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Abstract: For an active pharmaceutical ingredient, it is important to stabilize its specific
crystal polymorph. If the potential interconversion of various polymorphs is not carefully
controlled, it may lead to deterioration of the drug’s physicochemical profile and, ultimately,
its therapeutic efficacy. The desired polymorph stabilization can be achieved via co-crystallization
with appropriate crystallophoric excipients. In this work, we identified an opportunity for
co-crystallization of anastrozole (ASZ), a well-known aromatase inhibitor useful in second-line therapy
of estrogen-dependent breast cancer, with a classical XB donor, 1,2,4,5-tetrafluoro-3,6-diiodobenzene
(1,4-FIB). In the X-ray structures of ASZ·1.5 (1,4-FIB) co-crystal, different non-covalent interactions
involving hydrogen and halogen atoms were detected and studied by quantum chemical calculations
and QTAIM analysis at theωB97XD/DZP-DKH level of theory.

Keywords: anastrozole; non-covalent interactions; halogen bonding; lp-π interactions; DFT; QTAIM

1. Introduction

The generation of a new salt form is a proven way to modify the physical and chemical properties of
an active pharmaceutical ingredient (API) [1]. To be able to give rise to a new salt form, however, the API
in question should be ionizable. For non-ionizable APIs, co-crystallization with a crystallophoric
excipient (non-API component of the solid drug form) has become an alternative, proven way of
accessing a broad range of solid forms and thus modifying various physicochemical properties and
increasing API’s stability [2–4]. An overwhelming majority of API co-crystals reported today are based
on hydrogen bonding as the principal means of constructing the crystalline form. However, halogen
bonds have emerged as an equally promising basis for designing new co-crystalline API forms [5–12].
However, despite the emergence of this intriguing supramolecular interaction, halogen-bonded API
co-crystals remain relatively scarce. This may have to do with the limited range of pharmaceutically
acceptable excipients containing polarized halogen atoms [13]. In continuation of our efforts to
identify new crystalline forms for APIs that would be stabilized by halogen bonding [14,15], we turned
our attention to screening of crystallization conditions for the title compound, anastrozole (IUPAC
name 2,2′-(5-((1H-1,2,4-triazol-1-yl)methyl)-1,3-phenylene)bis(2-methylpropanenitrile), abbreviated
as ASZ), which is an aromatase inhibitor useful in second-line therapy of estrogen-dependent breast
cancer [16–18].
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We choose this API as a potential recipient of XB due to its 1,2,4-triazole moiety, containing at least
two nucleophilic Nsp2 atoms as potential XB acceptor centers. One of them is a hydrogen bond [19]
(HB) acceptor in the crystal structure of ASZ itself (Figure 1) [20].
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Figure 1. Structure of anastrozole with assigned hydrogen bond donor (red) and hydrogen bond
acceptor centers (blue) found in its crystal structure (SATHOL) [20].

Previously, we successfully cocrystallized another API, nevirapine, with classic XB donor,
1,2,4,5-tetrafluoro-3,6-diiodobenzene (also known as 1,4-diiodotetrafluorobenzene, 1,4-FIB). Noticeably,
1,4-FIB has already been employed in the co-crystal formation for a number of biologically active
compounds including nicotine [21], pyrazinamide, lidocaine, and pentoxifylline [22]. It should be
noted, however, that in these studies (as well as in present work), 1,4-FIB is employed as an exploratory
co-crystallization partner. For its use as an excipient for the design of solid drug forms, a further clinical
investigation will be required. In this work, we found ASZ can also be cocrystallized with 1,4-FIB
from their solution in MeOH, forming the 2:3 adduct. Herein, we present the results of combined
single-crystal XRD experimental and theoretical studies of the adduct and noncovalent interactions
found in it.

2. Materials and Methods

2.1. Materials

Anastrozole, 1,2,4,5-tetrafluoro-3,6-diiodobenzene, and MeOH were obtained from a commercial
source and used as received.

