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Abstract: In this study, the durability of polyvinyl alcohol fiber-reinforced cementitious composite
containing nano-SiO2 was evaluated using the adaptive neuro-fuzzy inference system (ANFIS).
According to the structural characteristics of the cementitious composite material and some related
standards, the classification criteria for the evaluation indices of cementitious composite materials
were clarified, and a corresponding structural framework of durability assessment was constructed.
Based on the hypothesis testing principle, the required test data capacity was determined under
a certain degree of accuracy, and durability experimental data and expert evaluation results were
simulated according to statistical principles to ensure that there were sufficient datasets for ANFIS
training. Using an environmental factor submodule as an example, 14 sets of actual test data were
used to verify that the ANFIS can quickly and effectively mimic the expert evaluation reasoning
process to evaluate the durability of cementitious composites. Compared with other studies related
to the durability of cementitious composites, a systematic evaluation system for the durability of
concrete was established. We used a polyvinyl alcohol fiber-reinforced cementitious composite
containing nano-SiO2 to conduct a comprehensive evaluation of cementitious composites. Compared
with the traditional expert evaluation method, the durability evaluation system based on the ANFIS
learned expert experience, stored the expert experience in fuzzy rules, and eliminated the subjectivity
of expert evaluation, thereby making the evaluation more objective and scientific.

Keywords: cementitious composite; nano-SiO2; PVA fiber; durability evaluation; adaptive
neuro-fuzzy inference system

1. Introduction

Reinforced concrete has served in the construction industry for 140 years [1] since the French
engineer Abeck first manufactured reinforced concrete floors in 1879. However, many instances of
prematurely failed reinforced concrete have occurred for various reasons [2], resulting in structures
failing and failing to reach their specified service life and causing many casualties and property
losses. Concrete cannot be used normally and requires much manpower and material resources for
maintenance when it loses durability [3]. In addition, structures cannot operate normally and result in
great economic losses [4]. Therefore, it is extremely important and necessary to improve the durability
of reinforced concrete structures. The most common factor affecting the durability of concrete structures
is the crack propagation [5]. The reason for concrete cracking is mainly the structure and components
of a cementitious composite material being subjected to compressive stress. However, in most cases,
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components develop internal cracks resulting from tensile stress owing to temperature deformation,
shrinkage deformation, composite creep, chemical erosion, and mechanical load [6]. Environmental
factors also directly affect the durability of cementitious composite materials, such as freeze–thaw
cycles [7], chloride penetration [8], and changes in temperature and humidity [9]. Furthermore,
cementitious composites have heavy weight, high brittleness, and low tensile strength, which can
lead to the brittle fracture and sudden failure of structures and components. These disadvantages
have largely limited the wide application of gelled composites and affected the durability of gelled
materials [10]. To solve the shortcomings of cementitious composites in the tensile state and to
improve the durability of structures and components, researchers have incorporated various fibers into
cementitious composites to enhance the toughness of their matrices and to improve their properties.
The effects of fibers such as polyvinyl alcohol (PVA) fiber [11], discontinuous microfibers [12],
polypropylene fiber [13], steel fiber [14], carbon fiber [15], polyester fiber [16], and nano silica [17]
have been investigated. Among the various fibers, PVA fiber is a commonly used gelled composite
fiber [18]. Scholars have conducted research on nanometer-doped PVA fiber-reinforced cementitious
composites, including work performance, crack resistance, basic mechanical properties, bending
resistance [19], durability [20], and microscopic mechanism [21]. A large number of research results
show that the incorporation of nanoparticles improves the frost resistance and impermeability of
cementitious composites materials [22].

However, at present, there have been relatively few studies on the durability evaluation of
PVA fiber-reinforced cementitious composites containing nano-SiO2, and the durability evaluation of
cementitious composites is not perfect [23]. The traditional expert evaluation method relies too much
on the experience of experts. Inevitably, the durability assessment results of a cementitious composite
material will be deviated from the actual situation according to the subjective opinions of experts. It is
necessary to establish a more objective, scientific, and effective evaluation method for gelled composite
materials [24]. Although expert evaluation has been the longest and most widely used durability
assessment method [25], two other methods of durability assessment of cementitious composites exist.
One is the comprehensive evaluation by means of neural networks [26], and the other is reliability
theory based on reliability mathematics [27]. Zhou et al. (2017) utilized gray system theory to evaluate
the durability of concrete. Their calculation process was simple and suitable for practical engineering
applications, but the value of its resolution coefficient needs to be further optimized and verified [28].
Yu et al. (2017) proposed a probabilistic framework for the durability assessment of concrete structures
using reliability and sensitivity analysis based on the uncertainties of the environment and materials in
a marine environment [29]. The adaptive neuro-fuzzy inference system (ANFIS) proposed by Jang in
the 1990s is a fuzzy inference system that combines the organic combination of fuzzy logic and neural
networks [30]. A fuzzy inference system is suitable for expressing fuzzy experience and knowledge
but lacks an effective learning mechanism [31]. Neural networks have a self-learning function but
cannot express the reasoning of human brain [32]. The ANFIS uses the back-propagation algorithm
and least squares method to learn to adjust the premise parameters and conclusion parameters, which
can automatically generate If-Then rules. The expert experience contained in the fuzzy rules provides a
certain physical meaning to the neural network and allows it to eliminate the black box disadvantages
while avoiding the poor learning ability of the fuzzy inference system [33]. At present, many scholars
are applying the ANFIS for condition assessment and performance prediction [34–38]. Xu et al. (2016)
developed an underwater structural condition assessment system for a bridge based on the ANFIS to
provide a good application effect [39]. Wang et al. (2015) used the ANFIS inference system to establish
a prediction model for the compressive strength of hollow concrete block masonry. The accuracy of the
prediction was significantly better than that of the current standard calculation model [40].

