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Abstract: Surface property is an important factor that is widely considered in crystal growth and 

design. It is also found to play a critical role in changing the constitutive law seen in the classical 

elasticity theory for nanomaterials. Through molecular static simulations, this work presents the 

calculation of surface properties (surface energy density, surface stress and surface stiffness) of some 

typical cubic and hexagonal crystals: face-centered-cubic (FCC) pure metals (Cu, Ni, Pd and Ag), 

body-centered-cubic (BCC) pure metals (Mo and W), diamond Si, zincblende GaAs and GaN, 

hexagonal-close-packed (HCP) pure metals (Mg, Zr and Ti), and wurzite GaN. Sound agreements of 

the bulk and surface properties between this work and the literature are found. New results are first 

reported for the surface stiffness of BCC pure metals, surface stress and surface stiffness of HCP 

pure metals, Si, GaAs and GaN. Comparative studies of the surface properties are carried out to 

uncover trends in their behaviors. The results in this work could be helpful to the investigation of 

material properties and structure performances of crystals. 
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1. Introduction 

In crystal growth and design, surface property could affect surface morphology [1], surface 

reconstruction [2], growth rate [3], adatom absorption [4], etc. For nanomaterials, it is also found to 

play a critical role in changing conventional bulk properties, such as elastic modulus [5], 

piezoelectricity [6], thermal conductivity [7], etc. Thus, surface property is important for the 

determination of material properties and structure performances [8–11]. The concept of surface free 

energy (called surface energy for short) was first introduced in fluid mechanics for studying surface 

phenomena. It is equal to the reversible work per unit area needed to create a surface, which is also 

widely referred to as surface tension in fluid mechanics. For solids, a new area can be created by a 

process such as cleavage, but another surface quantity, surface stress, could also critically affect the 

behavior of the surface, which is defined as the reversible work per unit area needed to elastically 

stretch a pre-existing surface [12]. In this case, the change in surface energy should be equal to the 

work done by the surface stress, as it deforms the surface area in the Lagrangian description of the 

well-known Shuttleworth relation [13]. Due to the difficulties of obtaining surface properties by 

experiments, they were widely investigated by atomistic simulations, such as first principle (FP) 

calculations or molecular statics (MS) calculations with empirical potentials. Although MS 

calculations are usually less accurate than FP calculations, they remain useful in understanding 

trends and developing concepts. Earlier, using embedded-atom-method (EAM) potentials [14], Foiles 
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et al. [15] presented surface energies of low-index surfaces of some pure face-centered-cubic (FCC) 

metals, such as Cu, Ag, Au, Ni, Pd and Pt. Finnis and Sinclair [16] proposed simple empirical N-body 

Finnis–Sinclair (FS) potentials and calculated surface energies of some pure body-centered-cubic 

(BCC) metals, such as V, Nb, Ta, Cr, Mo, W and Fe. Afterwards, surface stresses of pure metals were 

also investigated by different researchers. Typically, Gumbsch and Daw [17] calculated the isotropic 

surface stresses of FCC(100) and FCC(111) surfaces of Cu, Ag, Au, Ni and Pt with EAM potentials. 

Feibelman [18] investigated the anisotropic surface stresses of FCC(110) surfaces of Pd and Pt through 

FP calculations. On the other hand, with FS potentials, Ackland and coworkers calculated the surface 

stresses of BCC(100), BCC(110) and BCC(111) surfaces of V, Nb, Ta, Mo and W [19,20], as well as the 

basal (0001) and prismatic (1010) and (1120)  surfaces of hexagonal-close-packed (HCP) crystals 

like Ti [21] and Zr [22]. Moreover, surface energy and surface stress were also investigated for 

semiconductor materials. For diamond-structure crystals, surface energies of Si(100) and Si(111) 

surfaces were presented by Northrup and coworkers [23,24] through FP calculations, while the 

surface stresses of Si(111) and Ge(111) surfaces were given by Meade and Vanderbilt [25,26] through 

FP calculations. However, for compound semiconductor materials, FP calculations were mostly 

performed to obtain the surface energy only, such as (100), (110) and (111) surfaces of zincblende 

GaAs [27–29], and the basal (0001) and prismatic (1010) and (1120)  surfaces of wurzite GaN 

[3,30]. 

