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Abstract: Martensitic steels are widely used structural materials with outstanding mechanical
properties. Their high strength is provided by the non-diffusional phase transformation of fcc γ into
thin lamellar bcc plates during fast cooling. Coherency strains between the fcc and bcc lamellae induce
large dislocation densities in the range of 1016 m−2, well above the densities attainable by conventional
plastic deformation. Using high resolution X-ray line profile analysis, scanning electron microscopy,
and hardness tests we show that during tensile deformation when the active Burgers vectors are
within the lath plane the lath-packets work soften. On the contrary, when the active Burgers vectors
are oblique to the lath-plane the lath-packets work harden. The softening and hardening processes in
the differently oriented lath-packets produce a composite of hard and soft components on the length
scale of lath-packet size. The stress–strain response of the alloy is discussed in terms of the different
mean free paths and the different annihilation lengths of dislocations in the softened and hardened
lath-packets. The relatively good ductility is shown to be produced by the composite microstructure
induced by plastic strain.

Keywords: lath martensite; composite behavior; characteristically asymmetric diffraction profiles;
long-range internal stresses; dislocation densities

1. Introduction

Lath-martensite steel is a low-alloy high-strength structural material with wide applications [1–3].
The strength relates to the hierarchical fine sub-grain size of lath-packets and martensite laths and
to the high dislocation densities [4,5]. In the as-quenched state, depending on the content of carbon
and other microalloying elements, its strength can reach values well above one GPa [1–4]. The fine
lath martensite embedded into thin rest austenite films produces the high strength [1–7]. Within the
large prior austenite grains lath martensite forms a hierarchical structure. The smallest units are the
lamellar plates separated by austenite films arranged into small sub-blocks having thickness of one
or two microns [2,5,6]. The sub-blocks, accommodated by different twin-related boundaries, arrange
into blocks [2,5,8,9]. The blocks form packets in which all the laths are more-or-less parallel lamellae
aligned coherently with their 110 oriented lath planes to one of the 111 type planes of the primary
austenite [6,10,11].

Despite the extremely large flow stress, lath martensite does reveal a non-negligible ductility [1,12,13].
Microscale deformation experiments on micropillars consisting of a singular martensite block, oriented
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for easy glide along the plane of lath planes, revealed ideal stress-strain behavior with no strain
hardening [14]. Micropillars containing more blocks with different lath lamellae orientations showed
significant strain hardening [14]. Similarly, in other microscale tensile experiments, when the active slip
systems were in-lath-plane the flow stress was relatively low, of about 350 MPa, whereas it doubled
when the active slip systems were out-of-lath-plane [15]. The anisotropic stress–strain response of
differently oriented lath-packets was shown in micro tensile experiments in a martensitic steel [16].
Three specimens were prepared by focused-ion-beam (FIB), one with the shear direction parallel to
the habit plane of the laths (sample #1) and two with the shear direction across the habit plane of the
laths (sample #2 and #3). In sample #1 with long mean free paths of dislocations the flow stress was
about 890 MPa, whereas in samples #2 and #3 with short mean free paths of dislocations the flow
stress was about 1200 MPa [16]. These experiments indicate that the local microscopic flow stress of
lath martensite depends on the relative orientation between the habit plane direction of laths and
the direction of the active Burgers vectors. Microscale compression experiments on pearlitic steels
revealed similar anisotropic stress–strain behavior [17]. The flow stress was large when the pearlite
lamellae were either parallel or normal to the compression direction, whereas it was smaller when
the lamellae were inclined about 45◦ to the stress axis. Two phase composite materials are usually
developed in order to improve the mechanical response of the pure single component properties,
especially to increase the strength along with ductility [17–20]. Martensitic steels are usually tough
and strong [1–7]. Ductility is more of a concern [21].

In recent in situ neutron diffraction experiments it was shown that the diffraction peaks of a
tensile deformed low-alloy martensitic steel specimen become characteristically asymmetric during
deformation or after unloading [22,23]. Characteristic asymmetry means that diffraction peaks
measured on planes normal or parallel to the loading direction of the specimen become asymmetric
in the opposite directions [24–26]. In the case of tensile deformed specimens, the lower-angle tails of
peaks corresponding to the loading-direction diffraction vectors (axial case) become longer, whereas in
peaks corresponding to the transverse-direction diffraction vectors (side case) the higher angle tails
become longer [24–26]. In references [22,23] it was shown that the plastic strain induced characteristic
peak asymmetry can be related to the decomposition of the initially homogeneous microstructure into
a composite. It was shown that when the active Burgers vectors in the martensite packets are within
the plane of the lath lamellae, the mean free paths of dislocations will be long and there will be either
no substantial work hardening, or even work softening. When, however, the active Burgers vectors
show across the boundaries of the lath-martensite lamellae, the mean free paths of dislocations will be
short and substantial work hardening occurs. In the first case the dislocation densities were shown to
decrease, or at least stagnate, whereas in the second case significant dislocation density increment was
observed. Packets of the first or the second case were named soft orientation (SO) or hard orientation
(HO), respectively.