2.2. X-ray Structure Determination

Crystal of ASZ·1.5(1,4-FIB) was investigated on an Xcalibur, Eos diffractometer at 100 K
(monochromated MoKα radiation with λ = 0.71073 Å). The structure was solved by the direct methods
(SHELX program [23]) in the OLEX2 program package [24]. The carbon-bound H atom positions
were calculated and included in the refinement in the ‘riding’ model approximation. Uiso(H) were
set to 1.5Ueq(C) (for CH3 groups) or 1.2Ueq(C) (for CH2 and CH groups). The C–H bond lengths
are 0.98 Å for CH3 groups, 0.99 Å for CH2 groups, and 0.95 Å for CH groups. Empirical absorption
correction was applied in the CrysAlisPro [25] program. For crystallographic data and refinement
parameters see Supplementary material (Table S3). Supplementary crystallographic data was deposited
at Cambridge Crystallographic Data Centre (CCDC 1960975) and can be obtained free of charge via
www.ccdc.cam.ac.uk/data_request/cif.
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2.3. Powder X-ray Diffraction Experiments

The X-ray diffraction of powder samples was measured at room temperature on a D8 Discover
high-resolution diffractometer using monochromated CuKα (λ = 1.54184 Å) radiation.

2.4. Computational Details

The single point calculations based on the experimental X-ray geometry of (ASZ)3·(1,4-FIB)4

have been carried out at the DFT level of theory using the dispersion-corrected hybrid functional
ωB97XD [26] with the help of the Gaussian-09 [27] program package. The Douglas–Kroll–Hess 2nd
order scalar relativistic calculations requested relativistic core Hamiltonian were carried out using the
DZP-DKH basis sets [28–31] for all atoms. The topological analysis of the electron density distribution
with the help of the atoms in molecules (QTAIM) method developed by Bader [32] has been performed
by using the Multiwfn program [33]. The Cartesian atomic coordinates of a model supramolecular
cluster are presented in Supporting Information, Table S4.

3. Results and Discussion

3.1. Halogen Bonding in ASZ·1.5(1,4-FIB)

Slow evaporation of a MeOH solution of ASZ with 1,4-FIB taken in a 1:1 ratio leads to the
formation on single crystals of ASZ·1.5(1,4-FIB) suitable for the X-ray diffraction experiment. It is
notable that we also tried to synthesize the ASZ·1.5(1,4-FIB) pure phase both by mechanical grinding
of 2:3 ASZ + 1,4-FIB mixture with MeOH additions during the process or by crystallization of the same
2:3 mixture from methanol with the following grinding of obtained crystalline material. Powder X-ray
diffraction experiments for both cases show that ASZ·1.5(1,4-FIB) coexists with some other unidentified
phases (see Figures S3 and S4 in SI). For details on the powder x-ray diffraction experiments see also
Section 2.3.

According to the single-crystal XRD data, the cocrystallization of ASZ with 1,4-FIB does not
lead to any relevant changes, considering the 3σ criterion, in covalent bond lengths of ASZ [20] and
1,4-FIB [34].

As expected, the C–I· · ·N contacts were found in ASZ·1.5(1,4-FIB) (Figure 2), which can be
interpreted as halogen bonding [35]. In accordance with their geometrical parameters (Table 1),
the theoretically estimated energies of these contacts are 4.6–5.3 kcal/mol (I3S· · ·N2) and 4.8–6.0 kcal/mol
(I1S· · ·N3), which is comparable with a lower limit for strength of “moderate” hydrogen bonding
according to Jeffrey’s classification (“strong”: 40−15 kcal/mol; “moderate”: 15−4 kcal/mol; “weak”:
<4 kcal/mol) [36]. For 1,4-FIB, the molecular electrostatic potential calculations were reported [37–39],
which confirm the σ-hole electrophilicity [40,41] of iodine atoms in this molecule.

Table 1. Parameters of the C–I· · ·X XBs in ASZ·1.5(1,4-FIB).