Nevertheless, surface stress was treated as a constant quantity in aforementioned works. 

Referring back to the concept of surface energy and surface stress, surface energy could be 

generalized as a deformation-dependent quantity, so it could be expanded as Taylor series in terms 

of surface strain, where the constant surface stress is just the first-order coefficient, while the second-

order coefficient could be defined as surface stiffness tensor similar to the bulk stiffness tensor. In 

fact, surface stiffness could play an important role in changing the constitutive law seen in the 

classical elasticity theory [31–36]. Miller and Shenoy [37] investigated the size-dependent elastic 

properties of nano-sized structural elements, by incorporating surface stiffness. Dingreville et al. [38] 

proposed to formulate the surface energy density as a quadratic function of surface strain, where 

surface properties (surface energy density, surface stress and surface stiffness) could be defined, and 

surface stiffness was demonstrated to affect the elastic behavior of nano-sized particles, wires and 

films. Correspondingly, Shenoy [39] presented MS calculations of surface properties of some FCC 

crystals in the Eulerian frame. Dingreville and Qu [40] presented a semi-analytical method to 

compute surface properties of some FCC crystals in the Lagrangian frame, which were given 

analytically in terms of the interatomic potentials, with the relaxed positions of the atoms near the 

free surface obtained through one single MS simulation. 

Practically, the surface energy of different planes in a crystal could be used to determine the 

equilibrium morphology and equilibrium growth rate in the direction normal to each plane [3], while 

surface stress is usually invoked in crystal growth mechanism to explain and understand adatom 

absorption and surface reconstruction behaviors [18]. For nanomaterials, surface stiffness has been 

found to change the constitutive law seen in the classical elasticity theory, and the conventional bulk 

properties become size-dependent [5,34]. Therefore, the results of surface properties are very helpful 

to the investigation of material properties and structure performances of crystals. This work 

investigates surface properties of some typical cubic and hexagonal crystals through MS calculations. 

FCC pure metals (Cu, Ni, Pd and Ag), BCC pure metals (Mo and W), diamond Si, zincblende GaAs 

and GaN are taken as typical examples of cubic crystals, while HCP pure metals (Mg, Zr and Ti), and 

wurzite GaN are taken as typical examples of hexagonal crystals. Since surface properties can be 

regarded as the coefficients in the Taylor series of surface energy density, with respect to surface 

strain similar to the relationship between bulk energy density and bulk strain, elastic constants of the 

bulk stiffness tensor are first obtained for all crystals in this work, to validate the methodology by 

comparing with available results in literature. Afterwards, certain surface properties of some crystals 

in this work are also compared with available results in literature, to guarantee the correctness of the 

calculation. Sound agreements of the bulk and surface properties between this work and the literature 
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are found. New results are presented for the surface stiffness of BCC pure metals, surface stress and 

surface stiffness of HCP pure metals, Si, GaAs and GaN. In this work, the surface properties are 

calculated for ideally cleaved surfaces, so any surface defects (adatoms, vacancies, etc.) are not 

considered. It should be mentioned that the methodology is in general, but the results from MS 

calculations rely on the choice of interatomic potentials. The readers could follow the same 

methodology to obtain the property of other materials according to their own interest and with their 

own choice of interatomic potentials. 

2. Methodology 

2.1. Bulk Elastic Constants 

In the classical elasticity theory, the bulk energy density could be related to the bulk strain of the 

material as Taylor series: 

0

1
...,

2
ij ij ijkl ij klU U L C       (1) 

where U0 is the cohesive energy density and it is not considered to contribute to the elastic 

deformation. Lij is the residual stress to be zero in this work. Cijkl is the fourth order bulk stiffness 

tensor of the material. Usually, the bulk stiffness tensor is adequate to describe the elastic behavior 

of the bulk material. 

For anisotropic materials, the bulk stiffness tensor has symmetric properties as Cijkl = Cijlk = Cjikl = 

Cklij, so it has only 21 independent elastic constants, which could be expressed as a 6x6 stiffness matrix 

by Voigt’s compact notation. With planes of symmetry and axis of symmetry, cubic crystals have only 

3 independent elastic constants: C11, C12 and C44, while hexagonal crystals have 5 independent elastic 

constants (take axis-3 as the axis of symmetry): C11, C12, C13, C33 and C66. 