This study applied the ANFIS inference system to assess the durability of PVA fiber-reinforced
cementitious composites containing nano-SiO2. According to the structural characteristics of
cementitious composites and some related standards [41–44], the classification criteria for the evaluation
indices of cementitious composite materials were clarified and a structural framework for durability
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evaluation was constructed. According to the hypothesis testing principle, the required test data
capacity was determined under a certain degree of accuracy. The durability experimental data and
expert evaluation results were simulated according to statistical principles to ensure that there were
sufficient datasets for the ANFIS training. Using the environmental factor submodule as an example,
14 sets of actual test data were used to verify that the ANFIS can quickly and effectively mimic the
expert evaluation reasoning process to evaluate the durability of cementitious composites. Japanese
scholars improved the traditional expert evaluation method and proposed a comprehensive evaluation
method for buildings. The comprehensive evaluation through three surveys reduced the subjective
influence of experts, but the overall evaluation cost was high, and the workload was large [45].
Xu et al. (2019) used the durability evaluation of concrete aqueducts in Gansu Province and the fuzzy
analytic hierarchy process (FAHP) to establish a multi-level and multi-indicator evaluation model
for the durability of concrete buildings. Their model provided an improved characterization of the
durability grade of hydraulic concrete structures and had practical application value [23]. Compared
with the traditional expert evaluation method, the durability evaluation system based on the ANFIS
was more objective and scientific and lowered the evaluation cost and workload. Most studies have
been based on the prediction and evaluation of a certain durability index [46]. In this study, a systematic
durability evaluation system of PVA fiber-reinforced cementitious composite containing nano-SiO2

was established. The ANFIS compensates for the shortcomings of the black box of neural networks and
the lack of learning ability of fuzzy systems. It describes the fuzzy relationship between durability and
the many uncertain factors that affect the durability of cementitious composites, has better applicability,
and provides a new method for durability evaluation of cementitious composites.

2. Principle and Structure of ANFIS

2.1. ANFIS Principle

2.1.1. ANFIS Structure

The typical structure of the ANFIS can be illustrated by two input vectors and one output vector.
The structure diagram is shown in Figure 1, where x1, x2 is the input vector of the two input nodes; R1,
R2, Z1, and Z2 are membership functions, which fuzzify the input vector and then obtain membership
degrees corresponding to different levels; Π is the fixed node mark, and the membership degrees µ in
the second layer are multiplied to obtain the trigger strength weight ω1,ω2 of each rule; N denotes the
calculation of the normalized credibility, the normalization of the strength of each rule, and then the
obtainment of the trigger weight ω1,ω2 of each rule in the overall rule.
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The ANFIS algorithm is described as follows [47]:
Layer 1: Fuzzy processing
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The membership node function is used to obfuscate the vector x1, x2 of the input nodes to obtain
different membership degrees µ. The shape of the membership function depends on the ranking and
value of the previous parameter. Layer 1 is an adaptive unit with the function

O1, j =

{
µAj(x), j = 1, 2
µB( j−2)(x2), j = 3, 4

. (1)

Layer 2: Rule-based reasoning
The memberships µ of the first layer are multiplied to get the trigger strength of each rule as

ωj = µAj(x1) × µBj(x2), j = 1, 2. (2)

Layer 3: Normalization
The trigger strength of each rule obtained in the second layer is normalized to obtain the trigger

proportion of the rule in the entire rule base, that is, the probability of applying the rule in the entire
reasoning process, which is calculated

ω j =
ω j

ω1 +ω 2
, j = 1, 2. (3)

Layer 4: Defuzzification
The output of the fuzzy rules is calculated and the output characteristic parameters of the

antecedent are linearly combined to obtain the output as

O4 j = ω j f j = ω j(f1jx1 + f2jx2 + f3j), (4)

where, ω j is the proportion of the rule relative to the overall rule, and
{

f1 j, f2 j, f3 j

}
is the set of linear

parameters at the nodes.
Level 5: Output

The calculation result of each rule in the fourth step is deblurred to obtain the exact output.
The normalized triggering degrees of each rule are presented as a weighted average as

O5j =
∑

j

ω j f j =

∑
j
ω j f j∑

j
ω j

. (5)

2.1.2. ANFIS Learning Algorithm

The ANFIS uses a hybrid learning algorithm in which parameter learning and adjustment is
performed simultaneously in the forward transfer and reverse transfers. In forward propagation,
the forward parameters are fixed, and when passed to the fourth layer, the backward parameters are
updated by least squares estimation. In back propagation, the backward parameters (parameters in
the rules) are fixed, the partial derivatives of the forward parameters are calculated according to the
loss function (using the chain rule), and the parameters are updated from the reverse direction of the
gradient direction.

In the ANFIS learning algorithm [48], the measurement error is the sum of the mean square errors
determined as

Error =
N∑

i=1

Errori =
N∑

i=1

(Ti −Orji)
2, (6)
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where Errori is the mean square error of the i-th data output, Ti is the expected output of the i-th data
group, and Orji is the r-th component of the i-th actual output group.

According to the chain rule, we obtained the partial derivative of Error for each parameter as

∂Error

∂Orji
= −2(Ti −Orji), (7)

∂Error

∂γ
=
∑
O′∈S

∂Error

∂O′
∂O′

∂γ
, (8)

where {S} is the forward element set, O′ is any of the elements, and γ is the forward parameter.