In the present work we show that the composite type behavior observed in a specific martensitic
steel in [22,23] is not unique to one composition, and is probably a general feature of low-carbon
high-strength lath-martensite steels. We investigate a high-strength low-alloy lath-martensitic
steel containing a negligible remaining austenitic phase, less than 1% in vol. pct. Though the
specimen investigated here is different from that studied in [22,23], the fundamental features of the
composite behavior induced by plastic deformation are similar. High resolution X-ray line profile
analysis experiments are accompanied by scanning electron microscopy (SEM) and nanoindentation
investigations. The dislocation densities and the long-range internal stresses provided by line profile
analysis are discussed in terms of the Taylor equation separately for the SO and the HO components.
The different work hardening behavior in the SO and HO packets leading to the composite structure
is further supported by nanoindentation tests. We suggest that the deformation invoked composite
structure provides the relatively good ductility and toughness of the high strength lath-martensite steel.
Specifically, the work-softened lath-packets provide ductility, whereas the work hardened lath-packets
provide high strength and toughness.
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2. Experimental

2.1. Specimens

The composition of the as-received steel plate was Fe-0.16C-1.48Mn-0.29Si and the other
components were less than 0.01 (all in wt. pct.). (We note that the composition of the lath-martensite
steel specimen studied in references [22,23] was: Fe-0.22C-0.87Si-1.64Mn-0.024Ti-0.0015B-0.0025N, all
in wt. pct.). The steel sheet had no specific texture. The plate was annealed at 1100 ◦C for 30 min
and then quenched into room temperature (RT) water. From the quenched plate six dog-bone shaped
specimens were cut for tensile tests with the tensile direction in the rolling direction of the plate.
The tensile deformations were carried out in an MTS-810 standard testing machine at the strain velocity
of 1 mm/min at room temperature, on each of the six specimens to different strain levels. The true
stress vs. true strain is shown in Figure 1. The fracture of the material was at ε = 0.034 plastic strain,
which is a relatively small value. The six true strain values, indicated as unloaded states in the figure,
were chosen for specimens for the X-ray diffraction experiments. The maximum stresses applied to
each of these specimens are denoted as σapp.
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Figure 1. The true stress, σ, versus true strain, ε, curves of the deformed specimens. The material 
fractured at ε = 0.034 plastic strain. The different colors ending at the dashed lines, indicating 
unloading, correspond to the stress–strain curves of the individual specimens. The dash–dot–dot line 
is at ε = 0.001 and the corresponding stress value is taken as the proof-stress, Rp,0.1 = 930 MPa. 

Figure 1. The true stress, σ, versus true strain, ε, curves of the deformed specimens. The material
fractured at ε = 0.034 plastic strain. The different colors ending at the dashed lines, indicating unloading,
correspond to the stress–strain curves of the individual specimens. The dash–dot–dot line is at ε = 0.001
and the corresponding stress value is taken as the proof-stress, Rp,0.1 = 930 MPa.

The undeformed state was also examined and its σapp value is considered as the yield stress,
i.e., 600 (±30) MPa. This was determined from the stress–strain curve. Small pieces from the center
regions of the samples were cut for XRD, SEM, nano- and microhardness measurements. The specimens
were chemically etched in an electrolyte (10% perchloric acid, 70% ethanol, 20% glycerol) in order to
remove any surface layer damaged by the sample preparation procedure.
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2.2. X-ray Diffraction Experiments

The X-ray diffraction measurements were carried out in a special double-crystal diffractometer
dedicated to line-profile-analysis using CoKα1 radiation with a wavelength of λ= 0.1789 nm. The cobalt
anode of the sealed X-ray tube was operated at 30 kV and 35 mA with 0.4 × 8 mm2 fine line-focus.
The primary beam was monochromatized by a plane Ge monochromator using the (220) reflection.
A slit of about 0.2 mm was placed before the monochromator in order to select the CoKα1 line and to
cut off the CoKα2 line.

