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Abstract: While light-emitting nanostructures composed of group-IV materials fulfil the mandatory
compatibility with CMOS-fabrication methods, factors such as the structural stability of the
nanostructures upon thermal annealing, and the ensuing photoluminescence (PL) emission properties,
are of key relevance. In addition, the possibility of improving the PL efficiency by suitable post-growth
treatments, such as hydrogen irradiation, is important too. We address these issues for self-assembled
Ge quantum dots (QDs) that are co-implanted with Ge ions during their epitaxial growth. The presence
of defects introduced by the impinging Ge ions results in pronounced PL-emission at telecom
wavelengths up to room temperature (RT) and above. This approach allows us to overcome the
severe limitations of light generation in the indirect-band-gap group-IV materials. By performing
in-situ annealing, we demonstrate a high PL-stability of the defect-enhanced QD (DEQD) system
against thermal treatment up to 600 ◦C for at least 2 h, even though the Ge QDs are structurally
affected by Si/Ge intermixing via bulk diffusion. The latter, in turn, allows for emission tuning of
the DEQDs over the entire telecom wavelength range from 1.3 µm to 1.55 µm. Two quenching
mechanisms for light-emission are discussed; first, luminescence quenching at high PL recording
temperatures, associated with the thermal escape of holes to the surrounding wetting layer; and second,
annealing-induced PL-quenching at annealing temperatures >650 ◦C, which is associated with
a migration of the defect complex out of the QD. We show that low-energy ex-situ proton irradiation
into the Si matrix further improves the light emission properties of the DEQDs, whereas proton
irradiation-related optically active G-centers do not affect the room temperature luminescence
properties of DEQDs.
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1. Introduction

Practical, Si-compatible, monolithically-integrated lasers are the main missing ingredient towards
the realization of efficient and low-cost integrated silicon photonics circuits that are designated to
uplift fields of on-chip data communication [1–3] and on-chip sensing [4]. There has been substantial
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recent progress in the field ranging from the integration of III-V quantum dot (QD)-lasers on Si [5–7]
to all-group-IV approaches [8–12]. Independently of the fabrication method used, the stability of the
light emission with respect to the typical thermal budget of a CMOS process is of key importance.
Concerning fast communication, monolithic light sources have the distinct advantage of possible
front-end integration, i.e., placing the photonics layer in-between the CMOS and the metallization
layers. Front-end integration is preferred, compared to back-side or back-end integration, since slow
electrical driving of the integrated optics devices through vias (back-side) or the slowest metallization
layers (back-end) can be avoided [13]. For front-end integration, the thermal budget of the photonics
layer, including the fabrication of the light-emitters, must not deteriorate the underlying CMOS layer.
Moreover, the thermal budget applied during the fabrication of the subsequent metallization layer must
not impede the structural and optical properties of the photonics layer. For the former, thermal budgets
of 6 h at 425 ◦C, 1 h at 450 ◦C, and 0.5 h at 475 ◦C are acceptable, [14] while for the latter, the photonics
layer has to withstand annealing in the temperature range of at least 350 ◦C to 475 ◦C, depending
on the actual metallization layers typically consisting of Al, AlSi, TiN, W, WSi, AlCu, or Cu [14,15].
The light sources themselves should furthermore withstand continuous operating temperatures of at
least 95 ◦C, the typical maximum operation temperature specified for microprocessors [16]. Due to the
thermal stability of its output characteristics, quantum dot-based gain material is preferred over bulk
and quantum well emitters for such an environment [17].