2.2. System Topology

Based on the idea of rounding to zero, the system consisted of five subsystems to greatly reduce
the complexity of the ANFIS algorithm [49]. The entire system had a tree structure [50]. The parent
node of each subsystem and its child nodes formed a subnet. The parent node was the master node,
and child nodes were slave nodes. Figure 2 is a tree-like network topology diagram of the durability
evaluation of cementitious composites. The concentric circles represent the soundness of the output
durability evaluation indices of the cementitious composites, the large circles represent the evaluation
result of the single index, and the small circles represent the evaluation indicators of the test items.
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3. Durability Evaluation System Based on ANFIS

The durability evaluation system of cementitious composites based on the ANFIS took full
advantage of the complementary advantages of fuzzy systems and neural networks [51]. The ANFIS
used a hybrid algorithm of a back-propagation algorithm and the least squares method to learn to adjust
the premise and conclusion parameters and automatically generate If-Then rules that contain expert
experience in the fuzzy rules. According to the durability evaluation indices and evaluation system,
the ANFIS sequentially evaluated from the bottom test indices to the high-level index. This allowed the
neural network to eliminate the black box disadvantages, gain certain physical significance, and avoid
the poor learning ability of the fuzzy inference system.

Figure 3 presents a framework diagram of the ANFIS for the evaluation of a single indicator.
The inference system is a tree-like network topology structure in which the ANFIS submodules of a
single evaluation indicator are interconnected. In the figure, the wavy line in the input represents the
membership function, and

∑
represents fuzzy synthesis. In the calculation process, the input data

were processed by the membership function to obtain memberships of different grades. Memberships
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were calculated by fuzzy rules with a certain trigger strength and trigger weight, the results of each
rule were obtained, and then the evaluation result of the single index was obtained.
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3.1. Evaluation Index System and Index Grading Standards

3.1.1. Evaluation Index System

The selection of the durability indices of a cementitious composite material followed the principles
of hierarchy, a combination of qualitative and quantitative indicators, and compatibility combined with
actual engineering problems and references [24,52,53]. Each box in Figure 4 represents an indicator,
and indicators are determined by one or more input data. The analytic hierarchy process was used to
establish a durable evaluation system. Five intermediate indicators—raw materials A1, construction
and maintenance B2, environmental factors C3, mix ratio D4, and work performance and strength
E5—were selected and decomposed one by one to obtain 26 leaf indicators. The durability evaluation
index system of cementitious composite materials is presented in Figure 4. The evaluation was
performed from the leaf indices to the intermediate index, and finally the durability evaluation of the
cementitious composite material was obtained.

3.1.2. Classification Standards

A complete evaluation standard for the durability of gelled composites was established using
a percentage system. Considering that some uncertain factors cannot be accurately measured,
the smaller the number of classifications, the higher the reliability of the results of the durability
evaluation. Therefore, the evaluation standard was divided into four or five classification levels.
The five levels were excellent (80–100), good (60–80), qualified (40–60), poor (20–40), and dangerous
(0–20). The four levels were excellent (75–100), good (50–75), qualified (25–50), and dangerous (0–25).
The index classification was performed in accordance with some related standards [41–43] for detailed
quantitative evaluation. The results are presented in Table 1.
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Table 1. Evaluation indices and grading standards.

No Index
Classification

First
Grade

Second
Grade

Third
Grade

Fourth
Grade

Fifth
Grade

1 A11 (7.0, 10.0] (5.0, 7.0] (3.0, 5.0] (2.0, 3.0] (0, 2.0]
2 A12 (7.0, 10.0] (5.0, 7.0] (3.0, 5.0] (2.0, 3.0] (0, 2.0]
3 A13 [3.1, 3.7] [2.3, 3.0] [1.6, 2.2] [0.7, 1.5] (0, 0.6]
4 A14 (2.0,∞) (1.0, 2.0] (0.5, 1.0] (0, 0.5]
5 A15 (25,∞) (15, 25] (8, 15] (0, 8]
6 A16 (16,∞) (12, 16] (10, 12] (0, 10]
7 A17 (∞, 32.5] (32.5, 42.5] (42.5, 52.5] (52.5, 62.5] (62.5,∞)
8 A18 [1.2,∞) (0.8, 1.2] (0.4, 0.8] (0, 0.4]
9 A19 (0.55, 0.65] (0.45, 0.55] (0.35, 0.45] (0.30, 0.35] (0, 0.30]

10 B21 (240,∞) (210, 240] (180, 210] (90, 180] (0, 90]
11 B23 (0, 3] (3, 7] (7, 14] (14, 28] (28, ∞)
12 C31 (50, 60] (60, 70] (70, 80] (80, 90] (90, 100]
13 C32 (75, 80] (80, 85] (85, 90] (90, 95] (95, 100]
14 C33 (35, 45] (30, 35] (25, 30] (20, 25] (5, 20]
15 C34 (30, 100] (20, 30] (10, 20] (0.1, 10] (0, 0.1]
16 D44 [0, 0.3] (0.3, 0.6] (0.6, 0.9] (0.9, 1.2]
17 D45 (0, 0.5] (0.5, 1.0] (1.0, 1.5] (1.5, 1.0] (2.0, 2.5]
18 D46 (0.55, 0.6] (0.50, 0.55] (0.45, 0.50] (0.40, 0.45] (0, 0.40]
19 E51 [31,∞) [21, 30] [11, 20] [6, 10] [3, 5]
20 E53 (0, 200]U(700,∞) (200, 350)U(500, 700) [350, 450) [450, 500]
21 E54 (0, 40) (40, 50] (50, 60] (60, 70] (70, 80]
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3.1.3. Input Items for Durability Evaluation

The indicators used for evaluating the durability of cementitious composites included raw
materials, construction and maintenance conditions, environmental factors, mix ratios, and other
data that can be obtained through experimentation or observations. Two types of input data were
used for the evaluation of the underlying indicators. The first type provided a description of the
state of the cementitious composite material and simply divided it into grades. Such indicators
were qualitative indicators, and the values in 0.1 increments within the range of 0.1–1.0 given by the
gelatinous composite testers or observers were used as input data. The larger the dataset, the better the
durability of the cementitious composite. The second type of data were a single numerical index whose
test index was an interval value, such as, to name two, carbonization depth and water seepage height.
This type of data was imported directly into the system. Depending on the structural characteristics
and durability influencing factors of the cementitious composite material, the system selected the
26 input items shown in Table 2 to evaluate five underlying indicators.

