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Abstract: This report presents the synthesis of ZnO nanorod/α-Fe2O3 composites by the hydrothermal
method with different weight percentages of α-Fe2O3 nanoparticles. The as-synthesized nanorod
composites were characterized by different techniques, such as X-ray diffraction (XRD), Fourier
transform-infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), electrochemical
impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS). From our results, it
was found that the ZnO/α-Fe2O3 (3 wt%) nanorod composites exhibit a higher hydrogen evolution
reaction (HER) activity when compared to other composites. The synergetic effect between ZnO and
(3 wt%) of α-Fe2O3 nanocomposites resulted in a low onset potential of −125 mV, which can effectively
produce more H2 than pure ZnO. The H2 production rate over the composite of ZnO/α-Fe2O3 (3 wt%)
clearly shows a significant improvement in the photocatalytic activity in the heterojunction of the
ZnO nanorods and α-Fe2O3 nanoparticles on nickel foam.
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1. Introduction

In recent decades, fossil fuels have conventionally been the most important source of fuel, but
the consumption of fossil fuels is a serious environmental concern. It is therefore essential to develop
renewable energy resources that do not contaminate the environment. To date, many methods have
been developed to produce alternative energy sources without the emission of carbon. Of these,
solar energy has attracted much attention as a sustainable and clean alternative energy source [1,2].
The conversion of solar energy into chemical energy is a promising technique for producing renewable
energy. This technology is an attractive way to directly utilize solar-converted energy in the form
of water-splitting systems with high solar-to-hydrogen efficiencies. Photocatalysis and photovoltaic
systems are the most important routes for the conversion of solar energy into chemical energy in an
environmentally friendly way, so they have been of great interest for several decades. Specifically,
the photocatalytic process has attracted enormous interest as an effective method for the treatment of
environmental pollutants. In addition, the photogeneration of hydrogen under light irradiation using
a photocatalyst has been considered as a potentially significant strategy for hydrogen production [3–5].

Over the past three decades, hydrogen production through the solar-driven method with the
support of semiconductor photocatalysts has been a simple, cost-effective approach for converting
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solar energy into hydrogen [6,7]. The thermodynamic requirement for water splitting into H2 and O2

is 1.23 eV, so the bandgap energy of the photocatalyst should be higher than 1.23 eV [8]. This is the
combination of two reactions, namely, oxygen evolution reaction (OER) and hydrogen evolution reaction
(HER). Commonly, three main types of water-splitting methods have been adopted: photocatalysis,
photoelectrochemical splitting, and electrocatalysis [9]. Among them, electrocatalytic water splitting
is a remarkable, simple, and green process for hydrogen production [10–14]. Generally, a noble
metal-based catalyst is used for electrolytic hydrogen production. However, various semiconductor
materials have been studied because of their direct bandgap, physicochemical properties, and versatile
catalytic activities. Based on the above superior properties, researchers have focused on semiconductor
nanomaterials with a high surface area and plasmonic resonance, which are the crucible for novel
applications such as energy devices and the removal of organic pollutants [15–17]. In addition, various
semiconductors have been used for hydrogen generation, especially ZnO, TiO2, and α-Fe2O3, which is
one of the most attractive materials for hydrogen production with an n-type semiconductor, and which
has excellent optical properties [18,19]. It is the most stable and most abundant material on earth and
has been used for various applications, such as photocatalysts, supercapacitors, and sensors. Other
than α-Fe2O3, ZnO is another attractive semiconductor that has many potential applications, such as
dye degradation, supercapacitors, and hydrogen evolution [20–22]. It can be favorable to study metal
oxide photoanodes as they have a direct bandgap with favorable band edges for the water-splitting
redox levels. To improve water-splitting performance, utilizing visible light is the most commonly used
strategy by fabricating the ZnO heterostructure with other small bandgap materials. Many researchers
have used ZnO and α-Fe2O3 as a heterojunction, resulting in hydrogenation with a low bandgap and
the ability to stimulate the photoresponse of electrons and holes [23–25]. In addition, ZnO and α-Fe2O3

are both earth-abundant photocatalysts with good activity, and a synthesis of these hybrid materials
improves photocatalytic performance [26–29]. Based on this, a coupling of hierarchical α-Fe2O3 with
ZnO could be considered as a good strategy for constructing highly effective electrocatalysts for HER.