The CoKα1 beam has a size of about 0.2 × 2.0 mm2 on the specimen surface. The scattered
radiation was detected by two imaging plate (IP) detectors with the linear spatial resolution of 50 µm.
The IPs were placed at the distance of 193 mm from the specimen covering the angular range between
2θ = 25◦ and 170◦. The instrumental effect was negligible since the instrumental peak broadening
was always less than 10% of the physical line broadening [27]. The diffraction patterns were obtained
by integrating the intensity distributions along the corresponding Debye–Scherrer arcs on the IPs.
The X-ray beam was positioned on the specimen surface using a low depth-resolution microscope
coupled to a monitor. The measurements were taken at the side and axial surfaces of the deformed
specimens, where the normal vectors of the axial and side surfaces are parallel or perpendicular to the
applied stress direction, respectively. Two types of measurements were carried out for all deformed
specimens using ω = 40◦ and ω = 80◦ angles between the incoming beam and the measured specimen
surface. In such a manner, the g diffraction vector was close to perpendicular to the surface for both
the 200 and the 310 diffraction peaks. The perpendicular g vector is needed for the calculations of
the long-range internal stresses [24–26]. With these diffraction conditions the two diffraction peaks,
i.e., the 200 and the 310, were used to evaluate the long-range internal stresses.

Using the CoKα1 radiation five diffraction peaks are measurable. The whole diffraction patterns
were created by putting the two types of measurements together, i.e., the 110, 200, and 211 peaks were
taken from theω = 40◦, while the 220 and 310 peaks were taken from theω = 80◦ type measurements.
In the case of the undeformed specimen only one measurement with ω = 40◦ was carried out because
we assumed that the microstructure in the as-quenched state is homogeneous, where there are no
long-range internal stresses [22,23]. Typical diffractions pattern corresponding to the axial diffraction
conditions of the specimen tensile deformed to ε = 0.0013 are shown in Figure 2.
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Figure 2. Typical axial diffraction patterns corresponding to the ε=0.0013 tensile deformed state. (a) 
Each peak is fitted in convolutional multiple whole profile (CMWP) with a single symmetrical profile. 
(b) Each peak is fitted in CMWP with the sum of two symmetrical sub-profiles. Black dots are the 
measured data, red lines are the CMWP calculated patterns and the blues line at the bottom are the 
difference between the measured and calculated patterns. Note the logarithmic intensity scales for 
the patterns. The insets show the enlarged 200 peaks. 

2.3. Nano- and Micro-Indentation Measurements 

The undeformed and the 3% deformed specimens were investigated by nanohardness testing. 
These tests were carried out using a nanoindentation device (UMIS CSIRO, New South Wales, 
Australia) with a Vickers indenter and applying a maximum load of 50 mN. Two series of 400 
indentations were recorded for both specimens with the indents arranged in a 20 × 20 matrix with a 
step size of 20 μm. The maximum indentation depth was between 400 and 600 nm corresponding to 
the indent size of 3–4 μm. This was smaller than the block-size of the investigated lath martensite 
[2,8,9]. Two-dimensional color-coded plots of the nanoindentation results on the undeformed as-

Figure 2. Typical axial diffraction patterns corresponding to the ε=0.0013 tensile deformed state.
(a) Each peak is fitted in convolutional multiple whole profile (CMWP) with a single symmetrical
profile. (b) Each peak is fitted in CMWP with the sum of two symmetrical sub-profiles. Black dots are
the measured data, red lines are the CMWP calculated patterns and the blues line at the bottom are the
difference between the measured and calculated patterns. Note the logarithmic intensity scales for the
patterns. The insets show the enlarged 200 peaks.
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2.3. Nano- and Micro-Indentation Measurements

The undeformed and the 3% deformed specimens were investigated by nanohardness testing.
These tests were carried out using a nanoindentation device (UMIS CSIRO, New South Wales, Australia)
with a Vickers indenter and applying a maximum load of 50 mN. Two series of 400 indentations
were recorded for both specimens with the indents arranged in a 20 × 20 matrix with a step size
of 20 µm. The maximum indentation depth was between 400 and 600 nm corresponding to the
indent size of 3–4 µm. This was smaller than the block-size of the investigated lath martensite [2,8,9].
Two-dimensional color-coded plots of the nanoindentation results on the undeformed as-quenched
and 3% tensile deformed specimens are shown in Figure 3. Histograms along the diagonals of
the nanohardness maps taken at steps of 25 µm are shown in Figure 4a. The means and standard
deviations for the undeformed and the ε = 0.03 strained specimens are 6.50 (±0.31) and 6.73 (±0.70)
GPa, respectively. The color-coded maps and the histogram in Figure 4a show that in the tensile
deformed specimens the nanohardness fluctuations are significantly larger than in the undeformed
as-quenched specimen. The histogram in Figure 4a shows that in the 3% tensile deformed specimen
there are regions where the nanohardness is smaller than anywhere in the as-quenched state, indicating
that some regions softened during tensile plastic deformation. All specimens were investigated by
microhardness testing. The microhardness measurements were carried out using a microhardness
tester (Zwick/Roell-ZHµ-Indentec, Ulm, Germany) with a Vickers indenter and applying a maximum
load of 0.981 N. For all specimens a series of 30 indentations were registered with the indents arranged
in a 3 × 10 matrix with a step size of 100 µm. The indent sizes varied between 19 and 23 µm. Results of
the microhardness testing are shown in Figure 4b.
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and therefore not considered.  