Table 2. Input items for bottom indicators.

Assessment Indicators Input Item

Concrete working behavior Collapsibility, Vebe consistometer, segregation resistance, 28-day
compressive strength

Environment function Relative dynamic modulus of elasticity, cracking resistance ratio, water
seepage height, carbonization depth

Mix proportion
Cementitious material consumption, cement content, ratio of mineral

admixture to cementitious material, PVA fiber content, nano SiO2
content, water–binder ratio

Construction and maintenance Total time between transportation and feeding, concrete vibrating mode,
maintenance time

Raw material

Stone power in fine aggregate, mud in fine aggregate, fineness modulus
of sand, mud in coarse aggregate, elongated and flaky particles of coarse

aggregate, crushing value, 28-day compressive strength of cement
mortar, alkali content of cement, type of mineral admixtures

3.2. Fuzzy Rules

The fuzzy rule represented the mapping relationship between the input data and the evaluation
indices explained here with the construction and maintenance B2 module [54]. The indicator value
(construction and maintenance sound value) was obtained from three input data (total time interval of
transport and conveyance into the mold, concrete vibrating mode, and maintenance time). The form of
the fuzzy rule is:

if x is a, y is b and z is c, then r = px + qy + mz + n (9)

where x, y, and z are the input sets, which are the total time interval of transport and conveyance into
the mold, concrete vibrating mode, and maintenance time, respectively; and r is an output variable
(construction and maintenance status) automatically generated by the training process in actual use.
Taking environmental factor C3 as an example, this submodule had 625 fuzzy rules, all of which
belonged to one fuzzy rule group representing the evaluation index of environmental factors. Other
fuzzy indicators were similar to environmental factor C3. The entire system had five fuzzy rule groups
of ANFIS submodules and one fuzzy rule group for the overall durability evaluation.

3.3. Membership Function

Membership function is the basis of fuzzy control. Common types are Z-type, trapezoidal,
Gaussian, bell-shaped, triangular, and S-type. In practical applications, the appropriate type of
membership function is generally selected based on expert experience and actual conditions. We
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performed a normality test on the existing data. Due to the small number of samples, the normality test
was based on the Kolmogorov–Smirnov (K-S) results. The test results show that the significances were
between 0.7 and 2 greater than 0.05, so the durability of cementitious composites basically followed the
normal distribution. The Gaussian function has the characteristics of smooth symmetry and non-linear
continuous differentiability. After a series of experiments, the system used a Gaussian membership
function to describe the input index as

f (x,θ, a) = e−
(x−a)2

2θ2 (10)

where x is the input index learned during training. Figure 5 provides a schematic diagram of a Gaussian
membership function.
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4. Description of ANFIS Submodule

4.1. Simulation of Test Data

Generation of Simulation Test Data

The more data obtained from the test, the more accurately the trained ANFIS system can reflect the
results of expert evaluation. However, the experimental dataset cannot be too large because obtaining
high-quality large-scale experimental datasets requires much manpower and many material resources.
Using environmental factor C3 as an example, according to the determination method of the sample
size in the hypothesis test, at a 95% confidence level, when the environmental factor score was 4.99 and
the acceptable error range was 1, the required sample capacity was n = (1.96× 4.99/1)2 = 95.65 [55],
of which 1.96 was the critical value at a 95% confidence level. Therefore, 100 sets of simulation data
were capable of meeting the ANFIS training requirements.

The simulation data were the original 14 experimental data, the initial data were all derived
from reference [56] as shown in Table 3, and compositions of mixtures were shown in Table 4.
The mixtures 1–5 and 10–13 were prepared to study the influence of PAV fiber on the durability of
cementitious composites. The mixtures 6–9 were prepared to study the influence of nano-SiO2 on
the durability of cementitious composites. Mixture 14 was taken as the control mixture. The data
generated by the simulation included endurance test results and expert evaluation results. Using



Crystals 2020, 10, 347 10 of 18

the environmental factor C3 subsystem as an example, the test dataset included five data elements,
each group having four test data, and an expert evaluated the results. The method of generating
random numbers by normal distribution and generating expert evaluation results by certain derivation
rules to generate simulation test datasets can solve the problem of a lack of high-quality test data [34].
Therefore, to obtain sufficient training samples and ignore the interaction between the cementitious
composites, the normal distribution method was used to randomly simulate the experimental data
of the cementitious composites. The mean and standard deviation refer to the normal distribution
pattern of the original data as shown in Table 5.

Table 3. Initial data.

No.
Relative Dynamic

Modulus of
Elasticity/%

Cracking
Resistance

Ratio/%

Water Seepage
Height/mm

Carbonization
Depth/mm Score

S1 78.2 85.0 40.2 13.9 13.17767
S2 86.1 87.2 23.1 13.0 21.28441
S3 90.1 92.9 21.2 12.3 24.03373
S4 91.1 97.4 17.5 11.3 25.97210
S5 88.9 99.8 15.4 11.8 26.05322
S6 91.6 97.5 13.7 10.8 26.68299
S7 92.0 97.8 12.1 10.5 27.08332
S8 93.0 98.4 9.9 10.0 27.78438
S9 94.2 99.2 9.0 9.0 28.47065

S10 87.2 94.9 12.3 12.3 25.17145
S11 90.3 97.0 10.4 11.5 26.62340
S12 91.3 99.7 9.9 10.1 27.58360
S13 83.0 52.6 8.5 8.9 22.46571
S14 78.2 85.0 40.2 13.9 13.17767

Table 4. Mix proportions of polyvinyl alcohol (PVA) fiber cementitious composites.

