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Abstract: In this article, we report on the synthesis and characterization of crown-ether appended
hexaazatrinaphthylene derivatives with two alkoxy chains. The complexation of a derivative having
shorter alkoxy chains with metal ions, such as NaI and KI, prompts remarkable changes in the
electronic properties of sold states, because of changing intermolecular interactions. Polarized
optical microscopic observation, X-ray diffraction pattern measurement and differential scanning
calorimetry reveal that a compound with longer alkoxy chains self-assembles into the formation of
the columnar liquid-crystalline phase. Moreover, the addition of benzenesulphonic acid influences
the self-assembled liquid-crystalline structures, as well as the electronic properties. The complexation
of the derivative having longer alkoxy chains with benzenesulphonic acid induces a larger dipole
moment, compared to that before complexation, thereby leading to the enhancement of intermolecular
interaction, such as dipole-dipole interaction. Also, peaks in UV-vis absorption and fluorescent
spectra show a dramatically bathochromic shift, due to their intermolecular interaction, such as the
π-π interaction.

Keywords: liquid crystals; stimuli response; hexaazatrinaphthylene; electron acceptor

1. Introduction

Discotic molecules have gained much attention as the building blocks for the development
of one-dimensional self-assembled structures in solid-state materials [1–5]. Among them, disc-like
molecules, such as triphenylene and benzocoronene derivatives, are well known as representative
π-conjugated frameworks, composed of planar polyaromatic hydrocarbon with C3 symmetry.
The substitution of flexible alkyl chains into theseπ-conjugated frameworks plays a role to self-assemble
into one-dimensional columnar liquid-crystalline structure transporting charge carriers such as
hole and electron along to the column axis. Also, their electronic properties can be tuned be the
incorporation of heteroatoms, such as N atoms, of which its derivatives are called hexaazatriphenylene,
hexaazatrinaphthylene and azacoronene. As hexaazatriphenylene- and hexaazatrinaphthylene-based
materials are composed of electron-deficient pyrazine units, it is known that they can transport a
charge carrier as an electron along to the column axis in the columnar liquid-crystalline phase [6–9].
In particular, some groups have used the hexaazatrinaphthylene framework as an excellent building
block to fabricate the organic functional materials, because of its physicochemical potential.
For example, liquid-crystalline hexaazatrinaphthylene-based materials have been reported as having
the potential for charge-transporting properties, elucidated in experimental and theoretical studies by
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Brédas, Cornil and Crispin et al. [6,7], facile synthesis by Ong et al. [10,11], liquid-crystalline behaviors
and carrier mobility by Lehmann et al. [8,9], as well as Marder et al., who have shown it also has a
high charge-carrier mobility in amorphous state [12]. Recently, the uses of the hexaazatrinaphthylene
framework have be expanded in the field of solid-state materials for nanoporous structures, such as
covalent organic frameworks and hydrogen-bonded organic frameworks. McKeown et al. have
reported potential as adsorbent and catalyst support for covalent organic frameworks based on
hexaazatrinaphthylene [13,14]. Other groups have reported hexaazatrinaphthylene-based covalent
organic frameworks showing redox-active behavior and [15] heavy metal removal and photoredox
catalysis [16]. Hisaki et al. have reported hexaazatrinaphthylene-based hydrogen-bonded organic
frameworks in response to acid [17]. Furthermore, the combination of other functional moieties into
the HATN framework are expected to promote the creation of novel functional materials.

