
crystals

Article

Impact of Phase Structure on Piezoelectric Properties
of Textured Lead-Free Ceramics

Xiaoyi Gao 1,2,3, Nannan Dong 1 , Fangquan Xia 4, Qinghu Guo 1, Hua Hao 1,*, Hanxing Liu 3

and Shujun Zhang 2,*
1 State Key Lab Silicate Materials for Architecture, Center for Smart Materials and Device Integration, School

of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China;
xygao@whut.edu.cn (X.G.); 18271861079@whut.edu.cn (N.D.); guoqinghu126@foxmail.com (Q.G.)

2 Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials,
University of Wollongong, Wollongong, NSW 2500, Australia

3 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School
of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China;
lhxhp@whut.edu.cn

4 School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China;
chm_xiafq@ujn.edu.cn

* Correspondence: haohua@whut.edu.cn (H.H.); shujun@uow.edu.au (S.Z.)

Received: 6 April 2020; Accepted: 2 May 2020; Published: 3 May 2020
����������
�������

Abstract: The impact of phase structure on piezoelectric performances of <001>

textured Na0.5Bi0.5TiO3 (NBT) based lead-free ceramics was studied, including
0.88NBT-0.08K0.5Bi0.5TiO3-0.04BaTiO3 (88NBT) with morphotropic phase boundary (MPB)
composition and 0.90NBT-0.07K0.5Bi0.5TiO3-0.03BaTiO3 (90NBT) with rhombohedral phase.
Both textured ceramics exhibit a high Lotgering factor, being on the order of f~96%. The piezoelectric
coefficients of the textured 88NBT and 90NBT ceramics are increased by 20% and 60%, respectively,
comparing to their randomly oriented ceramics. The piezoelectric enhancement of 90NBT textured
ceramic is three times higher than 88NBT, revealing the phase structure plays a significant role in
enhancing the piezoelectric performances of textured ceramics. Of particular significance is that the
90NBT textured ceramic exhibits almost hysteresis-free strain behavior. The enhanced piezoelectric
property with minimal strain hysteresis is attributed to the <001> poled rhombohedral engineered
domain configuration.

Keywords: textured ceramics; phase structure; rayleigh analysis; strain behavior

1. Introduction

In recent years, lead-free piezoelectric materials based on Na0.5Bi0.5TiO3 (NBT) have attracted
extensive attention, which is considered to be a potential candidate due to their good ferroelectric and
piezoelectric properties, with high Curie temperature TC of 320 ◦C and large remnant polarization
Pr value of 38 µC/cm2 [1]. However, there is still a need to enhance the properties of NBT-based
ceramics before they can replace lead-based materials. Improvements in piezoelectric properties have
been studied in NBT-based solid solutions with morphotropic phase boundary (MPB) [2–8] such as
Na0.5Bi0.5TiO3-SrTiO3 (NBT-ST), Na0.5Bi0.5TiO3-BaTiO3 (NBT-BT), Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3-BaTiO3

(NBT-KBT-BT), and Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3-SrTiO3 (NBT-KBT-ST), but with limited success. It is
difficult to increase the piezoelectric performances of NBT-based binary and ternary polycrystalline
ceramics further by only composition tuning.

Texturing is a promising approach to enhance the piezoelectric performances of
ferroelectric ceramics via controlling the microstructure without drastically changing the
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composition [9–11] taking advantage of grain alignment along ab specific crystallographic
direction, thus showing unique anisotropic behavior, being analogous to domain
engineering reported in ferroelectric single crystals [12–15]. More studies have been
done on texturing of lead-free ceramics in recent years [16–21] such as <001>-textured
NBT-BT [22], NBT-KBT [23], NBT-BT-KNN [24], Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 (BZT-BCT) [21],
(K0.5Na0.5)(Nb0.965Sb0.035)O3-CaZrO3-(Bi0.5K0.5)HfO3 [16] and Bi0.5Na0.5TiO3-BaTiO3-AgNbO3

