully contacting with the surface of the dispersed
nanowires to achieve strong photocatalytic and antibacterial effects. In the experiment, the release rate
of the Cu ions was mainly determined by the Cu doping concentration of the KTO nanowires and
the interaction between the Cu ions and KTO matrix. The Cu ions went through a gradual release
process, and the KTO nanowires acted as the carriers of Cu ions for a sustained release. The amount
of cumulative release over 24 h for the 0.5, 1.0, and 1.5 Cu–KTO nanowires were 12.25, 18.36, and
32.14 ppb, respectively (Figure 8b).Crystals 2020, 10, x FOR PEER REVIEW 11 of 16 
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The bacteriostatic sterilization process of Cu–KTO nanowires can be understood from two aspects.
First, it is mainly related to the photocatalytic process. After being irradiated by UV light for an
hour, doped Cu promoted the separation of electron–hole pairs of the Cu–KTO nanowires and
caused a delay in the recombination of the electron–hole pairs. When the Cu–KTO nanowires were
placed in the bacterial suspension, the cell membrane was destroyed by active oxygen radicals (ROS)
such as hydroxyl (OH−) and oxygen (O2

−) radicals. Therefore, the photocatalytic behavior of the
materials could effectively inhibit the E. Coil population. Second, the bactericidal effect of the Cu–KTO
samples is also related to the appearance of Cu ions [72–74]. With the prolongation of co-culture
time, the photocatalytic antibacterial effect gradually decreased, and the amount of Cu ion release
increased simultaneously. Although the photocatalytic activities of the Cu–KTO samples decreased,
the enrichment of Cu ions in the bacterial suspension improved their antibacterial property. The results
of this work confirm that the antibacterial mechanism of Cu–KTO is a synergistic antibacterial process
involving photocatalysis and Cu ions that exert antibacterial activity, even in the dark. In addition,
Cu2+ is a biologically friendly metal ion that can enhance cell activity and osteoblast proliferation and
improve angiogenesis [75,76]. The Cu–KTO nanowires in the present work can be regarded as reliable
candidates for sewage treatment.

4. Conclusions

Cu–KTO can be successfully synthesized by the combination of sol–gel and hydrothermal methods.
The crystal structure of Cu–KTO still maintains the monoclinic structure of K2Ti6O13, and Cu2+ ions
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can enter the lattice of KTO by substituting for some Ti4+ ions. Cu2+ ion doping can not only effectively
enhance the photocatalytic activities of KTO under simulated sunlight irradiation, but also improve the
inhibition of E. coli in the dark. The increase in the photocatalytic activity of the Cu–KTO nanowires can
be attributed to the increased specific area of the crystals, enhancement of visible light absorption ability,
narrowed band gap, and reduced recombination ratio of photoinduced electron–hole pairs. Among all
Cu–KTO samples, 1.0 Cu–KTO showed the highest photocatalytic activity, and the photodegradation
rate of RhB for 1.0 Cu–KTO reached 91% after 5 h under simulated sunlight irradiation. This work
further confirms that Cu–KTO nanowires have a synergistic antibacterial function that involves both
photocatalysis and Cu ions under light irradiation while Cu ions continue to exert antibacterial activity
in the dark. Therefore, Cu doping is an effective method to develop KTO nanomaterials with dual
functions of organic pollutant degradation and bacteriostatic sterilization.

Author Contributions: Data curation, W.Z.; Formal analysis, H.W.; Funding acquisition, C.C. and Y.Q.;
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