In this work, the investigated Si-based photonic material contains so-called defect-enhanced
quantum dots (DEQDs) [10,18,19]. These consist of epitaxial Ge/Si QD light-emitters, the optical
properties of which are enhanced through the intentional implantation of Ge ions during QD formation.
Since the implantation depth is controlled by the ion energy [18], low-energy ion implantation
(<2 keV) allows for confinement of the defects to the QDs. The resulting defect sites were found to
enhance light emission significantly, by overcoming the fundamental limitations of Ge/Si QD light
emitters, namely (i) the indirect energy bandgap, (ii) charge carrier separation due to the type-II
band alignment of the Ge/Si heterointerface, and (iii) efficient carrier trapping [10,18,19]. In this way,
both, photoluminescence (PL) [10,20] and electroluminescence (EL) emission [21] of DEQDs were
demonstrated at room temperature (RT), and even above.

The main temperature steps during the fabrication of DEQDs fulfil the aforementioned criteria
regarding CMOS and metallization degradation, as discussed in Section 2. Concerning front-end
implementation of DEQD light emitters, the resilience of their structural and optical properties against
the thermal budget employed in the subsequent metallization and passivation layers is investigated in
this work.

While hydrogen passivation is mandatory for silicon photovoltaic devices [22], it is also employed
in CMOS fabrication processes for the passivation of defects in silicon [23]. Therefore, we also address
the influence of low-energy ex-situ proton irradiation on the optical properties of DEQDs and the
surrounding Si layers for different thermal annealing conditions.

2. Materials and Methods

The DEQD samples were grown in a SIVA-45 molecular beam epitaxy (MBE) system (RIBER,
Paris, France) on high-resistivity (>5000 Ωcm) Si(001) substrates. After a standard substrate cleaning
process, including Piranha solution and RCA cleaning [24], the samples were dipped for 30 s in diluted
hydrofluoric acid (HF 1%), to remove the native oxide before their introduction into the load lock
vacuum chamber. The samples were degassed at 720 ◦C for 15 min before the growth of a crystalline Si
buffer layer of 50 nm thickness at a growth temperature (TG) of 500 ◦C. Note that this high degassing
temperature is not mandatory for DEQD formation, and that, in principle, any TG higher than ~400 ◦C
can be employed, above which the hydrogen termination of the HF-dipped Si surfaces starts to
desorb [25]. Thus, the degassing process can be readily adapted to ensure CMOS-compatibility.

For the self-organized, strain-driven growth of QDs, 7.3 Å of Ge were deposited at TG = 500 ◦C.
This leads to the formation of QDs in “hut-cluster” shape [26,27] on a Ge-rich wetting layer (WL) [28].



Crystals 2020, 10, 351 3 of 14

Hut clusters are elongated pyramidal structures terminated by {105}-oriented crystal facets [26]. For the
given growth conditions, the typical QD height and density are ~1.4 nm to 2 nm, and 2 × 1010 cm−2,
respectively. During the entire QD deposition process, Ge ions with a dose of about 104 µm−2 and
an energy of 1.5 keV were impinging onto the sample surface. This low energy leads to implantation
depths of roughly 1–2 nm for the positively charged Ge ions which, in turn, corresponds to the
average height of the Ge hut clusters. Finally, the implanted Ge QDs were capped with a Si matrix
of 70 nm thickness, which was deposited during a ramp-up of TG from 475 ◦C to 500 ◦C. Hereafter,
the samples were annealed in-situ for 2 h at six different temperatures TA, ranging from 500 ◦C up
to 675 ◦C. In addition, a reference sample was grown with the same layer sequence, but without the
annealing step.

Each sample was cut into four parts. Hydrogen passivation experiments with a low-energy (100 eV)
Kaufman source [29–32] were performed on three of these. To enhance hydrogen diffusion, the sample
temperature during hydrogen treatment was always kept at 300 ◦C. The three pieces from each
sample were exposed to proton irradiation doses of 5 × 1017 cm−2, 1 × 1018 cm−2, and 2.5 × 1018 cm−2,
respectively.