(NBT-BT-AN) [19] ceramics, etc. The impact of different seed templates on ferroelectric and piezoelectric
properties of the textured ceramics has been extensively studied; however, the investigation of the
phase structure impact on textured ceramics is rare. It is known that the phase structure, such as
rhombohedral/tetragonal phases or the coexistence of them, plays an important role in dominating
the piezoelectric properties of ceramics [5]. Meanwhile, different domain engineering configurations,
i.e., poling along different crystallographic orientations in single crystals with different phases, were
reported to impact the piezoelectric and dielectric properties of crystals significantly [12]. Thus, it is
desired to explore the impact of phase structure on the properties of textured ceramics, especially in
<001>-textured ceramics.

In this work, 0.88Na0.5Bi0.5TiO3-0.08K0.5Bi0.5TiO3-0.04BaTiO3 (88NBT) with MPB composition and
0.90Na0.5Bi0.5TiO3-0.07K0.5Bi0.5TiO3-0.03BaTiO3 (90NBT) with rhombohedral (R) phase were selected
as matrix, while NaNbO3 (NN) was chosen as template. The intrinsic and extrinsic contributions to
the piezoelectric response of ceramics were studied by Rayleigh analysis. Moreover, in this paper,
the impact of phase structure on piezoelectric properties of <001>-textured ceramics and randomly
oriented ceramics is discussed in detail.

2. Materials and Methods

The randomly oriented 88NBT and 90NBT ceramics were prepared at 1150 ◦C for 3 h by solid-state
reaction method. The Na2CO3 (Aladdin Industrial Corportation, Shanghai, China, 99%), BaCO3

(Aladdin Industrial Corportation, Shanghai, China, 99%), K2CO3 (Aladdin Industrial Corportation,
Shanghai, China, 99%), TiO2 (Sinopharm Chemical Reagent Co. Ltd, Shanghai, China, 99%) and
Bi2O3 (Sinopharm Chemical Reagent Co. Ltd, Shanghai, China, 99.9%) were used as raw materials.
The <001>-textured 88NBT and 90NBT ceramics were fabricated at 1165 ◦C for 10 h via the template
grain growth method (TGG) with 4 wt % platelet NN as templates. Plate-like NN templates with a
length of ~10 µm were obtained via topochemical conversion [25]. Detailed information on the TGG
method and sintering process has been represented elsewhere [26].

The phase structure and the Lotgering factor were determined by X-ray diffraction (XRD)
(PANalytical X´ Pert PRO, Holland, Netherlands). The Lotgering factor of <001> textured ceramics
was calculated with 2θ over a range of 20–60 ◦C by Lotgering method [27]. The microstructure of
samples was examined by a scanning electron microscopy (SEM) (JSM-7001F, JEOL, Tokyo, Japan).
The samples were placed in a silicone oil bath and polarized for 15 min at room temperature under
a dc electric field of 50 kV/cm, for measuring the dielectric and piezoelectric properties. The direct
piezoelectric coefficient (d33) was determined by a d33-meter (ZJ-3A, Jiangsu, China) while the effective
piezoelectric coefficient (d33*) was calculated from the strain-electric field curves. The strain-electric
field (S-E) curves were tested at 10 Hz by a TF Analyzer 2000 piezo-measurement system (aixACCT
Systems, Aachen, Germany) with a high-voltage power supply (TREK 610E, NY, USA). For Rayleigh
analysis, the maximum electric field with 10 Hz frequency was about half of the coercive field (EC) of
NBT-based ceramics, being on the order of 20 kV/cm. The large signal piezoelectric coefficient d33* was
obtained from the unipolar strain curves measured at 70 kV/cm.