C–I· · ·X d(I· · ·X), Å RIX
b ∠(C–I· · ·X),◦

C8S–I3S· · ·N2 2.913 (6) 0.83 175.3 (2)
C1S–I1S· · ·N3 2.883 (7) 0.82 169.3 (2)
C4S–I2S· · · F6S 3.390 (5) 0.98 149.97 (19)
C4S–I2S· · · I3S 3.8529 (8) 0.97 157.68 (18)

Comparison a
3.53 (I· · ·N)
3.45 (I· · · F)
3.96 (I· · · I)

1.00 180

a Comparison is the vdW radii sum [42] for distances and classic XB angle. b RIX = d(I· · ·X)/(RvdW(I) + RvdW(X)).
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Figure 2. The C–I· · ·N XBs in anastrozole (ASZ)·1.5(1,4-FIB). Hereinafter noncovalent interactions
were assigned by dotted lines and ellipsoids are drawn with 50% probability.

Previously, the C–I· · ·N XBs including 1,2,4-triazole moiety was mentioned only in two
metal-organic frameworks (FALNEN [43] and UMOTOG [44]) and one free 4H-1,2,4-triazole
(FARCIN01 [45]). We analyzed all the structures containing the C–I· · ·N XBs with 1,2,4-triazoles
in CCDC and found 9 more structures [44,46–52]. It is notable that in all corresponding works,
these interactions were not even mentioned. The I· · ·N distances are in the range of 2.839 (4)–3.378 (3) Å,
and the ∠(C–I· · ·N) angles vary from 157.18 (17) to 177.57 (8)◦ (for details see Table S1 in supplementary
materials). In ASZ·1.5 (1,4-FIB), both distances (2.883 (7) and 2.913 (6) Å) are shorter than in most
previously published structures, which can be explained by the electron-withdrawing I substituent
in 1,4-FIB. Noticeably, the C–Cl· · ·N [53–55] and C–Br· · ·N [45,53,56–58] XBs including 1,2,4-triazole
moiety are also mentioned in the literature.

Halogen bonding was also found between 1,4-FIB molecules, represented by bifurcated C–I· · · (I,F)
contact (Figure 3). Both distances are less than vdW sums, and both angles are around 150◦ (Table 1)
and fall into an acceptable value for XBs. These non-covalent interactions are weak, viz. 1.3 kcal/mol in
the case of I2S· · · F6S and 1.6 kcal/mol in the case of I2S· · · I3S.
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Figure 3. Bifurcated C–I· · · (I,F) halogen bonding between 1,4-FIB molecules in ASZ·1.5(1,4-FIB).

A resembling feature can be found in the structure KUWRAX [59], where both I· · ·F and I· · · I
distances are less than the corresponding vdW sums (3.6889 (7) vs 3.96 Å and 3.409 (3) vs 3.45 Å),
however, in this structure, the corresponding ∠(C–I· · ·F) angle (125.09 (13)◦) is not high enough to
recognize this interaction as halogen bonding. Thus, ASZ·1.5(1,4-FIB) demonstrates the first example
of bifurcated C–I· · · (I,F) halogen bonding between 1,4-FIB molecules.
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3.2. Lone-Pair···π Interactions in ASZ·1.5(1,4-FIB)

Besides the expected C–I· · ·N halogen bonding, the C· · · I–C contacts (Table 2) were identified
between ASZ and 1,4-FIB molecules in ASZ·1.5 (1,4-FIB) (Figure 4). According to the ∠(C· · · I–C)
angle, which is close to 90◦ (Table 2), this interaction can be interpreted as lp(I)· · ·π(C) interaction [60].
Their theoretically estimated strength is 1.6 kcal/mol.Crystals 2020, 10, 371 5 of 13 
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Figure 4. The lp(I)· · ·π(C) interaction between ASZ and 1,4-FIB molecules in ASZ·1.5(1,4-FIB).

Table 2. Parameters of the lp(I)· · ·π(C) interactions in ASZ·1.5(1,4-FIB).

C· · ·I–C d(C· · ·I), Å RCI
b ∠(C· · ·I–C),◦

C9· · · I1S–C1S 3.528 (8) 0.96 86.6(3)
C9S· · · I2S–C4S 3.686 (8) 1.00 92.9(3)

Comparison a 3.68 1.00 90
a Comparison is the vdW radii sum [42] for distances and classic XB acceptor angle. b RCI = d(C· · · I)/(RvdW(I) +
RvdW(C)).