Recently, much research has focused on developing electrocatalysts for HER, OER, and overall
water splitting based on earth-abundant transition metals. Interestingly, Ni-based catalysts, which
include Ni2P, NiFeP, NiFe-layered double hydroxide [30–32], and Ni/NiO/carbon nanotube, are more
attractive for water splitting. It has been shown that the activation of a Ni carbon-based catalyst
through the application of electrochemical potential results in HER activity comparable to Pt in an
acidic medium. To achieve the high current density with a large producing rate of H2/O2 bubbles, the
conductive substrates are essential, such as carbon paper, FTO, nickel foil, iron substrates, and nickel
foam [33–35]. Among these substrates, nickel foam has the advantages of good electrical conductivity,
a high specific surface, and a porous structure. Therefore, using nickel foam in the generation of the
hydrogen evolution process has attracted great consideration due to its high current density.

In this present work, we propose a hydrothermal method to fabricate ZnO nanorods with different
weight percentages of α-Fe2O3 nanoparticles that are deposited on Ni foam for electrocatalytic studies.
This Ni foam has good catalytic activity and acts as a durable electrolyte in the acidic electrolyte.
The ZnO/α-Fe2O3 shows excellent morphology, crystal structure, and impedance performance.
Systematic investigation of ZnO/α-Fe2O3 nanocomposites was performed, and they were found
to be favorable for higher HER activity with better overpotential.

2. Materials and Methods

2.1. Preparation of ZnO/α-Fe2O3 Nanorod Composites

All the reagents and chemicals used for the preparation of the nanorod composites are analytical
grade. In this study, 500 mg of zinc acetate and 5, 10, and 15 mg of ferric nitrate with sodium hydroxide
(0.5M) were mixed with 20 ml of DI water. These solutions were transferred to 20 ml of Teflon-lined
autoclave, followed by a hydrothermal treatment at 200 ◦C for 24 hours. After being cooled to ambient
temperature, the brown solid was collected from the autoclave and thoroughly washed with ethanol to
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remove the impurities, followed by annealing at 450 ◦C for 4 h. The α-Fe2O3 nanoparticles were grown
on ZnO nanorods through a simple co-precipitation method using the hydrothermal approach as
illustrated in Scheme 1. In the beginning, both metals exist in the form of ions in the alkaline medium.
The hydrothermal process initiates the co-precipitation of metal ions into hydroxides, followed by
nucleation and growth of α-Fe2O3 nanoparticles decorated ZnO nanorods. A further annealing process
leads to the formation of highly crystalline nanocomposites without impurities.
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Scheme 1. Synthesis of ZnO/α-Fe2O3 nanocomposites by the hydrothermal method.

2.2. Hydrogen Evolution Reaction (HER)

The three-electrode electrochemical workstation (CHI 614 C, Austin, TX, USA) was used to
measure the linear sweep voltammetry at room temperature. Platinum is the counter electrode, nickel
foam is the working electrode with 0.5 M H2SO4, and Ag/AgCl is the reference electrode. The working
electrode was prepared by mixing ZnO/α-Fe2O3 with 1 ml of 10 µl Nafion, 10 µl ethanol, and 80 µl
distilled water under ultrasonication for 45 min. The linear sweep voltammetry (LSV) was measured
between −0.8 and −1.6 eV vs. Ag/AgCl at 50 mVs−1. The onset overpotential generally denotes the
applied potential, and thus, a current starts to appear. To improve the catalysts quantitatively, the
overpotential at 10 mA cm−2 was taken as a reference. Before the electrocatalytic H2 evolution, the
solution was purged with N2 for 30 min. In this measurement, the Ag/AgCl was used as the reference
electrode and was converted with respect to a reversible hydrogen electrode (RHE):

E (RHE) = E (Ag/AgCl) + 0.204 Vx pH (1)

The current density of the electrode was measured by dispersing the working electrode, then
uniformly coated onto bare nickel foam with the mass loading of 20 mg and dried in an electric oven at
50 ◦C for 1 hr. Before each electrochemical test, the electrode was activated by 5~10 CV cycles in the
corresponding testing electrolyte.