The size profile, , is determined by assuming log-normal size distribution given by the 
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Figure 4. (a) Nanoharness values at steps of 25 µm along the diagonals of the maps shown in Figure 3 for
the undeformed (blue open up-triangles) and the ε = 0.03 tensile strained (red open circles) specimens.
The means and standard deviations for the undeformed and the ε = 0.03 strained specimens are
6.50 (±0.31) and 6.73 (±0.70) GPa, respectively. (b) The mean, maximum, and minimum values of
the Vickers-hardness distributions versus the ε true strain. The vertical thick black line indicates the
statistical fluctuation of HV in the undeformed state.

2.4. Scanning Electron Microscopy Investigations

In order to determine the prior austenite grain, and the packet and block sizes, a series of scanning
electron microscope (SEM) measurements were taken on the undeformed and the 3% deformed
specimens. The measurements were carried out in a high-resolution dual beam FEI Quanta 3D
scanning electron microscope detecting secondary electrons. Two typical SEM images are shown
in Figure 5a,b. The boundaries of the prior austenite grains and the packets can be seen clearly in
the figures. The blocks, sub-blocks, or laths cannot be distinguished well because they have the
same longitudinal orientations. Therefore, in the size analysis, the widest structures were considered
as blocks.
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Figure 5. (a,b) Scanning electron micrographs showing the prior austenite grain encircled by thin black
lines, the packets in the first enlarged rectangle, and the blocks in the further enlarged rectangles. The
black spots are contaminations on the surface, not belonging to the structure.

3. Evaluation of the Diffraction Patterns

The diffraction patterns were evaluated by the convolutional multiple whole profile (CMWP)
procedure [28–30]. The Marquardt–Levenberg algorithm has recently been combined with a Monte
Carlo-type procedure in order to find the global minimum of the weighted-sum-of-squared-residuals
(WSSR) in the parameter-field of the physical parameters [31]. The measured IM(2θ) diffraction patterns
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were matched by the physically modeled and convoluted profile functions for dislocations, ID
hkl and

crystallite sizes, IS
hkl:

IM
(2θ) =

∑
hkl

IS
hkl ∗ ID

hkl ∗ Iinst
hkl + IBG, (1)

where “∗” stands for convolution and IBG is the background spline determined separately. Due to the
double-crystal high resolution diffractometer [21], the instrumental broadening, Iinst

hkl , was negligible
and therefore not considered.

The size profile, IS
hkl, is determined by assuming log-normal size distribution given by the median

and its variance, m and ζ, respectively. The area-weighted mean crystallite size, <x>area, was calculated
from the median and variance of the distribution as <x>area = m × exp(2.5 × ζ 2) [30,32]. It is noted that
the <x>area value represents the coherently scattering domain size which is closer to the sub-grain or
dislocation cell than to crystallographic grains [32].

The Fourier transform of the strain profile is [33]:

AD(L) = exp{ - 2π2L2g2 <εg,L
2> }, (2)

where g is the absolute value of the diffraction vector and L is the Fourier variable. The mean square
strain, <εg,L

2>, in dislocated crystals can be given by the Wilkens function f (η) [34]:

< εg,L2 >�
ρCb2

4π
f (η), (3)

where η = L/Re and Re is the effective outer cut-off radius of dislocation. When the dislocation
arrangement has a strong dipole character, i.e., when the strain field is strongly screened, Re will be
smaller than the average dislocation distance (1/

√
ρ) and M becomes smaller than 1 (M ≤ 1). When the

dislocation arrangement has a weak dipole character, i.e., when the strain field is weakly screened,
Re becomes larger than the average dislocation distance and M will be larger than 1 (M > 1). In elastically
anisotropic material, peak broadening becomes anisotropic as a function of hkl. The phenomenon is
known as strain anisotropy taken into account by the hkl dependent contrast factors, Chkl [34]. In a
polycrystal or if all possible Burgers vectors are activated in a particular slip system the dislocation
contrast factors can be averaged over the permutations of the corresponding hkl indices. In this case
the average contrast factors can be given as a function of one single parameter, Chkl = Chkl(q) [35],
where the q parameter is related to the edge or screw character of dislocations [36].