Through MS calculations, the relationship in Equation (1) between the bulk energy density and 

the bulk strain is fitted to obtain the bulk elastic constants. For a given crystal composed of N atoms 

with periodic boundary conditions in all directions, the bulk energy density is simply calculated as: 
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where Ei is the energy of the i-th atom and V0 is the volume of the crystal in the unstrained reference 

state. 

The methodology is to yield a mesh of the bulk energy density in the bulk strain space. First, the 

initial assembly of atoms is created using the given material properties, and a self-equilibrium state 

of the assembly is obtained as the unstrained reference state. Afterwards, a small strain is applied to 

the assembly and re-equilibrate. The bulk energy density can be computed for this corresponding 

strain. Repeating this procedure with different strains (−1~1%), we obtain a mesh of the bulk energy 

density as a function of the bulk strain, and the bulk elastic constants are fitted in the end. 

2.2. Surface Properties 

Similar to the relationship in Equation (1) between the bulk energy density and the bulk strain, 

assuming the surface energy density is a smooth function of the surface strain, one may expand the 

surface energy density as Taylor series of surface strain [38,40]: 

(0) (1) (2)1
...

2
s s s

               (3) 

where Γ(0) is the surface energy density at the relaxed and unstrained state of the surface.  Γ(1) is the 

surface stress with Γ��
(�)
= Γ��

(�)
 that exists when the surface strain is absent. Γ(2) is the surface stiffness 

tensor with Γ����
(�)

= Γ����
(�)

= Γ����
(�)

= Γ����
(�)

. It should be noted that the surface is a two-dimensional 

object and the bulk is three-dimensional. Thus, the Greek indices take the value of 1 or 2 in Equation 
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(3), while Latin subscripts adopt values from 1 to 3 in Equation (1). Together, Γ(0), Γ(1) and Γ(2) are the 

surface properties that fully characterize the linear elastic behavior of the surface. 

Due to the symmetrically atomic arrangements along different in-plane directions of the surface, 

the numbers of independent surface elastic constants could be reduced. As shown in Figure 1, for 

cubic (001), cubic (111) and hexagonal (0001) surfaces, the atomic arrangements are symmetric along 

the two in-plane directions, so Γ��
(�)
= Γ��

(�)
 and Γ����

(�)
= Γ����

(�)
, while the atomic arrangements in cubic 

(110), hexagonal (1010) and (1120)  surfaces are distinct along the two in-plane directions, so 

Γ��
(�)
≠ Γ��

(�)
 and Γ����

(�)
≠ Γ����

(�)
. 

  
(a) (b) 

Figure 1. Illustration of (a) cubic (001), (110) and (111) surfaces and (b) hexagonal (0001), (1010) 

and (1120)  surfaces studied in this work. 

Through MS simulations, the relationship in Equation (3) between the surface energy density 

and the strain is fitted to obtain the surface properties. It should be noted that surface thickness is 

neglected in Equation (3), based on the concept of a dividing surface, but the surface energy is actually 

contributed from all atoms within a few atomic layers near the surface. If there are N atoms within 

these atomic layers associated with the surface, the surface energy density is defined as the 

summation of individual excess energy between a surface atom and the bulk atom deep in the interior 

of a large crystal [40]:  

0
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where Ei is the energy of the i-th surface atom, E0 is the energy of any bulk atom deep in the interior 

of a large crystal, and A0 is the surface area in the relaxed and unstrained reference state. 

The methodology to obtain surface properties is similar to that of bulk elastic constants, with 

only a few differences. Periodic boundary conditions are only applied to the two in-plane surface 

directions of a given crystal, while a fixed boundary condition is imposed in the third direction where 

the top and bottom surfaces locate. There should be enough layers of atoms in the vertical direction 

to avoid the interaction between the two surfaces. First, the initial assembly of atoms is created using 

the given material properties, and a self-equilibrium relaxed state of the assembly is obtained as the 

reference state. Afterwards, a small strain along in-plane surface directions is applied to the assembly 

and re-equilibrated for relaxation. The surface energy density can be computed for this 

corresponding strain. Repeating this procedure with different strains (−1~1%), we obtain a mesh of 

surface energy density as a function of the strain, and the surface properties are fitted in the end. 