2.3. Characterization

The X-ray diffraction spectra were analyzed (Analytical X’Pert 246 PRO, Almelo, Netherlands)
using filtered CuKα radiation (λ = 1.5418 Å). The chemical bonds were studied using a PerkinElmer
(Seer Green, UK), an FT-IR spectrometer. The structural morphologies of the catalysts were studied
using field emission scanning electron microscopy (FE-SEM) with a JEOL JSM-7100F (Tokyo, Japan).
The binding energy of the nanocomposites was observed from the X-ray photoelectron spectra (XPS)
obtained using a JEOL JPS-9030 (Tokyo, Japan). Transmission electron microscopy (TEM) was analyzed
by a JEOL JEM-2100F (MA, USA). The electrochemical impedance measurement was carried out using
a Zive Potentiostate, SP100. Electrochemical impedance spectroscopy (EIS) was used to observe the
interfacial properties of the ZnO/α-Fe2O3 with various ratios of α-Fe2O3 with a modified glassy carbon
electrode (GCE) in 0.1M KCl containing 5mM of Fe(CN)6, wherein bias potential = 0 V, amplitude = 5
mV, and frequency = 0.1Hz–100 kHz were applied.
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3. Results and Discussion

Figure 1 shows the XRD spectra of ZnO and ZnO/α-Fe2O3 with a different weight percentage
of α-Fe2O3 nanoparticles. The XRD peaks of the ZnO nanorods observed at 31.7.1◦ (100), 34.4◦ (002),
36.2◦ (101), 47.9◦ (102), and 56.81◦ (110) can be readily ascribed to the characteristic peaks of the
ZnO phase, which is confirmed with a JCPDS card 79–0206 as shown in Figure 1 [22]. The distinct
2θ peaks observed at 32.2, 35.7, 40.9, and 49.4◦ confirmed the presence of the α phase of α-Fe2O3

nanoparticles according to the JCPDS map 79-0007 as shown in the inset Figure 1 [36]. After the
addition of α-Fe2O3 nanoparticles, the small relative intensity peaks started to broaden at 32.2 and
35.7◦ with the increasing weight ratio of α-Fe2O3 nanoparticles as seen in Figure 1. The crystallite size
of the ZnO and ZnO/α-Fe2O3 with different weight percentages of α-Fe2O3 nanoparticles was also
calculated from the XRD spectra using Scherrer’s formula:

d = 0.9λ/B cosθ (2)

where λ, θ, and B are the X-ray wavelength (1.54 Å), Bragg diffraction angle, and line of full width at
half maximum, respectively. The particle size of the ZnO, ZnO/α-Fe2O3(1 wt%), ZnO/α-Fe2O3(3 wt%),
and ZnO/α-Fe2O3(5 wt%) are 47.97, 36.62, 33.57, and 30.99 nm, respectively. The decreasing particle
size is observed due to increasing the α-Fe2O3 concentration and decreasing the growth of the ZnO
nanorods. However, the observed particle size of the nanocomposites is ~500 nm, which differs from
the calculated crystallite size. This is because the nanocomposite particles are composed of several
different crystallites, which results in changes in the size of the particle.Crystals 2020, 10, x FOR PEER REVIEW 5 of 14 
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Figure 1. XRD patterns of (a) ZnO; (b) ZnO/α-Fe2O3(1 wt%); (c) ZnO/α-Fe2O3(3 wt%); and (d)
ZnO/α-Fe2O3(5 wt%).
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Figure 2 shows the FT-IR spectra of ZnO/α-Fe2O3 with a different weight percentage of α-Fe2O3.
The peaks at 3436 and 1629 cm-1 are attributed to the stretching vibration of the hydroxyl groups of
ZnO and α-Fe2O3. This confirms the presence of the adsorption site, i.e., the hydroxyl group that helps
to increase the photocatalytic efficiency of the nanocomposites. A significant peak observed from
500 to 600 cm−1 was attributed to the stretching vibration of the Zn-O and Fe-O bonds in the ZnO
nanorods and α-Fe2O3 nanoparticles [23,37,38]. The peaks at about 1326 and 1629 cm−1 are assigned to
the symmetric and asymmetric stretching vibration of the carboxylate band, due to the presence of the
acetate group, which may be formed as a surface species chelated to Zn(II) [39,40]. Hence, the FT-IR
results agreed well with those of the XRD profiles, indicating the formation of α-Fe2O3 nanoparticles
on the surface of the ZnO nanorods.
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Figure 2. FT-IR spectra of (a) ZnO; (b) ZnO/α-Fe2O3(1 wt%); (c) ZnO/α-Fe2O3(3 wt%); and
(d) ZnO/α-Fe2O3(5 wt%).