Mix No.
Water Cement Fly Ash Quartz

Sand
Water Reducing

Agent PVA Fiber Nano-SiO2

kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 % %

S1 380 650 350 500 3 0 0
S2 380 650 350 500 3 0.3 0
S3 380 650 350 500 3 0.6 0
S4 380 650 350 500 3 0.9 0
S5 380 650 350 500 3 1.2 0
S6 380 644 350 500 3 0.9 1
S7 380 640 350 500 3 0.9 1.5
S8 380 637 350 500 3 0.9 2
S9 380 634 350 500 3 0.9 2.5

S10 380 637 350 500 3 0.3 2
S11 380 637 350 500 3 0.6 2
S12 380 637 350 500 3 1.2 2
S13 380 637 350 500 3 0 2
S14 380 637 350 500 3 0 0

Table 5. Mean and standard deviation of initial data.

Relative Dynamic
Modulus of
Elasticity/%

Cracking
Resistance

Ratio/%

Water Seepage
Height/mm

Carbonization
Depth/mm

Environmental
Factor Score

88.23 91.74 17.39 11.38 23.97
5.14 12.44 10.63 1.61 4.99
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Using the relative dynamic modulus of elasticity as an example, we selected 100 random numbers
with an average value of 88.23 and a standard deviation of 5.14. The distribution of random numbers
is shown in Figure 6, where C31 is the random number set of the relative dynamic modulus of elasticity
and f is the number of random occurrences. The simulation process was implemented by SPSS
(Statistical Product and Service Solutions, Version 24.0, IBM Corp., Armonk, NY, USA).Crystals 2020, 10, x FOR PEER REVIEW 12 of 20 
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The expert evaluation results to verify system performance were derived from the system’s
original output in accordance with certain rules. There are two generation rules for simulating expert
evaluation results. The first rule is that the normal distribution of expert evaluation data applies
directly to the original data, which is the system output before training. The second rule is that the
expert evaluation data of the original data are independently shifted by different small increments,
which conform to a normal distribution. We first used the second rule to generate twice the number
of expert evaluation results required for the dataset and then divided it into two groups. The small
offset increments were consistent with a mean of zero and a standard deviation of 0.5. The actual data
were used to train the two sets of expert evaluation results to obtain the two trained groups of expert
evaluation results. Then, the two groups of data trained each other to obtain the final simulated expert
evaluation data.

4.2. Implementation of ANFIS Submodule

Using the environmental factor C3 as an example to illustrate the structure of the ANFIS submodule,
Figure 7 shows the ANFIS structural model of C3. There were five layers of network structure, including
four inputs and one output [57]. According to the classification of the durability evaluation index of
cementitious composite material, the membership function structure of the four input units was 5, 5, 5,
5, corresponding to the 20 neural nodes of the second layer; that is, the hierarchical status of each input
unit was 5, 5, 5, 5. The membership function curve is shown in Figure 8. The third and fourth layers
each had 625 neuron nodes corresponding to the structure’s 625 fuzzy rules and the output of each
fuzzy rule. The partial membership function rules are shown in Figure 9. The fifth layer had a sound
value corresponding to C3 of the neuron node. After the ANFIS system was set up, the simulation
experimental data were input into the system for training, and the training process was implemented
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by MATLAB software. After sufficient training, the training error converged to 0.03. The algorithm
training completed at epoch 2. The results of experiments show that the algorithm converges quickly
and has satisfactory training accuracy.
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4.3. Verification of System Learning Ability

The reasoning ability of the ANFIS was measured by the similarity between the initial expert
evaluation result of the test dataset and the evaluation result of the reasoning system. This measurement
reflects the ability of the ANFIS to learn and adjust the parameter value of the membership function
and other parameters according to the given dataset. To verify the reasoning ability of the proposed
system for practical problems, using environmental factors as an example, the above-mentioned ANFIS
system was verified with 14 groups of data obtained from the experiment.

Table 6 shows the comparison of original evaluation results, system output before training and
system output after training. Taking five scores as one grade difference, the number of output status
grades of the system after training that were consistent with the expert evaluation opinions increased
from 5 before training to 12, the number of levels with a difference of 2 or more decreased from 8
before training to 0. In the end, only two data differed by one level. The coincidence rate of the
state grade of the indices evaluated by the system before training was 35.7%, and the grade after
training is increased to 85.7%. The average test deviation of the direct application of the original expert
evaluation data was 10.39, and the average test deviation using the trained expert evaluation data was
reduced to 2.93. This indicates that the learning and reasoning ability of the ANFIS after training was
improved to some extent. Pearson correlation analysis [58] was used to analyze the expert evaluation
and the system output after training to judge the degree of interdependence between the two vectors.
The Pearson correlation analysis results are presented in Table 7. It can be perceived from Table 7 that
the conspicuousness was 0.947. Therefore, according to Pearson correlation analysis, the correlation
was significant [59,60]. The deviation between the reasoning results after ANFIS training and the expert
evaluation results in the test data is shown in Figure 10, where the x-axis is the composite material test
number. After the system was trained, the output results were closer to the expert evaluation results.
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Table 6. Comparison of original evaluation results: system output before training and system output
after training.

Evaluation Indicators Expert Evaluation Data System Output
after Training

System Output
before Training

S1 13.18 12.8 8.25
S2 21.28 19.34 24.31
S3 24.03 22.87 10
S4 25.97 23.64 21.1
S5 26.05 24.75 17.02
S6 26.68 24.11 19.2
S7 27.08 24.83 16.07
S8 27.78 25.05 16.51
S9 28.47 24.81 50.89

S10 25.17 20.17 19.99
S11 26.62 20.43 24.84
S12 27.58 26.25 16.09
S13 22.47 19.36 8.97
S14 13.18 12.8 8.25

Table 7. Results of the correlation analysis.