For the spectroscopic investigation, the samples were placed in a helium flow cryostat with
a heatable cold finger that allows sample temperatures (TPL) between 4 K and 350 K. The samples were
excited using a fiber-coupled continuous-wave diode laser with an emission wavelength of 442 nm,
and maximum output power of up to 3 mW. A microscope objective with a numerical aperture of
0.7 focused the laser to the sample surface, resulting in a laser spot diameter of ~2 µm. The resulting
PL signal was collected by the same objective, fiber-coupled to a grating spectrometer and detected
by a liquid nitrogen-cooled InGaAs line detector (Princeton Instruments OMA V, Trenton, NJ, USA),
with a cut-off wavelength of 1580 nm.

3. Results and Discussion

3.1. DEQD Nanostructures

The present understanding of the formation process of DEQDs and the reason for their superior
optical properties are as follows: The implantation of Ge ions of low energies (<2 keV) during the
QD growth leads to a partial amorphization of the QD’s crystal lattice. The subsequent solid-phase
recrystallization at growth temperature has to remain incomplete, since an additional Ge atom was
brought into a nanostructure which had perfect crystallinity before the ion implantation process.
According to theoretical modelling, recrystallizing the structure results in the formation of a split-[110]
self-interstitial [18] surrounded by a distorted Ge QD crystal lattice region consisting of about 45 atoms.
These results suggest that it is this interstitial defect and the surrounding distorted crystal that are
responsible for the enhanced light-emission properties of DEQDs at room temperature. The defect
system introduces electronic states at the Γ-point of Ge, from where electrons directly recombine with
holes confined by the large band offsets of the Si-Ge-Si QD heterostructure. Electrons tunnel from the
surrounding Si matrix into these states, and this tunneling process is independent of temperature.

Therefore, we previously assumed [18] that the only mechanism leading to an eventual PL
quenching at temperatures above ~300 K is caused by QD ionization, i.e., thermal escape of holes from
the QD’s valence band potential well, induced by the band offsets of the Si-Ge-Si heterostructure to the
Si matrix. However, no proof has been given so far for the assumption that hole-escape to the Si matrix
is indeed the major mechanism for PL decay at high temperatures. As will be shown, this picture is
indeed not fully adequate.

3.2. In-Situ Annealing of DEQDs

To study the influence of thermal hole-escape on the PL decay and the activation energy barrier for
defect migration EA(migr), the same growth conditions for the Si matrix and the DEQDs were applied
for all in-situ annealed samples. The annealing time was 2 h in all cases, and the only parameter varied
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was the annealing temperature TA, which was systematically changed within the range from 500 ◦C to
675 ◦C.

Figure 1 depicts PL spectra for the annealed samples, as well as for a pristine reference sample
(grey) recorded at temperatures of TPL = 10 K (Figure 1a) and TPL = 300 K (Figure 1b). For low TPL,
and low TA of 500 ◦C, we observe that sample annealing for 2 h leads to an increase of the integrated
PL intensity, IPL, of the DEQD signal, but does not significantly change the spectral shape of the PL
signal. Increasing TA results initially in a further improvement of IPL, followed by saturation in the TA

range from 600 ◦C to 650 ◦C. However, a further slight increase of TA from 650 ◦C to 675 ◦C leads to
almost complete quenching of the PL intensity.
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Figure 1. Photoluminescence spectra of defect-enhanced quantum dots (DEQDs) samples recorded
at TPL = 10 K (a) and room temperature (b). The DEQD samples were in-situ annealed for 2 h at
temperatures TA of 500 ◦C (violet), 550 ◦C (dark blue), 600 ◦C (light blue), 625 ◦C (green), 650 ◦C
(orange), and 675 ◦C (red). The spectrum of the pristine reference sample is depicted in grey.

The second obvious result of Figure 1a is a strong blueshift of the PL peak wavelengths (energies)
from ~1520 nm (0.816 eV) for TA = 500 ◦C to 1330 nm (0.93 eV) for TA = 650 ◦C. At room temperature
(TPL = 300 K, Figure 1b), this blueshift is present as well. The peak energy shift of the PL signal with
increasing TA is plotted in Figure 2b, for TPL = 10 K and TPL = 300 K. As already seen in the PL spectra
in Figure 1, the PL shifts for both TPL monotonously to higher energies with increasing TA. Note that
all peak maxima of the spectra recorded at TPL = 300 K are also offset to the blue by 9.8–17.1 meV,
as compared to the maxima observed at TPL = 10 K.