The FE-SEM images of the ZnO nanorods and ZnO/α-Fe2O3 with different weight percentages of
α-Fe2O3 nanoparticles are illustrated in Figure 3. In Figure 3a, the ZnO nanorods with a length size of
500 nm appeared with a sharp end. After the introduction of 1 wt % α-Fe2O3, α-Fe2O3 nanoparticles
with sizes of 20 nm are grown on the ZnO nanorods. More α-Fe2O3 nanoparticles are observed on
the ZnO nanorods as shown in Figure 3b,c, when the weight percentage is increased to 3 and 5 wt
%. In Figure 3d, the formation of more α-Fe2O3 nanoparticles is observed, which may influence the
growth of the ZnO nanorods. After the growth of the 5 wt % of α-Fe2O3 nanoparticles on the ZnO
nanorods, it is clearly observed that the entire surface of the ZnO nanorods is covered with the α-Fe2O3

nanoparticles. Subsequently, after the hydrothermal growth, the structure of the ZnO nanorods is
still well preserved. The magnified TEM image of the ZnO/α-Fe2O3 (3 wt% α-Fe2O3) shows the ZnO
nanorods with a 500 nm length and 20 nm width, which are covered by α-Fe2O3 nanoparticles as
shown in Figure 3f. The TEM image of Figure 3f shows the needle-shaped ZnO nanorod covered with
α-Fe2O3 nanoparticles, and it reveals the close interaction of ZnO with α-Fe2O3, which is reflected in
the synergistic effect between the composites. An energy dispersive X-ray spectroscopy (EDS) analysis
was carried out to examine the chemical composition of ZnO/α-Fe2O3 nanocomposites. The EDS
results show the weight ratio of Zn (78.34), Fe (2.67), and O (18.74). As shown in Figure 3g, peaks for
the elements of Fe, Zn, and O were detected, and no other impurities can be observed. This result
shows the formation of ZnO/α-Fe2O3 nanocomposites and reveals that Fe, Zn, and O elements exist in
the nanocomposites, as shown in Figure 3g.
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X-ray Analysis (EDX) of ZnO/α-Fe2O3(5 wt%).

The optical absorption spectra of the ZnO and ZnO/α-Fe2O3 nanocomposites with different weight
percentages are shown in Figure 4, which shows the pure ZnO absorption peak at 345 nm exhibited
in the UV region [41,42]. Further, it extends to the visible region after incorporating α-Fe2O3 with
different weight percentages. The absorption spectra of α-Fe2O3 are included as the inset of Figure 4
and reveal the absorption edge at around 580 nm, which is the characteristic of α-Fe2O3 pristine [43,44].
Apparently, the ZnO and ZnO/α-Fe2O3 (1 and 3 wt%) nanocomposites show similar absorption
edges. When adding more α-Fe2O3 (5 wt%) with ZnO nanorods, the absorption characteristics start
to dominate, which show high absorption in the visible light region. This indicates that there is
an increase in the optical absorption coefficient for ZnO/α-Fe2O3 at longer wavelengths compared
to ZnO due to the fact that a semiconductor with a smaller bandgap, α-Fe2O3, is present in the
nanocomposite material.Crystals 2020, 10, x FOR PEER REVIEW 8 of 14 
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The XPS survey spectra revealed the elemental composition of the ZnO,α-Fe2O3, and ZnO/α-Fe2O3