Previously, the lp(I)· · ·π(C) interactions including 1,2,4-triazole moiety were discussed only
for five 1,2,4-triazolium iodides [61,62], where these interactions are interionic. We analyzed the
CCDC data and identified 23 more structures with the C· · · I interactions including 1,2,4-triazoles.
1,2,4-triazolium iodides [20,63–70] were also found in 15 structures. The C· · · I–M interactions [71–76]
in 1,2,4-triazole-containing MOFs were detected in 6 structures. Structure XIWGOC contains the
C· · · I− interactions between the cationic IrIII complex and iodide counterion [77]. Only in the IDIFEH
structure was another example of the C· · · I–C interactions between neutral isolated molecules [78]
identified. The C· · · I distances vary from 3.4363(2) to 3.670 (3) Å (for details see Table S2), and the
C9· · · I1S distance (3.528 (8) Å) in ASZ·1.5(1,4-FIB) is within this range.

Besides, possible lp(I)· · ·π(C) interaction between 1,4-FIB molecules was found (Figure 5).
Although the C· · · I distance is around the vdW sum (3.686 (8) vs 3.68 Å), further theoretical calculations
performed on experimentally determined atomic coordinates (see next section) confirmed the existence
of the interaction and its noncovalent nature (estimated energy is 0.9–1.1 kcal/mol). Notably, the same
interactions were found by us for 1,4-FIB and other iodofluorobenzenes [60,79,80].
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3.3. Hydrogen Bonding in ASZ·1.5(1,4-FIB)

As well as in the structure of free ASZ, cyano N atoms are involved in weak hydrogen bonding
(theoretically estimated strength of appropriate contacts vary from 0.9 to 1.9 kcal/mol) (Figure 6 and
Table 3). Apart from methyl H atoms, the hydrogen atom in the methylene group is also an HB donor,
which was not observed in the ASZ structure previously.
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Table 3. Parameters of the C–H· · ·N HBs in ASZ·1.5(1,4-FIB).

C–H· · ·N d(H· · ·N), Å RHN
b d(C· · ·N), Å ∠(C–I· · ·X),◦

C7–H7A· · ·N5 2.484 0.90 3.441 (10) 168.6
C16–H16B· · ·N4 2.733 0.99 3.62 (1) 153.9

Comparison a 2.75 1.00 3.25 110.0
a Comparison is the vdW radii sum [42] for distances and minimal HB angle. b RHN = d(H· · ·N)/(RvdW(H) +
RvdW(N)).

3.4. Theoretical Study of Different Non-covalent Interactions in ASZ·1.5(1,4-FIB)

The supramolecular structure of ASZ·1.5(1,4-FIB) is formed by various non-covalent contacts (viz.
lp-π interactions, hydrogen, and halogen bonding). We performed quantum chemical calculations
and QTAIM analysis [32] to study the nature and energies of these non-covalent contacts in a model
supramolecular cluster (ASZ)3·(1,4-FIB)4 based on the appropriate X-ray diffraction data (Supporting
Information, Table S4). This approach depends very slightly on the basis set [81,82] or method [83,84]
used and it was already successfully used by us previously for similar chemical systems [14,15,79,85,86]
and upon studies of different non-covalent interactions (e.g., hydrogen/chalcogen/halogen bonds,
stacking interactions, metallophilic interactions) in other organic and inorganic compounds [14,15,87–92].
The results of QTAIM analysis are presented in Table 4 and visualized in Figure 7.
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Table 4. Values of the density of all electrons—ρ(r), Laplacian of electron density—∇2ρ(r), energy
density—Hb, potential energy density—V(r), and Lagrangian kinetic energy—G(r) (a.u.) at the
bond critical points (3, −1), corresponding to different non-covalent interactions in (ASZ)3·(1,4-FIB)4,
bond lengths—l (Å), as well as energies for these contacts Eint (kcal/mol), defined by two approaches.*.