In the present martensitic alloy, the profile functions are described by five parameters of the
microstructure: m, ζ, ρ, M, and q. This means that the characterization of an asymmetric profile
with two sub-profiles for SO and HO components requires 10 physical parameters. In addition to
these physical parameters, there are extra fit parameters for all peaks corresponding to the maximal
intensities, Imax, and the centers, I0, of the peaks. Despite the relatively large number of physical fitting
parameters, the upgraded CMWP procedure, with the combined Marquardt–Levenberg and Monte
Carlo algorithms [31], proved to be stable and robust. The CMWP evaluation was carried out for five
diffraction peaks, for the SO and the HO components simultaneously. A typical axial diffraction pattern
for the ε = 0.0013 tensile deformed state is shown in Figure 2a,b. Figure 2a shows the evaluation with
one single symmetric profile for each reflection, whereas Figure 2b shows the evaluation with two
slightly shifted sub-profiles, one for the SO and one for the HO component, respectively. The figure
indicates that the evaluation with two sub-profiles provides a qualitatively better fit in agreement with
the asymmetric peak broadening in the deformed states. In the undeformed material, all the diffraction
peaks were almost perfectly symmetric within the experimental error, so we used one single symmetric
diffraction profile for all peaks.

In the tensile deformed states, the peaks become unequivocally asymmetric, beyond experimental
error. This is illustrated for the 200 axial- and side-case diffraction peaks in Figure 6a,b respectively.
The figures clearly show that after deformation, the peaks become asymmetric, and that the asymmetries
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in the axial- and side-case peaks occur in opposite directions. To describe the asymmetrical profiles,
we used the sum of two sub-profiles, one corresponding to the HO and the other to the SO components,
for both the axial- and side-cases, as shown in Figure 6c,d respectively. This characteristic reversal of
peak asymmetry is direct evidence for the composite behavior in heterogeneous microstructures [24–26].
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Young’s moduli. The Ehkl values have been determined from the elastic parts of lattice strain 
measurements in a similar martensitic steel in references [22,23]. The measured values were E200 = 160 
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in Figure 7b. We can see that the long-range internal stresses appear immediately upon the smallest 
plastic deformation. The Δσ values increase sharply to about 400 MPa, and then decrease 
continuously.  

Figure 6. Enlarged 200 diffraction profiles: the measured and CMWP-calculated profiles for the
undeformed (open triangles and blue lines) and ε = 0.0093 tensile deformed (open circles and
red lines) states corresponding to the axial (a) and side (b) surfaces. The measured (open circles),
the CMWP-calculated total- (green lines) and sub-profiles corresponding to the HO (blue lines) and SO
(red lines) packets for the ε = 0.006 tensile deformed states in the axial (c) and side (d) directions.

4. Results and Discussion

4.1. Plastic Strain Induced Long-Range Internal Stresses

In the XRD patterns the retained austenite phase was negligible within experimental error, as was
expected according to the carbon content of the present steel. The absence of the austenite phase
means that we can investigate the physical processes without taking into account the effects of the
austenite phase.

The distance of the center of the sub-profiles from the center of gravity of the measured
peaks provides the sub-peak shifts, ∆d, where ∆d � (2cosθ/λ)∆θ. The hkl-dependent local strains,
εhkl = (∆d/d)hkl, were evaluated from the 200 and 310 diffraction peaks and for both the axial- and
side-cases, where d = 2sinθ/λ. There are two reasons why these reflections were considered for the
evaluation of the local strains and the local long-range internal stresses: (i) The diffraction vectors
of these two reflections were strictly perpendicular to the measured specimen surfaces, therefore
perpendicular or parallel to the applied stress direction. (ii) These two reflections have the largest
contrast factors and the local long-range internal stresses also scale with the contrast factors [25].
The sub-peak shifts are shown in Figure 7a as a function of true strain. The values in the figure are the
averages of the values obtained from the evaluation of the 200 and 310 reflections. The hkl-dependent
local long-range internal stresses, ∆σhkl, have been calculated as ∆σhkl = Ehkl∆εhkl, where Ehkl are the
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hkl-dependent Young’s moduli. The Ehkl values have been determined from the elastic parts of lattice
strain measurements in a similar martensitic steel in references [22,23]. The measured values were
E200 = 160 (±5) GPa and E310 = 175 (±5) GPa. The averaged ∆σ values are plotted as a function of
the true strain in Figure 7b. We can see that the long-range internal stresses appear immediately
upon the smallest plastic deformation. The ∆σ values increase sharply to about 400 MPa, and then
decrease continuously.
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Figure 7. The averaged values of the relative shifts, ∆d/d, of the sub-peaks obtained from 200 and
310 reflections and both axial- and side cases (a) and the long-range internal stress values, ∆σ (b) as a
function of true strain. The vertical thick black lines indicate the experimental error.