Based on this concept, in this study, we report on the incorporation of crown-ether moiety
as a functional moiety in the hexaazatrinaphthylene framework, to show its multi-functionalities
in Scheme 1. Compounds 16 and 112 consist of hexaazatrinaphthylene, having four alkoxy chains
with hexyl and dodecyl, respectively, and crown-ether moiety at terminal. As crown-ether is a
well-known macrocyclic compound, which can capture with alkali metal ion and transport metal
ion, [18] compounds 1 are expected to form one-dimensional columnar liquid-crystalline structures,
in which columns have the potential to transport both electron and metal ion. Also, we focus on the
acid-responsive properties of 1 for metal ion, as well as acid substances. Crown-ether moiety of 1 is
weakly polar, because polar oxygen atoms at the inner positions are surrounded by nonpolar ethylene
moieties at the outer positions, whereas capturing metal ion can induce a polarity, due to existence of
counter anions. Additionally, since the imino-N atom in pyrazine works as a Lewis base, the interaction
with Lewis acid added leads to the tuning of physicochemical properties, such as fluorescent and
electronic properties, as well as intermolecular interaction with one another in solid states [19–24].
Accordingly, 1 designed as a nonpolar derivative has a potential to turn into polar derivative by the
complexation of metal ions, as well as Lewis acid, which is expected to affect the electronic properties
and structures, as well as the thermal stability of the self-assembled structures. To the best of our
knowledge, this is the first report on crown-ether appended hexaazatrinaphthylene.Crystals 2020, 10 x FOR PEER REVIEW  4 of 12 
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In this article, at first, we demonstrated how the complexation with metal ions influences the
electronic properties of 16 with shorter alkoxy chains in solution and solid state. Then, we investigated
self-assembled structures and electronic properties of 112 with longer alkoxy chains in solution and
liquid-crystalline states.
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2. Materials and Methods

1H and 13C NMR spectra were recorded on a Varian UNITY INOVA400NB spectrometer (Varian,
Palo Alto, CA, USA). The chemical shift of the 1H and 13C NMR signals were quoted as tetramethylsilane
(δ = 0.00) and (δ = 77.00) as internal standards, respectively. FT-IR spectra were measured with a
Perkin-Elmer Spectrum Two FT-IR Spectrometer (Perkin Elmer, Waltham, MA, USA). Matrix-assisted
laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra were collected on a JEOL
JMS-S3000 instrument (JEOL, Tokyo, Japan), using dithranol as a matrix. UV–vis absorption spectra
were recorded with a Perkin-Elmer Lambda35 UV–vis Spectrometer (Perkin Elmer, Waltham, MA, USA).
Fluorescent spectra were recorded with a Perkin-Elmer LS45 Luminescence Spectrophotometer
(Perkin Elmer, Waltham, MA, USA). Cyclic voltammetry was carried out in CH2Cl2 solution of Bu4NPF4

(0.10 M) with a glassy carbon working, Pt counter, and an Ag/Ag+ reference electrode using an ALS
CHI 600E electrochemical analyzer (ALS Co., Ltd., Tokyo, Japan). XRD patterns were obtained at room
temperature using a Rigaku Rapid II diffractometer, using Ni-filtered Cukα radiation (RIGAKU, Tokyo,
Japan). Differential scanning calorimetry (DSC) measurements were performed on a NETZSCH DSC
200 F3 Maia at a scanning rate of 10 ◦C min−1 (NETZSCH, Deutschland, Germany). Polarized optical
microscopic observations were performed on a Nikon OPTIPHOT-POL polarized optical microscope
equipped with Mettler FP82 HT hot stage. Density functional theory calculations were carried out
using the Wavefunction Inc. SPARTAN’16 suite of programs (Wavefunction, Inc., Irvine, CA, USA).
Ground-state geometries were optimized at the B3LYP/6-31G* level of theory [25–27]. All reagents
and solvents were purchased from FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan), Tokyo
Chemical Industry Co., Ltd. (Tokyo, Japan), Kanto Chemical Co. (Tokyo, Japan), Inc., or Sigma-Aldrich
Co. LLC, and used as received. Compounds 2 and 3 were prepared according to the procedures of the
literature [28,29].