In contrast to the spectra recorded at TPL = 10 K, the PL signal measured at TPL = 300 K shows
the onset of quenching already at TA ≥ 600 ◦C. The obtained values for IPL versus TA are plotted in
Figure 2a for TPL = 10 K and TPL = 300 K, respectively. In a previous publication [18] we have argued,
just on the basis of room-temperature PL measurements, that the decay of the DEQD PL with high
TA is likely related to thermally-induced migration of the defect complex from the QD into the Si
matrix. There, we extracted an activation energy EA(migr) of 3.4 eV for this process, which is indicated
in Figure 2a by the Arrhenius fit to IPL(TA).
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Figure 2. (a) Integrated photoluminescence (PL) intensity recorded at sample temperatures (TPL) = 10 K
and TPL = 300 K versus sample annealing temperature, TA. The solid line in (a) is a fit to the activation
energy for the decay of the integrated 300 K-PL intensity with increasing TA. (b) PL peak energy for
samples in-situ annealed at temperatures ranging from TA = 500 ◦C to 675 ◦C, recorded at PL sample
temperatures TPL of 10 K and 300 K. The color of the arrows links the data points to the spectra in
Figure 1.

For the data recorded at TPL = 10 K, the same Arrhenius fit cannot be performed, as the fit does not
converge. However, it is evident already, from the comparison between the low and high TPL spectra
in Figure 1, that a significant difference in EA(migr) has to exist. In the next paragraph, we argue that
the EA(migr) value extracted from the PL intensities at TPL = 300 K presents a lower limit to describe the
migration of the defect out of the DEQD structure. In addition, the PL signal is affected by spurious
PL quenching, due to a reduction of the hole binding energy that is caused by intermixing of the
Si/Ge/Si interfaces upon annealing. Still, the observed large lower limit of EA(migr) = 3.4 eV rationalizes
the resilience against thermal budgets of the DEQDs, that allows, for example, DEQD annealing at
600 ◦C for 2 h without loss of PL yield. Moreover, it was shown recently that DEQDs withstand
thermal annealing, even for temperatures up to 800 ◦C, during 3–20 ms long flash-lamp annealing
processes that are suitable for dopant activation [33], again demonstrating the robustness against
thermal treatment of this nanosystem.

To gain further insight into the optical response of DEQDs, we recorded PL spectra in the TPL

range between 10 K and 300 K, as shown in Figure 3. The quenching of IPL with increasing TPL

beyond 140 K shows Arrhenius-type behavior. From these curves, we extracted activation energies
of EA(ref) = 255 meV, EA(600) = 190 meV, EA(625) = 157 meV, and EA(650) = 124 meV for the reference
sample and the samples annealed at TA = 600 ◦C, 625 ◦C, and 650 ◦C, respectively.

Since these activation energies for PL quenching decrease very strongly with increasing annealing
temperature TA, it is immediately clear that the activation energy for defect migration EA(migr) cannot
be extracted from the single experiment at TPL = 300 K reported in [18]. Evidently, quenching of the PL
intensity at TPL = 300 K is affected by both defect migration and hole escape.
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Figure 3. Arrhenius plot of integrated PL intensity (IPL) versus 1000/TPL. Dark grey open squares
denote the signal from the reference samples, green open upward triangles, orange open downward
triangles, and light-blue open circles denote those of samples annealed in-situ at 600 ◦C, 625 ◦C,
and 650 ◦C. The inset highlights the quenching of IPL with increasing TPL. The solid lines are fits
of the activation energies with activation energy (EA) (ref) = 255 meV for the non-annealed sample,
and EA(600) = 190 meV, EA(625) = 157 meV, and EA(650) = 124 meV for samples annealed at 600 ◦C,
625 ◦C, and 650 ◦C, respectively.