4.2. The Local and the Average Dislocation Densities as a Function Plastic Strain

The analysis of the SEM images in Figure 5 showed that the size of the prior austenite grains was
between about 50 and 80 µm in both the undeformed and the 3% deformed specimens. The packet
size varied from 7 to 30 µm. Since the blocks, sub-blocks, and laths have the same longitudinal
directions, it is not easy to take differences between them, as we can see in Figure 5a,b. On the one
hand, the maximum widths of the stripes were 1–3 µm; these are most probably the blocks. On the
other hand, the minimum widths of the stripes were 70 to 110 nm, which are the sub-blocks, or the
laths. This is in good correlation with the area-weighted mean crystallite sizes, <x>area, determined
from the diffraction patterns which vary between 40 and 110 nm. The <x>area, i.e., the area average
mean of the coherently scattering domain size, cannot be larger than the widths of the laths.

The dislocation density, ρ, the dislocation type parameter, q, and the dislocation arrangement
parameter, M, were evaluated in the HO and SO packet components from the sub-profiles using
the CMWP method. The results are shown as a function of true strain in Figure 8a–c, respectively.
The values for the HO and SO components are the averages determined from the axial and side
measurements in order to reduce the statistical error. The huge dislocation density in the undeformed
lath martensite is created by the martensitic phase transformation where the mismatch between the
primary fcc lattice has to be accommodated to the final bcc lattice. In references [22,23] it was discussed
in detail that during deformation the dislocation density increases in the HO, whereas decreases in the
SO, component. It was shown that the increase or the decrease is related to the saturation value of the
dislocation density during plastic deformation [37], where the saturation values depend on the mean
free paths of dislocations [38]. If the mean free path is long, as it is in the SO component, the saturation
value can be lower than the dislocation density in the as-quenched initial state, whereas, if the mean
free path is short, as it is in the HO component, the saturation value can be larger than the dislocation
density in the as-quenched initial state. In the first case, during plastic straining, the dislocation density
can decrease, whereas in the second case it can increase. In the present case we can see a similar
tendency of the change in dislocation density in Figure 8a as in references [22,23].
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The integral intensity ratio of the sub-profiles corresponding to the HO and SO packets provides
the volume fractions of the two components, f HO and f SO, where

fHO + fSO = 1. (4)

In Figure 8a we can see that the total dislocation density,

ρt = fHOρHO + fSOρSO, (5)

increases during deformation. The fractions of edge- and screw-type dislocations provided by the
q parameter are shown in Figure 8b. The q parameter values of edge- and screw-type dislocations
can be obtained from the elastic constants of the material [36]. For bcc materials q as a function of
the elastic anisotropy is shown in a numerically calculated plot in Figure 2b in [36]. For the present
steel, qedge = 1.28 and qscrew = 2.67 values correspond to the pure edge- and screw-type, respectively.
The evaluation indicated that, in the HO packets, the dislocations are mainly of edge character, which
does not change during the plastic deformation. However, in the SO component, the dislocation
character changes from edge to mostly screw character immediately and does not change further.
In the HO packets the active dislocations are moving in the narrow directions of the laths. Here the
dislocations become stuck in the lath boundaries where the misfits and the misorientations between
the bcc laths and fcc austenite films have to be compensated. These dislocations are overwhelmingly of
edge character. In the SO packets the active dislocations are moving in directions along the planes of
the laths, therefore the mean free path of dislocations is long. In these packets the initial dislocation
density is larger than the saturation value corresponding to the relevant plastic straining conditions, or
at least not smaller. This means that in the SO packets during plastic straining there will be continuous
dynamic recovery and the dislocation density will remain constant. Next, we take into account that
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plastic deformation of low carbon steels is carried by long screw dipoles as was shown by Sestak
and Seeger [39,40]. As a consequence of the perpetual dynamic recovery, along with the deformation
mechanism carried by long screw dipoles, the screw dislocation population will grow over that of the
edge dislocations.

The dislocation arrangement parameter, M, versus the true strain for the HO and SO components
is shown in Figure 8c. The analysis indicated that, in the HO packets, the dislocation arrangement
values decrease from M � 7 to about M � 2, indicating the strengthening of the dipole character.
In the SO packets, M does not change during plastic straining indicating that the dislocations form
loose arrangements with weaker dipole character. The dislocation activity, the dislocation density,
the dislocation character, and the dipole character are all consistently characterizing the deformation
process in the two different components of the specimens.