2.1. Synthesis of 112

To a suspension of 412 (4.04 g, 8.0 mmol) and Pd/C (0.50 g) in dry EtOH (150 mL) at 0 ◦C was
added dropwise hydrazine monohydrate (4.0 mL). After reflux for 24 h, the reaction mixture was
filtrated through Celite under Ar, and then evaporated. The crude product was reacted with triquinoyl
hydrate (0.47 g, 2.8 mmol) in HCOOH (50 mL) at r.t. under Ar for 2.5 h. The reaction mixture was
extracted with CHCl3 three times. The combined organic layers were washed with water, and dried
over anhydrous Na2SO4 to obtain a red solid. The reaction mixture was heated with 2 (prepared
by using 2’ (0.90 g, 2.5 mmol), Pd/C (0.50 g), hydrazine monohydrate (4.0 mL) in dry EtOH (50 mL)
according to the procedure of 412) in AcOH (50 mL) and CH2Cl2 (50 mL) at 50 ◦C under Ar for 24 h.
After cooling to r.t., the reaction mixture was extracted with CHCl3 three times, washed with H2O,
and dried over anhydrous Na2SO4. After filtration and evaporation, the crude product was purified
by column chromatography (silica, CHCl3 and CHCl3/MeOH = 20/1 (v/v)), and dried under vacuum to
afford 1 as a yellow solid (0.43 g, 11.7% in 4 steps). IR (ATR): ν = 2921, 2842, 1505, 1235, 842, 730 cm−1;
1H NMR (400 MHz, CDCl3): δ 7.86 (s, 2H), 7.85 (s, 2H), 7.84 (s, 2H), 4.40 (m, 4H), 4.31–4.30 (m, 8H),
4.07 (m, 4H), 3.86 (m, 8H), 2.00 (m, 8H), 1.60–1.55 (m, 24H), 1.40–1.25 (m, 48H), 0.89–0.87 (m, 12H) ppm;
13C NMR (75 MHz, CDCl3): δ 154.55, 154.52, 154.16, 141.58, 141.36, 141.31, 141.14, 141.02, 140.86, 107.69,
107.63, 107.61, 71.35, 70.14, 69.49, 68.94, 68.66, 68.65, 31.92, 29.70, 29.66, 29.63, 29.40, 29.37, 28.78, 26.07,
22.68, 14.11. ppm; MS (MALD-TOF-MS): m/z calcd: 1311.86 [M]+; found: 1312.31; elemental analysis:
calcd (%) for [C80H118N6O9] (CHCl3)0.5: C 70.49, H 9.00, N 6.13; found: C 70.92, H 9.40, N 6.07.

2.2. Synthesis of 16

To a suspension of 46 (1.85 g, 5.0 mmol) and Pd/C (0.30 g) in dry EtOH (60 mL) at 0 ◦C was
added dropwise hydrazine monohydrate (3.0 mL). After reflux for 24 h, the reaction mixture was
filtrated through Celite under Ar, and then evaporated. The crude product was reacted with triquinoyl
hydrate (0.34 g, 2.0 mmol) in HCOOH (50 mL) at r.t. under Ar for 2.5 h. The reaction mixture was
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extracted with CHCl3 three times. The combined organic layers were washed with water, and dried
over anhydrous Na2SO4 to obtain a red solid. The reaction mixture was heated with 2 (prepared by
using 2’ (0.36 g, 1.0 mmol), Pd/C (0.50 g), hydrazine monohydrate (4.0 mL) in dry EtOH (50 mL),
according to the procedure of 46) in AcOH (50 mL) and CH2Cl2 (50 mL) at 50 ◦C under Ar for 24 h.
After cooling to r.t., the reaction mixture was extracted with CHCl3 three times, washed with H2O,
and dried over anhydrous Na2SO4. After filtration and evaporation, the crude product was purified
by column chromatography (silica, CHCl3 and CHCl3/MeOH = 20/1 (v/v)), and dried under vacuum,
to afford 1 as a yellow solid (0.18 g, 9.2% in 4 steps). IR (ATR): ν = 2932, 2865, 1494, 1438, 1224, 1157,
853, 561 cm−1; 1H NMR (400 MHz, CDCl3): δ 7.86 (s, 2H), 7.85 (s, 2H), 7.84 (s, 2H), 4.41 (m, 4H),
4.31 (m, 8H), 4.08 (m, 4H), 3.85 (m, 8H), 2.00 (m, 8H), 1.42 (m, 24H), 0.96 (m, 12H) ppm; 13C NMR δ