3. Results and Discussion

XRD patterns of 88NBT and 90NBT ceramics are shown in Figure 1A. All samples present the
perovskite structure with no secondary impurity phase. The (003)/(021) and (002)/(200) peaks appear at
2θ of 40◦ and 46.5◦ in randomly oriented 88NBT ceramic, respectively, demonstrating an MPB region
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with the coexistence of rhombohedral-tetragonal phases, which is in good agreement with the results
reported earlier [28]. For the randomly oriented 90NBT ceramic, on the contrary, the (003)/(021) and
single peak of (200) can be observed at around 40◦ and 46.5◦, respectively, confirming the presence
of rhombohedral phases. In all textured ceramics, the intensities of the (200) peaks are higher than
other diffraction peaks, demonstrating a strongly preferred grain orientation in the 88NBT and 90NBT
textured ceramics along <00l> direction. Based on the XRD results, the Lotgering factor (f) of the
textured ceramics can be estimated by Lotgering equations [27]. The f values of the 88NBT and 90NBT
textured ceramics are on the order of 96%. This result indicates that the textured 88NBT and 90NBT
ceramics possess the same high Lotgering factor.
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Figure 1. (A) XRD patterns of the randomly oriented ceramics and textured ceramics. SEM images of
(B) randomly oriented 88NBT ceramic, (C) textured 88NBT ceramic, (D) randomly oriented 90NBT
ceramic, and (E) textured 90NBT ceramic.

Figure 1B–E show the cross-section SEM micrographs of the 88NBT and 90NBT ceramics. As shown
in Figure 1B,D, the average grain sizes of the randomly oriented 88NBT and 90NBT ceramics are
observed to possess similar values, being on the order of ~1 µm, suggesting the composition/phase
has minimal impact on the grain size of the randomly oriented ceramics. Meanwhile, the 88NBT
and 90NBT textured ceramics are observed to possess the brick-like shaped grains, which is in good
agreement with the crystallographic orientation, as demonstrated by XRD patterns shown in Figure 1A,
further clarify the strong grain orientation. It is obvious that the textured ceramics have much larger
grain size in contrast to the randomly oriented ceramics, being on the order of ~10 um.

Figure 2 shows the temperature-dependent of dielectric constant and dielectric loss of poled 88
and 90 NBT ceramics. The maximum temperature (Tm) at which the dielectric constant reached a
maximum value is assigned to the Curie temperature. The broad peaks at Tm are observed, either on
randomly oriented or textured ceramics. Notably, the peaks at Tm of textured ceramics are flattened,
comparing to the randomly oriented ceramics because of the stress induced by the embedded templates.
The depolarization temperature (Td) for textured and randomly oriented ceramics are confirmed by
the first inflection point of dielectric loss curves. For 88 NBT ceramics, the Td are about 80 ◦C, which
are below the Td of 90 NBT ceramics. The Td of textured and randomly oriented ceramics are about
100 and 120 ◦C, respectively.

To further explore the relationship between phase and piezoelectric response, Rayleigh analysis of
NBT-based ceramics was carried out. Under the low electric field, the Rayleigh law can be expressed
by the following formulas [29]:

d(E0) = (dinit + αE0) pm/V (1)

S(E) = (dinit + αE0)E±α
(
E2

0 − E2
)
/2 (2)

where E0 denotes the level of electric-field, S(E) denotes the ac electric-field-induced strain. In the
piezoelectric response, the reversible piezoelectric response, resulting from the intrinsic (lattice) and
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reversible motion of internal interfaces, is described by coefficient dinit. The contribution of the latter
is relatively small in the ferroelectric materials [29,30]. Therefore, in the study, the coefficient dinit is
considered to be caused by the intrinsic contribution. The extrinsic contribution to the total piezoelectric
response αE0 is arising from the irreversible domain walls motion, where the measured coefficient
α represents the Rayleigh parameter. From Rayleigh analysis, the electric field dependent d33 is
calculated by d33 = Sp-p/2E0, where the Sp-p is peak-to-peak strain. The d33 of the randomly oriented
and textured ceramics were plotted as a function of ac electric field E0 and given in Figure 3. The d33

had a good linear correlation with E0, indicating the piezoelectric response follows the Rayleigh law.
According to Equation (1), dinit values are on the order of 67, 124, 72, 141 pm/V for randomly oriented
and textured 88NBT and 90NBT ceramics, respectively. α are found to be 2.61 cm/kV, 2.36 cm/kV,
2.06 cm/kV, 1.52 cm/kV, respectively.