Project Correlation Coefficient Saliency Number of Cases

Expert evaluation data 1.0 0.947 14
System output after training 1.0 0.947 14

At 0.01 level (double tail), the correlation was significant.
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Figure 10. Comparison between system output before and after training and expert opinion.

The results show that the evaluation results of the system after training agreed well with the expert
evaluation results, and the system after training can quickly and accurately imitate the nonlinear expert
reasoning process. The durability evaluation results of cementitious composite materials obtained
by the ANFIS reflected the durability of concrete to a certain extent. It served as a guide to identify
the weak links, determined the reliability of the existing concrete in time, and acted against the weak
links to strengthen the construction quality and optimize the working performance of the cementitious
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composite materials. For instance, the score of the S1 evaluation index was 12.8, which belongs to
the third level and is relatively low. If the score is lower than the level required by the corresponding
specifications, measures need to be taken to improve it. For example, a secondary mixing method,
sand enveloped with cement paste or a sand and stone binding method, could be adopted to improve
the workability, water retention, and concrete strength.

5. Conclusions

(1) The durability of PVA fiber-reinforced cementitious composites containing nano-SiO2 was
evaluated by using a method based on the ANFIS. Moreover, the classification criteria for the evaluation
indices of cementitious composite materials were clarified, and a corresponding structural framework
of durability assessment was constructed.

(2) The results show that 85.7% of the ANFIS evaluation results were consistent with the expert
evaluation results, and only two data differed by one level, which demonstrates that the system
simulated the nonlinear expert reasoning process quickly and accurately and had good parameter
mathematics. The evaluation results of the ANFIS can serve as a reliable guide for actual concrete
construction and maintenance applications.

(3) Using the ANFIS to evaluate the durability of cementitious composite materials is feasible
in engineering applications. By comparing the results of ANFIS evaluation with a corresponding
evaluation system, the evaluation results can be obtained intuitively. Through the establishment of a
corresponding evaluation index system, the system cannot only be used to evaluate the durability of a
PVA fiber-reinforced cementitious composite with SiO2, but also can be used to evaluate the durability
of ordinary concrete and other cementitious composite materials.

Author Contributions: Conceptualization, T.-Y.L. and P.Z.; methodology, T.-Y.L., Q.-F.L. and S.-W.H.; formal
analysis, T.-Y.L., P.Z., Q.-F.L. and S.-W.H.; investigation, T.-Y.L., P.Z. and Q.-F.L.; resources, P.Z. and S.-W.H.;
writing—original draft preparation, T.-Y.L. and P.Z.; writing—review and editing, Q.-F.L., S.-W.H. and Y.-F.L.;
visualization, Y.-F.L.; supervision, P.Z.; project administration, Q.-F.L.; funding acquisition, P.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the CRSRI Open Research Program (Grant No. CKWV2018477/KY),
National Natural Science Foundation of China (Grant No. 51678534), Open Projects Funds of Dike Safety and
Disaster Prevention Engineering Technology Research Center of Chinese Ministry of Water Resources (Grant no.
2018006) and Program for Innovative Research Team (in Science and Technology) in University of Henan Province
of China (Grant No. 20IRTSTHN009).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kong, X.L. Application of Distributed Optical Fiber Sensing Technology in Monitoring of Steel Corrosion.
Master’s Thesis, Dalian University of Technology, Dalian, China, 2011. (In Chinese).

2. Hooton, R.D. Future directions for design, specification, testing, and construction of durable concrete
structures. Cem. Concr. Res. 2019, 124, 105827. [CrossRef]

3. Zhao, J. Time Variation and Similarity of Chloride Diffusion Properties of Concrete under Dry Wet Cyclic
Environment. Master’s Thesis, Zhejiang University of Technology, Hangzhou, China, 2019. (In Chinese).

4. Zhang, L.L. Study on durability of reinforced concrete structure. Sichuan Build. Mater. 2012, 38, 40–42.
5. Liu, H.Z.; Zhang, Q.; Li, V.; Su, H.Z.; Gu, C.S. Durability study on engineered cementitious composites (ECC)

under sulfate and chloride environment. Constr. Build. Mater. 2017, 133, 171–181. [CrossRef]
6. Ling, Y.F.; Zhang, P.; Wang, J.; Chen, Y.Z. Effect of PVA fiber on mechanical properties of cementitious

composite with and without nano-SiO2. Constr. Build. Mater. 2019, 229, 117068. [CrossRef]
7. Zhang, P.; Wittmann, F.H.; Vogel, M.; Müller, H.S.; Zhao, T. Influence of freeze-thaw cycles on capillary

absorption and chloride penetration into concrete. Cem. Concr. Res. 2017, 100, 60–67. [CrossRef]
8. Fu, C.Q.; Ye, H.L.; Jin, X.Y.; Yan, D.M.; Jin, N.G.; Peng, Z.X. Chloride penetration into concrete damaged by

uniaxial tensile fatigue loading. Constr. Build. Mater. 2016, 125, 714–723. [CrossRef]

http://dx.doi.org/10.1016/j.cemconres.2019.105827
http://dx.doi.org/10.1016/j.conbuildmat.2016.12.074
http://dx.doi.org/10.1016/j.conbuildmat.2019.117068
http://dx.doi.org/10.1016/j.cemconres.2017.05.018
http://dx.doi.org/10.1016/j.conbuildmat.2016.08.096


Crystals 2020, 10, 347 16 of 18

9. Zhao, H.T.; Jiang, K.D.; Yang, R.; Tang, Y.M.; Liu, J.P. Experimental and theoretical analysis on coupled
effect of hydration, temperature and humidity in early-age cement-based materials. Int. J. Heat. Mass. Tran.
2020, 146, 118784. [CrossRef]