154.51, 154.48, 154.11, 141.32, 141.28, 141.26, 141.12, 141.00, 140.84, 107.69, 107.60, 107.59, 71.34, 70.13,
69.45, 68.92, 68.64, 31.54, 28.73, 25.71, 22.58, 13.98. ppm MS (MALD-TOF-MS): m/z calcd: 975.22 [M]+;
found: 975.85; elemental analysis: calcd (%) for [C56H74N6O9] (CHCl3)0.5: C 65.57, H 7.26, N 8.12;
found: C 65.49, H 7.95, N 8.04.

3. Results and Discussion

3.1. Synthesis and Characterization of Compounds 16 and 112

We have synthesized compounds 16 and 112, according to the previous procedure in
Scheme 1 [11,28]. Compound 3 was prepared by the reduction of 4 with N2H4•H2O and Pd/C
in EtOH, which was used to react with triquinoyl hydrare without further purification, because 3
was too air-sensitive to be purified. This reaction condition can preferentially provide di-substituted
derivative, whereas mono- and tri-substituted derivatives are scarcely obtained, which is consistent
with results reported by Ong et al. [11]. Then, the reaction mixture including 3 was reacted with
compound 2 and purified by column chromatography twice, to afford compound 1 as a brown
solid, as demonstrated by NMR analysis reported in Figures S1 and S2 in Supplementary Materials.
The cyclic voltammetry of 112 shows three consecutive reduction peaks, derived from the formation
of radical anion, dianion and trianion, respectively, in Figure 1. 16 showed the same behavior as
112, indicating that 16 and 112 have the potential to function as an electron acceptor, as well as
electron-transporting materials.
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3.2. Influence on Self-Assembled Liquid-Crystalline Structures of 112 by Addition of BSA and Metal Ions

To investigate the LC properties, we carried out polarized optical microscopic (POM) observations,
differential scanning calorimetry (DSC), and X-ray diffraction (XRD) measurements. At first,
we synthesized 16 having four alkoxy chains. However, it was not found that 16 self-assembled
into the formation of LC phase by measurements. In order to promote the self-assembling behavior of
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this framework, we designed the elongation of alky chains and substituted four hexyl chains with four
dodecyl chains. The DSC measurement of 112 did not show a clear peak, due to a phase transition
from a liquid-crystalline (LC) phase to an isotropic liquid at a scanning rate of 10 K/min on both
first cooling and second heating in Figure 2. On the other hand, the POM observation in Figure 3
reveals that 112 shows a clearing point from a LC phase to isotropic liquid at 114 ◦C on the first heating.
On the first cooling, annealing for 30 min at 110 ◦C brings about the formation of the LC phase in
Figure 3. When the LC film of 112 applied into a sandwiched glass cell is sheared, this LC film can be
aligned along to the shearing direction in Figure 3. POM observations reveal that the sheared LC film
shows a bright and a dark image by 45◦ rotation. These observations indicate that 112 self-assembles
into the formation of columnar (Col) LC phase, in which sheared columns are homogeneously aligned
parallel to a glass cell. DSC and POM observation results indicate that 112 shows Col LC phase in a
wide temperature range, including room temperature. Ong et al. have reported Col LC materials
based on the similar HATN framework, which are composed of four alkoxy chains, as well as two
triethylene glycol monomethyl ether chains [11]. Also, a glass transition of 112 are observed at −35 ◦C,
according to the peak, due to phase transition from a Col LC state to a glass state in Figure 2. The XRD
pattern of 112 shows two peaks in a small-angle region, with a broaden peak in a wide-angle region,
due to molten alkoxy chains. These peaks can be assigned as the rectangular columnar LC (Colr)
structure with a lattice constant (a = 48.0 Å, b = 41.5 Å) in Figure 5.