Crystals 2020, 10, 367 4 of 11 

 

d33 is calculated by d33 = Sp-p/2E0, where the Sp-p is peak-to-peak strain. The d33 of the randomly oriented 
and textured ceramics were plotted as a function of ac electric field E0 and given in Figure 3. The d33 
had a good linear correlation with E0, indicating the piezoelectric response follows the Rayleigh law. 
According to Equation (1), dinit values are on the order of 67, 124, 72, 141 pm/V for randomly oriented 
and textured 88NBT and 90NBT ceramics, respectively. α are found to be 2.61 cm/kV, 2.36 cm/kV, 
2.06 cm/kV, 1.52 cm/kV, respectively.  

 
Figure 2. Temperature-dependent of dielectric constant and dielectric loss of (A) 88NBT randomly 
oriented ceramic, (B) 88NBT textured ceramic, (C) 90NBT randomly oriented ceramic, and (D) 90NBT 
textured ceramic. 

 

Figure 3. The d33 as a function of ac electric field for (A) randomly oriented 88NBT ceramic, (B) 
textured 88NBT ceramic, (C) randomly oriented 90NBT ceramic, and (D) textured 90NBT ceramic. 

Figure 2. Temperature-dependent of dielectric constant and dielectric loss of (A) 88NBT randomly
oriented ceramic, (B) 88NBT textured ceramic, (C) 90NBT randomly oriented ceramic, and (D) 90NBT
textured ceramic.

Based on the Rayleigh analysis, αE0/(αE0 + dinit), the ratios of extrinsic contribution were calculated
and given in Figure 4. The ratios of extrinsic contributions for randomly oriented and textured 88NBT
and 90NBT ceramics are found to be on the order of ~43%, 27%, 37%, and ~18% at an electric field of
20 kV/cm, respectively. The results indicate that textured 88NBT ceramic possesses a lower extrinsic
contribution of 27% comparing to the randomly oriented 88NBT ceramic. In ferroelectric materials, it is
known that ferroelastic domain-wall motion, is the main factor for extrinsic contribution [31,32]. Thus,
in contrast to the randomly oriented ceramics, textured 88NBT ceramic possesses lower ferroelastic
domain-wall motion. It can be noted that the extrinsic contribution of ceramics is usually accompanied
by strong nonlinearity and large strain hysteresis, according to the results of Rayleigh analysis. Similarly,
when the extrinsic contribution is reduced, the corresponding strain hysteresis is expected to reduce.
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Figure 4. (A) The ratios of extrinsic contribution for randomly oriented 88NBT ceramic, textured 88NBT
ceramic, randomly oriented 90NBT ceramic, and textured 90NBT ceramic. (B) The scheme of “4R”
domain structure. The black arrow shows the possible domain vector in [001] poled rhombohedral
single crystals.

The principle piezoelectric and dielectric properties are listed in Table 1. As shown in Table 1, d33

are 150 and 110 pC/N for the 88NBT and 90NBT randomly oriented ceramics, respectively, increasing
to the value of ~185 pC/N and ~175 pC/N for the textured ceramics, respectively, demonstrating 20%
and 60% enhancements, respectively. This result shows that the piezoelectric properties of 90NBT
textured ceramic have been significantly improved, compared to the 88NBT textured ceramic with MPB
composition. The enhanced piezoelectric performance in textured 90NBT ceramic is closely associated
with the domain configurations and crystallographic structure. Analogous to <001> oriented single
crystals, as shown in Figure 4B, specific domain configuration "4R" (where 4 means the number of
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degenerated polarization directions while R represents rhombohedral phase) can also be expected to
form in <001> textured 90NBT, accounting for the enhanced piezoelectric properties and reduced
dielectric loss as compared to its randomly oriented ceramics.