4.3. Correlation between the Stress-Strain Response and the Dislocation Density and Arrangement as a
Function of Strain

The applied stress values, σapp are correlated with the dislocation densities by the Taylor
equation [41]:

σapp = σ0 + αMTGb
√
ρt , (6)

where σ0 is the friction stress, α is a scaling factor between zero and unity, G = 78 GPa [23] is the shear
modulus, MT = 2.8 [23] is the Taylor factor, and b = 0.248 nm is the Burgers vector. The friction stress, σ0,
was modeled in martensitic steels containing Ni or Mn by Krauss [1] or Arlazarov et al. [42], respectively.
Krauss provided a formula for the effect of carbon content, for a 20 wt% Ni alloy: σ0.2(MPa) = 461 +

1.31 × 103(wt%C)1/2, see Equation (1) in reference [1], where σ0.2 is the proof-stress with 0.2% offset.
The 461 MPa term is claimed to consist of 69 MPa friction stress in pure iron, 138 MPa solid-solution
stress for 20% Ni, and 255 MPa for the strengthening component of the substructure of martensite.
The martensite substructure effect is the Hall–Petch contribution of the small lath size and the grain
boundary contribution of the polycrystalline material. In the present work the dislocation density,
determined directly by X-ray line broadening, is related to the flow stress of the material. Therefore, σ0

in Equation (6) is the friction stress in the dislocation free material. Taking into account that our alloy is
Ni free and contains only 1.48 wt% Mn, we estimate the friction stress as: σ0 � 220 MPa. This is in
good correlation with low Mn-containing alloys with smaller friction stress values [42].

Work hardening in the present alloy is solely taking place by dislocation activity. Therefore, in the
present case, work hardening will be accounted for by Equation (6). Since we measured the applied
stress along with the dislocation densities, the only free parameter in Equation (6) is α, which can be
written as:

α =
σapp − σ0

MTGb
√
ρt

(7)

It is usually assumed that even during work hardening the value of α stays constant. σapp is
shown versus MTGb

√
ρ in Figure 9a for the measured values of the total, the hard, and the soft

component dislocation densities, ρt, ρHO, and ρSO, respectively. The dashed lines in the figure indicate
that the α values are not constant during the work hardening process. Several experiments in the
literature have shown that the α parameter can change strongly when the dislocation arrangement is
changing during plastic deformation [43–46].
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Figure 9. (a) The applied stress values versus MTGb
√
ρ for the measured values of the total, the hard,

and the soft component dislocation densities, (b) the total α parameters and the local α values in the HO
and SO components as a function of true strain, (c) the total and the local flow stresses corresponding to
the HO and SO packets versus the true strain. The vertical thick black line indicates the experimental
error. (d) The calculated local flow stress values in the SO and HO components and the total flow stress
values vs. the corresponding measured values.

Assuming a linear composite behavior as in reference [43], α can be written as the volume
weighted average of the local α values, αHO and αSO:

α = fHOαHO + fSOαSO , (8)

where f HO and f SO are the volume fractions of hard and soft components determined from the ratios of
the integral intensities of the sub-profiles in the asymmetric peaks. Based on the composite model [43]
and the Taylor equation [41] the flow stress can be given as:

σapp = σ0 + fHOαHOMTGb
√
ρHO + fSOαSOMTGb

√
ρSO. (9)

The local α values can be calculated as:

αSO =
σapp − σ0 − αMTGb

√
ρHO

fSOMTGb
(√
ρSO −

√
ρHO

) and αHO =
α− fSOαSO

fHO
. (10)

The local and the average α values as determined by Equations (7) and (10) are shown in Figure 9b
as a function of the true plastic strain. The figure shows that in the undeformed state α is relatively
small, α � 0.11. At the beginning of plastic deformation, the average value of α increases quickly
to about 0.25 and then remains constant. The large increase of the total flow stress is compelling to
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introduce the increasing α. In the soft component, αSO increases sharply and stays constant during
further deformation. In the hard component αHO also increases, to a larger value of about
mboxemphαHO � 0.3 (±0.01).

The local flow stresses, σHO and σSO, in the HO and SO components can be evaluated by the
composite concept using Equation (9):

σapp = fHOσHO + fSOσSO, (11)

where
σHO = σ0 + αHOMTGb

√
ρHO, (12)

and
σSO = σ0 + αSOMTGb

√
ρSO. (13)

The local flow stresses, σHO and σSO, in the HO and SO packets and the total flow stress versus the
true strain are shown in Figure 9c. In the HO packets both the dislocation density and the α increase,
so both raise the local flow stress. However, in the SO packets the dislocation density decreases while
αSO increases. The first reduces while the latter enhances the local flow stress. The two opposite effects
produce a slightly decreasing local flow stress in the soft component. Taking the α values from the
curves adjusted to the data points in Figure 9b, the calculated local flow stress values in the SO and
HO components and the total flow stress values are plotted versus the corresponding measured values
in Figure 9d.