The complexation of compound 112 with benzenesulphonic acid (BSA) or metal ions leads to clear
changes in phase transition temperature, as well as self-assembling behavior. Complexes of 112 with
BSA can form Col LC phases without annealing. DSC traces in Figure 4 reveal that the LC sample
112

100 shows a melting point at 117 ◦C, which becomes higher than that at 104 ◦C for 1. These melting
points for complex of 112 with BSA are gradually increasing, accompanied by the additional ratio of
BSA relative to 112 in Table 1. As for 112

1 and 112
2, decomposition was observed before the melting

point on the first heating. Also, phase transition temperatures of complexes from Col to Iso tend
to become clear peaks, as well as their enthalpies (∆H) estimated by DSC results, which gradually
rise with increase in the ratio of BSA in Table 1. These results indicate that the complexation of
112 with BSA should influence an enhancement of the intermolecular interaction in the LC phase.
To investigate the relationship between complexation and self-assembled structures, we carried out the
XRD measurements in Figure 5. It is observed that two peaks for 1 in a small-angle region are merged
into one peak, accompanied by increasing ratio of an amount of BSA relative to 112. These results
indicate that the addition of BSA should generate the polarity of 112, leading to the formation of more
ordered Col structure, strongly showing intermolecular interactions with one another, as compared
with 112. Density functional theory (DFT) calculations at the B3LYP/6-31G* level were operated by
using SPARTAN’16 package in Figure 6a,b [25–27]. DFT calculation revealed the complexation of
112 with BSA induced larger dipole moment (9.87 Debye) than 112 (5.25 Debye), which should play a
driving force to stabilize the Col LC phase. Also, the electrostatic interaction between the protonated
112 and benzenesulphonate anion should stabilize the Col LC structure. This explanation is almost
consistent with results for 112

1 and 112
2, for which the peak appears at 3.4 Å in a wide-angle region.

This peak should be assigned as a π-π interaction, due to the stacking of π-conjugated frameworks
with one another in a column. Additionally, the peak, due to d100 of 112, tends to become so narrow
that relationship between the columns should become ordered by the addition of BSA.
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1 at room temperature.

As for the addition of 112 with Na+ salt (NaI), which can be captured by 15-crown-5 moiety, we
firstly carried out 1H NMR measurements to confirm the recognized behavior with metal ions by
crown-ether moiety in Figure 6. In 1H NMR spectra for 112, the addition of NaI leads to an obvious
change in the chemical shift and the broadening of the peaks, indicating that the complexation of 112

with NaI should occur. On the other hand, POM observation revealed that complex of 112 with NaI
showed no birefringence characteristic of the LC phase, as well as decomposition before the melting
point. As for complexation with KI, the broadening of the peaks due to crown-ether moiety was
observed, however, the melting point was not changed compared with 112.
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1 
 

 

Figure 6. Density functional theory (DFT) calculations by using 1’ (a) and complex 1’ of with BSA (b).
Arrows indicate dipole moments. (c) 1H NMR spectra and of 112 (top) and 112 with NaI (middle) and
KI (bottom) in the range of crown-ether moieties and (d) POM observations of 112 (top) and 112 with
NaI (middle) and KI (bottom).