To assess the structural changes induced by two hours of annealing at TA, we started from the
experimental values of the PL peak positions at TPL = 10 K for different TA. For the non-annealed
sample (grey spectrum in Figure 1a), we assume for simplicity a box-like Ge composition profile with
100% Ge content along the growth direction for both the QD and the WL. This should be reasonably
close to reality, since at the low employed TG = 500 ◦C, trench-formation concomitant with Si-Ge
intermixing is suppressed [34]. Slight differences in the Ge content, e.g., between 90% and 100%,
are in general difficult to determine experimentally. Also, asymmetric smearing out of the initial Ge
box profile induced by surface segregation can be assumed at the employed capping layer growth
temperature of 475 ◦C [35]. However, this effect dominates the optical properties only for much thinner
nanostructures such as very thin wetting layers (<3 ML thickness), as only the topmost monolayers of
the nanostructure are affected by surface segregation at this growth temperature [35]. We justify the
approximation of the box-like profiles a posteriori, as the bulk-diffusion induced blurring of the Ge
composition is affecting the QD and WL potential much more significantly.

For the different TA, we assume a degradation of the Ge profiles through bulk diffusion
according to the model given in [36], which was already successfully applied for Ge/Si nanostructures
and heterointerfaces [37]. Also, we assume that the initial state of the PL transition, i.e.,
the split-[110]-interstitial in the QDs, virtually does not shift in energy as a consequence of Ge
diffusion. This assumption appears to be reasonable, as this defect probes the local Ge environment.
Especially in the center of the QD, where the defect is most effective, this concentration does not
decay below ~80% of its initial value and, thus the corresponding modifications of the defect’s energy
levels are expected to be small, and were neglected. The height-to-base-length aspect ratio of our
hut clusters is <0.1. Therefore, we modelled the DEQDs also as quantum wells, both for solving the
Ge bulk diffusion equation, and for calculating the ground state energy of the holes confined to the
resulting SiGe layer with locally varying Ge concentration. For the energy level calculations, we used
the 6-band k·p envelope function approach described in [38], with the band parameters given in [39].
The heavy-hole ground state (HH1) energy in the DEQDs and the surrounding WL after Ge bulk
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diffusion were calculated as a function of the Ge diffusion length LD, assuming that the Ge diffusion
constant is independent of the Ge concentration for the limit of high Ge concentrations as used in this
work. A comparison of the observed DEQD-PL shifts for different TA to the calculated HH1 energy
shifts allows us to determine for each TA a value for LD for which the calculated HH1 energy shift and
the measured PL shift coincide. For the different TA used in this work, the resulting Ge profiles and
the HH1 energy levels for the QD and WL potentials are shown in Figure 4a,b.
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surrounding wetting layer (WL) (height 0.7 nm), respectively. (c) Side-view scheme and (d) top-view
scheme of thermal hole-escape from the QD potentials to higher-energy states in the WL potential,
leading to spatial electron-hole-pair separation and thermally induced luminescence quenching.

In addition to the shift of the PL peak as a function of TA, our model also predicts a value for the
ionization energy of the holes in the HH1 DEQD state that dominates PL quenching via the thermal hole
emission from the QD to the higher energy states in the WL, as schematically indicated in Figure 4c,d.
For the LD values and the corresponding shapes of the confinement potentials that correctly reproduce
the observed PL shifts, the extracted hole ionization energies also agree well with the experimentally
observed activation energies for PL quenching. Thus, we are able to describe two independent
experimental quantities (PL- and EA-shifts with TA) with one parameter, LD. These findings justify
a posteriori our model assumptions.