Table 1. The properties of 88NBT ceramics, and 90NBT ceramics.

Material Phase
Structure

ε

(1 kHz)
tanδ (at
1 kHz)

Sm
(at 70 kV/cm)

d33
(pC/N)

d33
Enhancement

d33*
(pm/V)

d33*
Enhancement H

Randomly oriented
90NBT ceramic R 590 0.029% 0.13% 110

60%
180

13%
26%

Textured 90NBT
ceramic R 760 0.027% 0.14% 175 205 12%

Randomly oriented
88NBT ceramic MPB 730 0.035% 0.18% 150

20%
260 none 28%

Textured 88NBT
ceramic MPB 810 0.029% 0.18% 185 255 21%

In order to explore the impact of phase structure on strain behavior at large electric field, the
unipolar strain curves were measured as a function of electric fields up to 70 kV/cm at 1 Hz, as shown
in Figure 5. At 70 kV/cm, the strain of randomly oriented 88NBT ceramic, textured 88NBT ceramic,
randomly oriented 90NBT ceramic, and textured 90NBT ceramic can reach 0.18%, 0.18%, 0.13% and
0.14% respectively. The d33* are calculated to be 205 pm/V for the textured 90NBT ceramic at 70 kV/cm
as compared with that of 180 pm/V for the randomly oriented 90NBT ceramic, i.e., the textured ceramics
show an improvement about 13% in d33*. Compared to the 88NBT composition, the d33* of 90NBT
composition with rhombohedral phase has been clearly improved, while the strain level and d33*
of 88NBT with MPB composition are comparable in randomly oriented and textured samples, due
to the extrinsic contribution, i.e., the domain wall motion, in 88NBT with coexisted rhombohedral
and tetragonal phases dominates the large field piezoelectric. These results can also be confirmed
by the strain hysteresis H, where the value for rhombohedral randomly oriented 90NBT ceramic is
about 26% at large field of 70 kV/cm, lower than the MPB 88NBT ceramics, owing to the facilitated
domain wall motion in tetragonal phase, thus higher extrinsic contribution and higher strain hysteresis.
Of particular significance is that the 90NBT textured ceramic exhibits almost linear behavior even at a
high electric field of 70 kV/cm, with strain hysteresis being on the order of 12%. In contrast to randomly
oriented ceramics, the textured ceramics possess less than half of the strain hysteresis, which can be
explained by the <001> texturing characteristics, leading to engineered domain configuration “4R”
after polarizing along <001> direction, accounts for the greatly reduced strain hysteresis [9,12,20].