Contact ρ(r) ∇2ρ(r) Hb V(r) G(r) Einta Eintb l

I3S· · ·N2 0.022 0.070 0.000 −0.017 0.017 5.3 4.6 2.913
I1S· · ·N3 0.024 0.072 0.000 −0.019 0.018 6.0 4.8 2.883
I2S· · · F6S 0.006 0.026 0.001 −0.004 0.005 1.3 1.3 3.390
I2S· · · I3S 0.008 0.031 0.001 −0.005 0.006 1.6 1.6 3.853
C9· · · I1S 0.009 0.029 0.001 −0.005 0.006 1.6 1.6 3.528

C9S· · · I2S 0.006 0.023 0.001 −0.003 0.004 0.9 1.1 3.686
H7A· · ·N5 0.009 0.033 0.001 −0.006 0.007 1.9 1.9 2.484
H16B· · ·N4 0.005 0.021 0.001 −0.003 0.004 0.9 1.1 2.733

a Eint = −V(r)/2 [93] b Eint = 0.429G(r) [94] * Note that Tsirelson et al. [95] also proposed alternative correlations
developed exclusively for non-covalent interactions involving iodine atoms, viz. Eint = 0.68(−V(r)) or Eint = 0.67G(r).
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interactions in (ASZ)3·(1,4-FIB)4. Bond critical points (3, −1) are shown in blue, nuclear critical points
(3, −3) in pale brown, ring critical points (3, +1) in orange, cage critical points (3, +3) in light green.
Length units—Å.

The QTAIM analysis reveals the existence of bond critical points (3, −1) (BCPs) for all non-covalent
interactions listed in Table 4. The properties of electron density, Laplacian of electron density and energy
density in these BCPs are common for non-covalent interactions. Energies for these non-covalent
contacts (vary from 0.9 to 6.0 kcal/mol) were defined according to the procedures developed by Espinosa
et al. [93] and Vener et al. [94] using the equations Eint = 0.5(−V(r)) or Eint = 0.429G(r), respectively.
The balance between the potential energy density V(r) and Lagrangian kinetic energy G(r) at the BCPs
reveals that a covalent contribution is absent in all supramolecular contacts listed in Table 4, except
I1S· · ·N3 halogen bonding [96].

4. Conclusions

In combination with 1,2,4,5-tetrafluoro-3,6-diiodobenzene, a classical XB donor, we have identified
a new halogen-bonded solid for anastrozole, an anticancer aromatase inhibitor drug. These findings
continue to provide proof-of-principle for the productive employment of halogen bonds in the design
and discovery of stable crystalline forms of important drug substances. Moreover, these results
suggest that the range of potential XB donors for co-crystallization with basic nitrogen-rich molecular
frameworks can potentially be expanded beyond the classical ones. The distinctive features of
the crystal structures obtained and characterized in detail in this work are the presence of XBs
with both triazole N atoms, firstly found for anastrazole. Apart from that, the adduct structure
demonstrates the lp(I)· · ·π(triazole) attractive interactions, which may also be important for the adduct
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formation. The findings encourage us to continue searching for yet novel opportunities to detect XBs
as indispensable forces leading to the formation of a new crystal. The results of these studies will be
reported in due course.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/5/371/s1,
Figure S1: Structural motifs around the C–I· · ·N XBs including 1,2,4-triazole moiety in CCDC structures; Figure S2:
Structural motifs around the lp(I)· · ·C interactions including 1,2,4-triazole moiety in CCDC structures; Figure S3:
Powder X-ray diffraction data (blue line) of mixture, obtained by mechanical grinding of 2ASZ + 3(1,4-FIB) mixture
with MeOH additions; Figure S4: Powder X-ray diffraction data (blue line) of mixture, obtained by grinding of
crystalline material grown from 2ASZ + 3(1,4-FIB) solution in methanol; Table S1: Parameters of the C–I· · ·N XBs
including 1,2,4-triazole moiety in CCDC structures; Table S2: Parameters of the lp(I)· · ·C interactions including
1,2,4-triazole moiety in CCDC structures; Table S3: Crystal data and structure refinement for ASZ·1.5(1,4-FIB);
Table S4: Cartesian atomic coordinates of model supramolecular cluster.
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