as illustrated in Figure 5a. At the survey spectra of α-Fe2O3, the peak is observed at 711.18 eV, which
corresponds to the 2p3/2 of Fe2O3. [45]. Moreover, peaks at 1022.3 and 1045.3 eV are present in the
survey spectra of ZnO, corresponding to Zn 2p3/2 and Zn 2p1/2, which is attributed to Zn-O, thus
confirming that Zn exists in the oxidation state [46,47]. In Figure 5b, the four peaks with different
binding energies are fitted at 527.82, 530.85, and 532.7 eV for the ZnO/α-Fe2O3 nanocomposites.
The peak at 529.95 arises from the Zn-O band. The peak which emerged at 530.85 eV and is observed
from the surface lattice oxygen and at 532.7 eV is attributed to the surface-adsorbed oxygen species
of O2- [47]. It should be noted that after adding α-Fe2O3, it leads to the energy levels of oxygen
vacancies, which confirm the charge separation of photogenerated electrons and holes. It is noted that
the peaks at 710.39, 711.75, and 713.57 eV are attributed to Fe3+, confirming the α-Fe2O3 nanoparticles
on the ZnO nanorods as shown in Figure 5c [48]. The Fe3+ ion observed in the nanocomposites is
evidence of the synergetic effect, which improves the photocatalytic process. From the analysis spectra
of ZnO and the ZnO/α-Fe2O3 nanocomposites, the exhibited peaks at 1021.5 and 1045 eV correspond
to Zn2p3/2 and Zn2p1/2 respectively, as shown in Figure 5d [47,49]. The high-intensity major peak at
1022.3 eV represents the Zn2+ of the deposited ZnO, whereas the low-intensity peak at 1021.5 eV of
the ZnO/α-Fe2O3 nanocomposites indicates the changed chemical environment. The binding of Zn2+

with the surface oxygen attached to Fe3+ probably results in the shifting of binding energy as shown
in Figure 5d. These results indicate the formation of the ZnO/α-Fe2O3 containing Zn, Fe, O, and C
elements with their binding energies.Crystals 2020, 10, x FOR PEER REVIEW 9 of 14 
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Figure 5. XPS survey spectra of (a) α-Fe2O3, ZnO and ZnO/α-Fe2O3(3 wt%); (b) O1s (ZnO/α-Fe2O3);
(c) Fe-2p (ZnO/α-Fe2O3); and (d) Zn-2p binding energy spectra of ZnO and ZnO/α-Fe2O3.

The electrochemical impedance spectra were also recorded for ZnO and ZnO/α-Fe2O3 with
different weight percentages of α-Fe2O3 (1, 3, and 5 wt%) as illustrated in Figure 6. EIS was carried
out to analyze the photoinduced charge-transfer resistance on the interfacial layers of the different
modified electrodes [50]. This method is used to measure the amplitude of the alternating current (AC)
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signal with different frequencies that are able to observe the ratio of the AC signal voltage to the current
with the variation of sinusoidal frequency (ω) or the phase angle of impedance. Further, this method is
used to determine the frequency-dependent impedance of the electrochemical system by applying
equivalent circuit modeling to observe the electrical properties of the system. Nyquist plots indicate
the decrease in charge-transfer resistance, and they lead to a fast interfacial charge-transfer process
as well as an effective separation of photogenerated electron–hole pairs [51]. Moreover, they give
information about the nanomaterial properties, such as conductivity and the dielectric constant and
interfacial region of capacitance and derived quantities. The semicircle of all the materials normally
consists of charge-transfer resistance (Rct) [52] and interfacial resistance (Rint) [53]. Nevertheless, Rct

and Rint are not easily separated from the depressed semicircle because their time constants are near to
each other. Here, we consider the total resistance (Rtot), which is generally reflected in the electrical
conductivity of all the materials. The low Rct suggests that these electrodes have a lower interfacial
resistance with a better charge transfer. The smallest semicircle radius was observed in ZnO/α-Fe2O3