10. Dong, W.K.; Li, W.G.; Shen, L.M.; Sun, Z.H.; Sheng, D.C. Piezoresistivity of smart carbon nanotubes
(CNTs) reinforced cementitious composite under integrated cyclic compression and impact. Compos. Struct.
2020, 241, 112106. [CrossRef]

11. Li, L.; Cao, M.L. Influence of calcium carbonate whisker and polyvinyl alcohol- steel hybrid fiber on ultrasonic
velocity and resonant frequency of cementitious composites. Constr. Build. Mater. 2018, 188, 737–746.
[CrossRef]

12. Zhang, D.; Yu, J.; Wu, H.L.; Jaworska, B.; Li, V.C. Discontinuous micro-fibers as intrinsic reinforcement for
ductile Engineered Cementitious Composites (ECC). Compos. Part B 2020, 184, 107741. [CrossRef]

13. Deb, S.; Mitra, N.; Majumder, S.B.; Maitra, S. Improvement in tensile and flexural ductility with the addition
of different types of polypropylene fibers in cementitious composites. Constr. Build. Mater. 2018, 180, 405–411.
[CrossRef]

14. Li, H.; Mu, R.; Qing, L.B.; Chen, H.S.; Ma, Y.F. The influence of fiber orientation on bleeding of steel fiber
reinforced cementitious composites. Cem. Concr. Compos. 2018, 92, 125–134. [CrossRef]

15. Badanoiu, A.; Holmgren, J. Cementitious composites reinforced with continuous carbon fibres for
strengthening of concrete structures. Cem. Concr. Compos. 2003, 25, 387–394. [CrossRef]

16. Rostami, R.; Zarrebini, M.; Mandegari, M.; Mostofinejad, D.; Abtahi, S.M. A review on performance of
polyester fibers in alkaline and cementitious composites environments. Constr. Build. Mater. 2020, 241,
117998. [CrossRef]

17. Murthy, A.R.; Ganesh, P. Effect of steel fibres and nano silica on fracture properties of medium strength
concrete. Adv. Concr. Constr. 2019, 7, 143–150.

18. Pakravan, H.R.; Ozbakkaloglu, T. Synthetic fibers for cementitious composites: A critical and in-depth
review of recent advances. Constr. Build. Mater. 2019, 207, 491–518. [CrossRef]

19. Zhang, P.; Ling, Y.F.; Wang, J.; Shi, Y. Bending resistance of PVA fiber reinforced cementitious composites
containing nano-SiO2. Nanotechnol. Rev. 2019, 8, 690–698. [CrossRef]

20. Zhang, P.; Li, Q.F.; Wang, J.; Shi, Y.; Ling, Y.F. Effect of PVA fiber on durability of cementitious composite
containing nano-SiO2. Nanotechnol. Rev. 2019, 8, 116–127. [CrossRef]

21. Wang, J.Q.; Dai, Q.L.; Si, R.Z.; Guo, S.C. Investigation of properties and performances of Polyvinyl Alcohol
(PVA) fiber-reinforced rubber concrete. Constr. Build. Mater. 2018, 193, 631–642. [CrossRef]

22. Khan, M.I.; Abbas, Y.M.; Fares, G. Review of high and ultrahigh performance cementitious composites
incorporating various combinations of fibers and ultrafines. J. King Saud Univ. Eng. Sci. 2017, 29, 339–347.
[CrossRef]

23. Xu, C.D.; Yao, Z.P.; Li, Z.; Zhu, X.L.; Wang, M.Y.; Wang, Y. Durability evaluation model and application of
concrete structure based on fuzzy analytic hierarchy process. Hydropower Energ. Sci. 2019, 37, 95–99.

24. Lai, Y.C.; Liu, D.W.; Huang, L.J. Durability evaluation of machine-made sand concrete structure based on
cloud model. Silicate Bull. 2019, 38, 3305–3308.

25. Jin, W.L.; Zhao, Y.X. Durability of Concrete Structure; Science Press: Beijing, China, 2014; pp. 299–320.
26. Parichatprecha, R.; Nimityongskul, P. Analysis of durability of high performance concrete using artificial

neural networks. Constr. Build. Mater. 2009, 23, 910–917. [CrossRef]
27. Zhang, H. Durability reliability analysis for corroding concrete structures under uncertainty. Mech. Syst.

Signal. Process. 2018, 101, 26–37. [CrossRef]
28. Zhou, X.L.; Yuan, Y.C.; Chen, L. Durability evaluation of in-service concrete structure based on grey

correlation degree. J. Wuhan Univ. Eng. 2017, 39, 169–174.
29. Yu, B.; Ning, C.L.; Li, B. Probabilistic durability assessment of concrete structures in marine environments:

Reliability and sensitivity analysis. China Ocean Eng. 2017, 31, 63–73. [CrossRef]
30. Jang, J.S.R.; Sun, C.T.; Mizutani, E. Neuro-fuzzy and soft computing, a computational approach to learning

and machine intelligence. Automat. Contr. 1997, 42, 1482–1484. [CrossRef]
31. Yazdanbakhsh, O.; Dick, S. A systematic review of complex fuzzy sets and logic. Fuzzy. Set. Syst. 2018, 338,

1–22. [CrossRef]
32. Xu, X.Z.; Cao, D.; Zhou, Y.; Gao, J. Application of neural network algorithm in fault diagnosis of mechanical

intelligence. Mech. Syst. Signal. Pr. 2020, 141, 106625. [CrossRef]