4.4. A Direct Evidence for the Decomposition into the Composition of Soft and Hard Lath-packets Induced by
Plastic Strain

Further, more direct evidence of the composite behavior is provided by nanohardness tests.
Nanohardness results shown in Figures 3 and 4a indicate that in the undeformed state the hardness
values fluctuate only within the statistical error as a function of location. In contrast, in the deformed
state, there are softer domains than in the undeformed state, but there are also harder domains.
The nanohardness results are in very good correlation with the calculated σHO and σSO values and
confirm that while the local flow stress in the SO packets slightly decreases compared to the flow stress
of the undeformed state, in the HO packets there is a significant increment.

In addition to the nanohardness measurements, a series of microhardness tests were carried out for
all specimens. We chose the pressing load to be as small as possible so that the size of the indentations
would be comparable with the packet sizes while remaining visible and measurable. The sizes of
the indentations varied between 19 and 23 µm, which is in a range of packets according to the SEM
analysis. The mean, maximum, and minimum values of the microhardness distributions versus the
deformation are shown in Figure 4b. We can see in Figure 4b that during tensile deformation soft and
hard domains are created beyond the statistical fluctuation. The microhardness results also confirm
qualitatively the formation of HO and SO packets during deformation.

5. Conclusions and Summary

(1) We have shown that in plastically deformed lath-martensite steel when the active Burgers
vectors are within the plane of the lath lamellae these packets either soften or at least do not work
harden. When, however, the active Burgers vectors are across the boundaries of the lath martensite
lamellae the packets work harden substantially. We found that plastic deformation induces composite
behavior in lath martensite with the composite of soft and hard packets.

(2) The diffraction peak profiles of the plastically deformed lath martensite specimens revealed
characteristic asymmetries. The lower-angle tails of peaks corresponding to the loading-direction
diffraction vectors (axial case) became longer, whereas in peaks corresponding to the transverse-direction
diffraction vectors (side case), the higher angle tails became longer. The asymmetric peak profiles were
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evaluated by the CMWP method by allowing two sub-profiles for each asymmetric diffraction profile.
The sub-profiles were evaluated for all the physical parameters characterizing the defect structure in
the corresponding components of the material. The narrower sub-profiles corresponding to the softer
packets (SO component) revealed stagnating dislocation densities during plastic straining, whereas
the broader sub-profiles related to the hardening packets (HO component) provided substantial work
hardening and increase of the local dislocation density. The edge or screw dislocation character was
determined from the contrast of dislocations. In the SO component the initial mixed character changed
with deformation mainly to the screw character, whereas, in the HO component the mainly edge
character did not change within experimental error during plastic straining. The behavior in the SO
component is consistent with constant dynamic recovery during which the dislocations are steadily
created and annihilated and with the dislocation mechanism in low carbon steels, according to which
long screw dipoles carry plastic deformation. In the HO component, however, the short dislocation
mean free paths and accommodation of misfits at the lath boundaries prefers the storage of more
edge-type dislocations. The dipole character of dislocations, the M parameter, is provided by the
shape of dislocation profiles. In the SO component it remains relatively large and constant during
straining, indicating that the dipole character is weak. This behavior is consistent with the relatively
smaller dislocation density and the dislocation character in this component. In the HO component the
dipole character increases and the M parameter decreases, in correlation with the strong increase in
dislocation density.

(3) The shifts of the sub-peaks relative to the center of gravity of the asymmetric profiles were
evaluated in terms of long-range internal stresses between the SO and HO components of the composite.
We showed that the HO and SO components are strained forward and backward, as in a composite
consisting of alternating soft and hard components, respectively. The local long-range internal stresses
were shown to reach about 450 MPa shortly after deformation and decreased slightly with further
plastic straining.

(4) It has been shown that the α parameter in the Taylor equation changes from its initial value
during plastic straining in both the SO and the HO components. In the SO component α increases
from the initial α = 0.11 to α = 0.21 at the beginning of deformation and remains constant thereafter.
In the HO component it increases gradually to a larger saturation value of α = 0.3. The larger α value
means that in the process of work hardening the arrangement of dislocations is more efficient.

(5) The results of the present work are in good correlation with the results obtained in a somewhat
similar but nonetheless different lath-martensite alloy by neutron diffraction line profile analysis.
This indicates that the composite behavior induced by plastic straining in lath-martensite alloys is
probably a general feature of this class of steels.

(6) Further SEM or EBSD investigations should be carried out in the future on new specimens at
the same locations where nanoindentation is performed in order to better understand the evolution of
the microstructure during plastic straining of lath martensite.
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