3.3. Influence on Electronic Properties of 16 by Addition of Metal Ions

We carried out the UV-vis and fluorescent (FL) spectra in the solution and solid states to investigate
the change in the electronic properties of 16 by the complexation with metal ions in Figure 7. In the
solution states, UV-vis spectra of 16 showed some peak maxima, whereas the addition of metal ions
scarcely brought about clear changes in Figure 7a. As for the FL spectra, similar behavior was observed,
indicating that intermolecular interaction should not occur, such as the π-π interaction in experimental
conditions in Figure 7b. Additionally, the UV-vis absorption spectrum of 16 in a solid state was almost
the same as that of 16 in a solution state in Figure 7c, whereas the addition of metal ions brought
about changes in Figure 7d. On the other hand, FL spectra of 16 with yellow emission in a solid
state showed remarkable changes, of which peak maxima was bathochromically shifted, compared
with 16 with blue emission in a solution state. This result strongly implied that the π-π interaction
between π-conjugated frameworks of 16 should happen. Further, the addition of meta ions led to clear
changes in the FL spectra, as well as in emission colors. Interestingly, the peak at 525 nm for 16 was
hypsochromically shifted to 483 nm for 16 + NaI, and to 520 nm for 16 + KI. This result suggested
that the addition of metal ions should change the molecular alignments, as well as weakening the
intermolecular interactions between the 16 molecules.
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3.4. Influence on Electronic Properties of 112 by Addition of BSA

We carried out UV-vis and FL spectra to investigate influence on electronic properties of 112 by
addition of BSA in solution and LC states in Figure 8. UV-vis absorption spectrum of 112 in CHCl3
solution (10–5 M) shows mult peaks, of which peaks are slightly changed by addition of BSA in
Figure 8a. On the hand, the new broad peak due to the protonated 1 clearly appears around at 500 nm,
which is gradually increased with icreasing BSA. FL spectrum of 112 in the CHCl3 solution (10–6 M)
shows a peak at 456 nm, of which emission color is light blue in Figure 8b. Upon addition of BSA,
a peak shift due to protonation in FL spectra is not observed becasue 112 would weakly interect with
BSA at an excited state in dulite solution states. Therefore, we carrried out both measurements in
condensed Col LC films without effects of solution molecules. UV-vis absprotion spectrum of 112 in
the LC film at room temperature shows three peaks with a longest wavelength at 430 nm, which are
almost similar to that in the CHCl3 solution state in Figure 8c. On the other hand, the complexation
between 112 and BSA gives the new peak around at 550 nm, which is derived from protonated 112.
Further, wavelengths of absorption edges were bathochromically shifted with increasing the BSA
ratio in Figure 8d. These reasons are presumably why stronger π-π stacking leads to narrowering
the HOMO-LUMO energy gap. In the FL spectrum, 112 in the LC film shows a peak at 540 nm with
emission color of yellow, although the complexation of 1 with BSA clearly shows a red shift of FL peaks,
accompanied with the decrease in FL intensities. Also, emission colors for complex of 112 with BSA
are gradually changing from yellow (for 112), orange (for 112

100 at 553 nm), to deep orange (for 112
10

and 112
5 at 605 nm). On the other hand, 112

2 slightly shows photolumisescen at 553 nm, whereas it is
observed that 112

1 scarcely emits in LC films, respectively. As a result, the linear correlation between
an amount of BSA and fluorescent peak was very weak. Increasing BSA relative to 112 should promote
π-π interaction between π-conjugated framework derived from orign of emission, which should cause
self-quenching in condensed states. These explanations are consistent with DSC results on increment
of phase transition enthalopy as well as XRD results on appearance of peak at 3.4 Å for 112

1.
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4. Conclusions

We synthesized novel crown-ether appended HATN LC material 1 in the first time. Compound 1
functioned as electron acceptor and self-assembled into the Col LC structure. The complexation of 16

with metal ions leads to a remarkable change in electronic properties, such as fluorescent colors in solid
states, as well as the addition of BSA into 112, which can tune self-assembled Col LC structures, as well
as electronic properties, such as fluorescent colors. In particular, an increasing amount of BSA into 112

leads to the stabilization of the Col LC structures, because of induced dipole moment and electrostatic
interactions. This method is expected to be efficient for tuning the electronic properties, as well as
self-assembled structures for π-conjugated materials containing nitrogen atoms.
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