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.118784
http://dx.doi.org/10.1016/j.compstruct.2020.112106
http://dx.doi.org/10.1016/j.conbuildmat.2018.08.154
http://dx.doi.org/10.1016/j.compositesb.2020.107741
http://dx.doi.org/10.1016/j.conbuildmat.2018.05.280
http://dx.doi.org/10.1016/j.cemconcomp.2018.05.018
http://dx.doi.org/10.1016/S0958-9465(02)00054-9
http://dx.doi.org/10.1016/j.conbuildmat.2020.117998
http://dx.doi.org/10.1016/j.conbuildmat.2019.02.078
http://dx.doi.org/10.1515/ntrev-2019-0060
http://dx.doi.org/10.1515/ntrev-2019-0011
http://dx.doi.org/10.1016/j.conbuildmat.2018.11.002
http://dx.doi.org/10.1016/j.jksues.2017.03.006
http://dx.doi.org/10.1016/j.conbuildmat.2008.04.015
http://dx.doi.org/10.1016/j.ymssp.2017.08.027
http://dx.doi.org/10.1007/s13344-017-0008-3
http://dx.doi.org/10.1109/TAC.1997.633847
http://dx.doi.org/10.1016/j.fss.2017.01.010
http://dx.doi.org/10.1016/j.ymssp.2020.106625


Crystals 2020, 10, 347 17 of 18

33. Boulkaibet, I.; Belarbi, K.; Bououden, S.; Chadli, M.; Marwala, T. An adaptive fuzzy predictive control of
nonlinear processes based on Multi-Kernel least squares support vector regression. Appl. Soft. Comput.
2018, 73, 572–590. [CrossRef]

34. Di, W.; Xu, X.; Zhang, Z.C. Application of adaptive neural fuzzy inference system in bridge state assessment.
J. Zhejiang Univ. (Eng. Edit.) 2008, 42, 2016–2022.

35. Jie, M.; Niu, H.Y.; Qi, D.Y. Application of adaptive neuro fuzzy inference system in traffic pollutant
concentration prediction. Fuzzy Syst. Math. 2019, 33, 144–152.

36. Wang, Y.L.; Ma, G.; You, H.H. Carbon content modeling of pulverized coal boiler fly ash based on adaptive
neural fuzzy inference system. Therm. Power Gener. 2018, 47, 27–31.

37. Guo, H.W.; Dong, H.Y. Wind speed prediction based on fuzzy neural network. Electr. Drive Autom. 2012, 34,
1–13.

38. Hou, T. Application of T-S fuzzy neural network in surface water quality assessment of Sanchuan River.
Energ. Energ. Sav. 2011, 6, 54–56.

39. Xu, J.Y.; Pan, X.Y.; Li, S.; Chen, Y. Research and development of bridge underwater structure state assessment
system based on ANFIS. Technol. Highw. Transp. 2016, 5, 73–78. (In Chinese) [CrossRef]

40. Wang, F.L.; Zhou, Q.; Zhu, F. Prediction of compressive strength of concrete hollow block masonry based on
ANFIS. J. Wuhan Univ. Eng. Edit. 2015, 3, 324–326.

41. Concrete Durability Inspection and Evaluation Standard; JG/J 193-2009; National Standard of the People’s
Republic of China: Shenzhen, China, 2009.

42. GB/T 50746-2008. Code for durability design of concrete. National Standard of the People’s Republic of
China. In Proceedings of the International Conference on Durability of Concrete Structures, Hangzhou,
China, 26 November 2008.

43. Test Method for Chloride Diffusion Coefficient of Cement; JC/T 1086-2008; National Standard of the People’s
Republic of China: Shenzhen, China, 2008.

44. Poston, R.W.; Rabbat, B.G. ACI 318-14. Building Code Requirements for Structural Concrete and Commentary;
ACI Committee 318; National Standard of the United States of America: Farmington Hills, MI, USA, 2014.

45. Jin, W.L.; Zhao, Y.X. Review and Prospect of research on durability of concrete structures. J. Zhejiang Univ.
Eng. Edit. 2002, 36, 371–379.

46. Zuo, J.B. Prediction of Chloride Diffusion Coefficient of Fly Ash Concrete Based on Artificial Neural Network.
Master’s Thesis, Nanhua University, Chiayi County, Taiwan, 2012. (In Chinese).

47. Çakıt, E.; Olak, A.J.; Karwowski, W.; Marek, T.; Hejduk, I.; Taiar, R. Assessing safety at work using an
adaptive neuro-fuzzy inference system (ANFIS) approach aided by partial least squares structural equation
modeling (PLS-SEM). Int. J. Ind. Ergon. 2020, 76, 102925. [CrossRef]

48. Wang, J.S. Parameter optimization of ANFIS model based on particle swarm optimization. J. Pet. Univ.
2007, 20, 41–44.

49. Wei, Y.L. Topology optimization of wireless sensor network based on adaptive artificial immune network
algorithm. Elect. Meas. Techno. 2020, 43, 85–88.

50. Bao, Z.S.; Wang, K.X.; Zhang, W.B. Practical Byzantine fault tolerant consensus algorithm based on tree
topology network. J. Appl. Sci. 2020, 38, 35–49.

51. Zhang, Z.H.; Han, Z.; Xiao, S.X.; Chang, G.Z.; Gan, S.W. Real time prediction of traffic flow based on ANFIS
and its realization in MATLAB. J. Chongqing Jiaotong Univ. 2007, 26, 112–115.

52. Seco, A.; Urmeneta, P.; Prieto, E.; Marcelino, S.; Miqueleiz, L. Estimated and real durability of unfired clay
bricks: Determining factors and representativeness of the laboratory tests. Constr. Build. Mater. 2017, 131,
600–605. [CrossRef]

53. Pan, H.K.; Yang, Z.S.; Xu, F.W. Study on concrete structure’s durability considering the interaction of
multi-factors. Constr. Build. Mater. 2016, 118, 256–261. [CrossRef]
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