From the shift of the PL transition energy with TA and the correlated diffusion lengths LD = (D·τ)0.5,
where D is the diffusion constant and τ the total annealing time (7200 s), we can additionally determine
the activation energy EA,diff for bulk diffusion for Ge in Si. From D(T) = D0·exp(−EA,diff/kT) we
extract an activation energy of EA,diff = 1.4 eV and the diffusion constant at infinite temperature,
D0 = 1.7 × 10−12 cm2/s. The value for EA,diff is surprisingly low compared to the reported values in the
literature for coherent, i.e., defect-free, bulk crystals, which are typically about ~3 eV [40,41]. Diffusion
of highly strained Ge in Si was, however, not investigated thus far. Here, we argue that it is the highly
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strained region around the split-[110] self-interstitial [18] that leads to the significant lowering of EA,diff.
Furthermore, the disorder in the crystal, induced by the Ge ion implantation, might enhance vacancy
formation, the main driving factor for bulk diffusion [42].

3.3. H-Irradiation Treatment of DEQDs

Hydrogen passivation is an indispensable tool for improving the electrical and optical quality
of silicon in applications ranging from solar cells to CMOS technology to emission improvement of
GeSi nanostructures [23,43,44]. DEQDs—the optically active material in this work—are surrounded by
crystalline Si; the Si float-zone substrate, and the epitaxial Si buffer and capping layers.

Process steps, such as sample cleaning before growth, imperfect Ge ion implantation through the
QD layer into the Si buffer layer, or the growth of the Si epilayers itself might lead to the introduction of
point defects, which might not be detectable using methods such as transmission electron microscopy
(TEM). Furthermore, it is known that the presence of larger crystal defects, such as stacking faults or
misfit dislocations, leads to significant PL quenching from SiGe QD emitters [45], which makes the
interpretation of the observed changes of the PL yield with respect to the performed in-situ/ex-situ
treatments impossible. However, such extended defects are not observed in our samples, as evidenced
by the TEM micrographs in Figure 5. Nevertheless, point defects might still limit the PL yield of
DEQDs by the non-intentional introduction of non-radiative recombination paths in the Si matrix.
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Figure 5. Cross-sectional TEM images of DEQDs grown at 500 ◦C and embedded in a crystalline Si
matrix. (a) High-resolution phase-contrast image of a not-annealed reference sample. (b) Bright-field
and (c) high angle annular dark field STEM images of DEQDs annealed at 625 ◦C for 2 h. No indications
of extended defects are visible in the Si buffer and Si capping layers.

In Figure 6 we present the PL-response of a series of samples annealed at TA = 600 ◦C and
recorded at TPL = 300 K (Figure 6a) and TPL = 10 K (Figure 6b). Besides an untreated reference sample,
the samples underwent an additional low-energy proton irradiation treatment with various irradiation
doses (5 × 1017 cm−2, 1 × 1018 cm−2, and 5 × 1018 cm−2). For these samples and hydrogenated samples
that were previously annealed at other TA, the integrated PL intensity is given in Appendix A.
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Figure 6. PL spectra recorded at (a) TPL = 300 K and (b) TPL = 10 K of a reference sample annealed
at TA = 600 ◦C. In addition to the untreated sample (black curve), samples have been investigated
that underwent H-implantation with implantation dose of 5 × 1017 cm−2 (green curve), 1 × 1018 cm−2

(blue curve), and 2.5 × 1018 cm−2 (orange curve).

Figure 6a reveals that for moderate low-energy proton irradiation doses of 5 × 1017 cm−2 and
1 × 1018 cm−2, IPL emitted from the DEQDs (Figure 6, green and blue curves) can be increased by
48% and 89%, respectively, as compared to the untreated reference sample (Figure 6, black curve).
In contrast, the highest investigated H-implantation dose leads to a 63% decrease of IPL. At TPL = 300 K,
the shape of all PL spectra is similar, except for a slight increase of the full width at half maximum of
≈29 meV for some of the H-treated samples. The PL response recorded at TPL = 10 K, however, reveals
that H-implantation causes changes in the carrier recombination paths, and thus in the shape of the
PL spectra. An additional peak at wavelengths between 1200 nm and 1300 nm appears that is absent
in the DEQD reference sample without low-energy proton irradiation and has not been observed in
DEQD samples before [10,18–21]. This additional peak exhibits a systematic shift to higher energies
with increasing proton irradiation dose. It can be assigned to so-called G-centers that are ascribed in
the literature to the formation of Si-C vacancy clusters in Si [46].