It is concluded that different phase structures have a significant impact on the performances of
textured ceramics. Based on the concept of domain engineering, significantly enhanced piezoelectric
response and reduced strain hysteresis could be expected in highly <001> textured ceramics with
rhombohedral phase, as a result of promoted polarization rotation owing to the formation of "4R"
domain configuration [12,33,34], this also is confirmed by the above Rayleigh analysis. The textured
90NBT ceramic has a lower extrinsic contribution of 18% as well as lower H comparing to the
textured 88NBT ceramics and the randomly oriented 90NBT ceramic. The greatly decreased extrinsic
contribution and reduced strain hysteresis observed in textured 90NBT are inherently associated with
the engineered domain configuration, domain wall density and the number of possible directions of
spontaneous polarizations. Both textured ceramics were found to possess one order larger grain size
when comparing to their random ceramic counterparts, as shown in Figure 1, revealing the domain
size in textured ceramics is greater than that in random ceramics due to the fact that domain size is
proportional to the square root of grain size [35,36], leading to lower domain wall density, accounting
for the smaller extrinsic contribution and strain hysteresis in the textured ceramics comparing to
their randomly oriented counterparts. On the other hand, the textured 88NBT and 90NBT ceramics
possess similar grain size and the same Lotgering factor, suggesting the grain size and Lotgering factor
are not the dominant factors responsible for the lower extrinsic contribution of the textured 90NBT
ceramic comparing to textured 88NBT. In the <001> textured 90NBT ceramic with the rhombohedral
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phase, all the grains are aligned along crystallographic <001> direction. Analogous to <001> oriented
rhombohedral single crystals, the <001> textured 90NBT ceramic with rhombohedral phase will form
the engineered-domain configuration after poled along <001> direction (even the textured ceramic is
transversely isotropic material which possesses a plane of isotropy vertical to <001> direction, being
different from single crystal), where the coexistence of the four degenerated domain states can stabilize
the domain wall, thus less domain wall motion. The smaller extrinsic piezoelectric response and
minimal strain hysteresis at a high electric field of the textured 90NBT ceramic are associated with the
“4R” domain engineered configuration [37].
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Figure 6A–D shows the unipolar strain curves of 88NBT and 90NBT ceramics at 40 kV/cm, with
temperatures ranging from room temperature (RT) to 160 ◦C. The corresponding strain and d33* of
ceramics are plotted in Figure 6E. As shown in Figure 6A–D, the textured ceramics show relatively
linear unipolar strain curves at different temperatures in contrast to the random ceramics of the same
composition, which corresponds to smaller strain hysteresis. In contrast to the 88NBT ceramics, the
90NBT ceramics exhibit more linear unipolar strain curves, owing to the domain wall motion in the
tetragonal phase. Herein as the temperature increases, the strain and d33* (at 40 kV/cm) of all ceramics
both increase to maximum values at first and then decrease approaching to depolarization temperature
Td. This phenomenon has also been observed in NBT-BT-ST and NBT-KBT-BT ceramics [38,39].
For 88NBT randomly oriented ceramic, the unipolar strain increases gradually as the temperature rises
to 100 ◦C, which is higher than the depolarization temperature Td (~80 ◦C). The maximum unipolar
strain and d33* of 88NBT randomly oriented ceramic are 0.26% and 660 pm/V, respectively, which can
be achieved at a temperature of 100 ◦C, being associated with the coexistence of ferroelectric order and
ergodic relaxor phase in NBT-based ceramics. Above 100 ◦C, the strain and d33* of 88NBT randomly
oriented ceramic decrease. Meanwhile, it is worth noting that the 88NBT randomly oriented ceramic
has relatively small strain hysteresis at high temperatures. In contrast, the strain and d33* of 88NBT
textured ceramic increase gradually from RT to 60 ◦C, followed by a sharp increase to 0.27% and 675
pm/V at 100 ◦C, respectively, above which, the strain and d33* values of the 88NBT textured ceramic are
reduced, showing a phenomenon similar to that of 88NBT randomly oriented ceramic. At RT to 140 ◦C,
the strain and d33* of the 90NBT randomly oriented ceramic increase gradually, then sharply increase to
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0.27% and 680 pm/V at 160 ◦C, respectively. For 90NBT textured ceramic, the maximum unipolar strain
and d33* is 0.32% and 800 pm/V at 140 ◦C, respectively. In summary, the 90NBT textured ceramics
exhibit a linear strain linear behavior with enhanced temperature stability when the temperature below
the Td in contrast to the 88 NBT textured ceramics.
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4. Conclusions

Highly <001>-textured 88NBT (MPB) and 90NBT (rhombohedral phase) ceramics with Lotgering
factor f~96% were prepared via the TGG method. The piezoelectric coefficients of 88NBT textured and
90NBT textured ceramics are increased by 20% and 60%, respectively, compared to their randomly
oriented ones. Additionally, the d33* of 90NBT textured ceramic possess 13% enhancement compared
to its randomly oriented counterpart; however, the d33* of textured 88NBT ceramic maintains a similar
value. These results demonstrate that the different phase structures have a significant impact on the
properties of textured ceramics. Based on the Rayleigh analysis and strain behavior, the enhancement
of piezoelectric properties and minimal strain hysteresis of 90NBT textured ceramics can be explained
by the increased rhombohedral phase and "4R" domain engineered configuration comparing to 88NBT
textured ceramics.
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