(3 wt%), which has low impedance when compared with the other weight percentages of α-Fe2O3

(1 and 5 wt%). This low impedance is due to the synergistic effect between ZnO and α-Fe2O3 and thus
improves the electron transfer charge. In addition, the importing interfacial charge separation between
ZnO and α-Fe2O3 also reduces exciton quenching and energy dissipation.
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Figure 6. Electrochemical impedance spectroscopy (EIS) spectra of ZnO; ZnO/α-Fe2O3(1 wt%);
ZnO/α-Fe2O3(3 wt%); and ZnO/α-Fe2O3(5 wt%).

Hydrogen Evolution Reaction (HER)

The electrocatalytic activity of hydrogen evolution was measured for ZnO and the ZnO/α-Fe2O3

nanocomposites with different weight percentages of the α-Fe2O3 nanoparticles as shown in Figure 7.
A HER study for all the catalysts was evaluated under identical conditions. The ZnO/α-Fe2O3 (3 wt%)
nanocomposite shows a low onset potential of −125 mV to reach the current density of 10 mA cm−2.
However, the required onset potential for pure ZnO is −210 mV, which is higher than the hybrid
nanocomposites to attain the benchmark current density of 10 mA cm−2. This onset potential of
ZnO/α-Fe2O3 (3 wt%) is shifted negatively compared with that of ZnO/α-Fe2O3 (1 and 5 wt%) and thus
enhances the catalytic activity due to the superior electron transfer efficiency caused by the electronic
conductivity, which is confirmed by EIS. Consequently, the ZnO/α-Fe2O3 (3 wt%) is perfect for hydrogen
adsorption and enhances HER activity. The particular combination of α-Fe2O3 helps to improve the
redox sites between the ZnO and α-Fe2O3 heterojunction to increase the conductivity. Further, the
incorporation of Fe could enhance the adsorption of water on the surface of the nanocomposites.
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This leads to the transfer of electrons to the water molecules, thereby accelerating the formation of
Hads. Thus, the increased HER activity of ZnO/α-Fe2O3 (3 wt%) probably originates in the facile
charge transfer between the catalyst and the water molecules. From these results, we observed that the
HER performance from a negative electrode arose from the reduction of the protons to H atoms on
the ZnO/α-Fe2O3 nanorod composites and produced hydrogen gas with the recombination of two H
atoms. Moreover, acidic electrolytes of 0.5 M H2SO4 were used, which is beneficial for the production
of hydrogen for the large supply of H+ ions in the solution.Crystals 2020, 10, x FOR PEER REVIEW 11 of 14 
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Figure 7. Hydrogen evolution reaction (HER) activity of ZnO; ZnO/α-Fe2O3(1 wt%);
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4. Conclusions

The fabrication of ZnO nanorods/α-Fe2O3 composites was effectively prepared by the hydrothermal
method. The synthesized photocatalyst demonstrates superior photocatalytic efficiency with moderate
hydrogen evolution. The ZnO/α-Fe2O3 nanocomposites show the best HER results when compared
with other ZnO and α-Fe2O3 materials. The photogenerated electrons were successfully separated
and transferred, and the recombination of electron–hole pairs was avoided; thus, ZnO/α-Fe2O3

significantly improves the photocatalytic hydrogen production performance of the nanocomposites.
The main advantages of this unique architecture, the ZnO/α-Fe2O3 nanocomposites, can provide
a large number of active sites, and the highly conductive Ni foam can promote the transfer of
electrons. The three-dimensional-networked structure can facilitate the diffusion and penetration of
the electrolyte. Electrochemical measurements reveal that ZnO/α-Fe2O3 on Ni foam electrodes exhibits
greatly improved performance for HER with a low onset overpotential (−125 mV). The achieved results
will open up the fabrication of ZnO-based hybrid devices with low-cost materials.
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