The PL response from the low-energy proton-irradiated sample with a dose of 1 × 1018 cm−2 is
shown in Figure 7 (black curve) over a TPL range from 20 K to 300 K. These spectra are compared to
the ones of the not-H-treated DEQD sample (blue spectrum in Figure 7). Additionally, we compare the
signal to another reference sample that contains only the Si layers, but no Ge DEQD layer. The PL
response of this Si sample, which underwent the same proton irradiation treatment as the DEQD
sample, is depicted in red in Figure 7. For both H-treated samples, the peak intensity associated
with the G-center defect quenches already at TPL <120 K. For TPL >120 K, the spectral shapes of the
hydrogen-treated DEQD sample and DEQD-reference coincide.

The corresponding temperature dependence of IPL for DEQDs, proton-irradiated DEQDs,
and proton-irradiated Si are plotted in Figure 8. As mentioned before, EA(600) amounts to 190 meV.
This value slightly improves to 210 meV for the DEQD sample treated with hydrogen. For the
proton-irradiated Si epilayer, a low activation energy of 40 meV was found for the G-center related PL
signal. The results of Figures 7 and 8 indicate that the PL signal associated with the G-center is caused by
structural changes in the Si capping layer upon low-energy proton irradiation, whereas the PL-results
confirm that the DEQD layer is structurally not affected by H-treatment. Moreover, the light-emission
improvement observed for the H-treated samples at TPL = 300 K proves that H-treatment is a valid tool
to be combined with group IV nanostructures, since non-radiative recombination in the Si cladding
layers can be suppressed.
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Figure 8. Arrhenius plots of the decay of the integrated PL decay with increasing temperature of the
pristine DEQD reference sample, as well as the H-implanted DEQD sample and the irradiated silicon
reference. The defect-related PL associated with the H-irradiation damage in Si has a much lower
activation energy for thermal quenching (40 meV) than the DEQD-related PL.
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4. Conclusions

We demonstrate that DEQD light-emitters can withstand a high thermal budget of at least up
to 600 ◦C over 2 h, which makes them compatible with front-end integration in CMOS processes.
Two main reasons for the quenching of the PL emission from DEQDs have been identified. First,
at high luminescence temperatures, quantum dot ionization occurs by the escape of heavy holes from
the deep valence band potentials to the higher energy states in the surrounding wetting layer (up to
250 meV). Second, at high annealing temperatures (TA >650 ◦C), defect migration out of the QD occurs,
which quenches the PL intensity at all TPL. The latter is associated with a surprisingly high activation
energy, larger than 3.4 eV. We showed that annealing at moderate temperatures of 500 ◦C to 550 ◦C,
as well as low-energy ex-situ proton irradiation, are advantageous technology steps to improve the
optical properties of DEQDs by the curing and passivation of point defects in the Si matrix surrounding
the DEQDs.
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Appendix A

Figure A1 depicts a summary of the integrated PL intensities for the reference sample and the
annealed samples at TA, as well as the samples that underwent low-energy proton irradiation treatment.
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Figure A1. Integrated PL intensity for samples treated with different TA and hydrogen curing conditions.
Red and black data points were extracted from measurements at TPL = 300 K and 10 K, respectively.
Open symbols correspond to IPL from the DEQDs only, while full symbols indicate IPL from both
DEQD emission and the light emission originating from the low energy proton irradiation.
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