As an example, Figure 2 shows the fitted result between the surface energy and shear strain for 

the Cu(100) surface. In the MS simulation, there are 4 lattice units in each of the two in-plane surface 
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directions and 20 lattice units in the direction vertical to the surface. The shear strain varies from 

−1~1%, with 40 incremental steps. The fitted curve is obtained as a quadratic polynomial as: 

12

12 2
121.2879 1.3965 10 0.2831 ,      (5) 

where the constant surface energy density is obtained as 1.2879 J/m2, the surface elastic constant is 

obtained as −0.2831 J/m2, and the surface stress is very small that can be regarded as zero. 

Furthermore, the fitting R-square statistic is 0.9999991 and the estimate of error variance is 

1.86 × 10��� . For details, the readers could refer to the LAMMPS input file and MATLAB post-

process file included in the Supplementary Materials for reproducibility. 

 

Figure 2. Fitted result between the surface energy and shear strain for Cu(100) surface. 

In this methodology, surface relaxation is fully taken into consideration, which is corresponded 

to the correct physical situation [39], compared with unrelaxed surfaces. However, surface 

reconstruction is out of the scope, due to the complexity when surface atoms rearrange to form 

different structural configurations. Furthermore, there could be two types of the surface with the 

same orientation (e.g., the wurzite GaN(0001) surface could be terminated by Ga or N atoms), 

however, only the result of the surface with the lower surface energy is reported, since it is the more 

stable and common case in reality. 

3. Results 

In this work, FCC pure metals (Cu, Ni, Pd and Ag), BCC pure metals (Mo and W), diamond Si, 

zincblende GaAs and GaN are taken as typical examples of cubic crystals, while HCP pure metals 

(Mg, Zr and Ti), and wurzite GaN are taken as typical examples of hexagonal crystals. Both bulk and 

surface properties of cubic and hexagonal crystals are calculated through MS simulations in 

LAMMPS [41] (https://lammps.sandia.gov/). All interatomic potentials are retrieved from NIST 

Interatomic Potentials Repository (https://www.ctcms.nist.gov/potentials/testing/). It should be 

mentioned that the methodology in Section 2 is in general, but the results from MS calculations could 

vary on the choice of different interatomic potentials. EAM and FS potentials are adopted for pure 
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metals, since they are widely used in atomistic simulations of metallic materials and have produced 

many reasonable surface-related properties of metals [42], such as stacking fault energies, vacancy 

formation and migration energies, surface energies, surface relaxations and reconstructions. On the 

other hand, interatomic potentials for semiconductor materials are less mature and they have still 

been evolving in recent years, and continue to evolve. Here, we choose the Stillinger–Weber potential 

for Si and Tersoff potential for GaAs and GaN, as they are the most widely used in literature 

nowadays. In case the readers would like to reproduce any result in this work with the same 

interatomic potential, each result from this work is listed under the potential file name, respectively, 

which is identical to that from NIST Interatomic Potentials Repository. In the following, as the prime 

concern, each result from this work is compared with that calculated using the same potential from 

the original paper, otherwise the referenced result is taken from different sources, e.g., FP 

calculations. However, the methodology to obtain bulk and surface properties would be different 

from Equations (2) and (4), because the energy cannot be decomposed into atomic contributions in 

FP calculations, where only the total energy of the assembly of atoms is available. Specifically, 

Equations (2) and (4) are limited to classical molecular simulations, but the original definitions of 

bulk and surface properties in Equations (1) and (3) are still valid, regardless of the type of atomistic 

simulations. In that case, it is still possible to obtain the properties through FP calculations, and the 

readers could refer to the literature to first compute the energies through FP calculations and then 

obtain the properties by considering Equations (1) and (3). 

3.1. Bulk Elastic Constants 

The bulk elastic constants of cubic and hexagonal crystals are calculated and listed in Tables 1 

and 2, respectively. If no result calculated using the same potential is found in the original paper, the 

crystal symbol will be denoted by an underline, to indicate that the referenced result is taken from 

different sources. Specifically, in Table 1, the referenced results of BCC pure metals of Mo and W are 

taken from an earlier publication [16] of the same group of authors, because the original paper [20] 

with the potentials did not present any results of bulk elastic constants. The referenced result of Si is 

taken from a third-party paper [43], using the same potential which was obtained through lattice 

dynamics method instead of MS calculations. As expected, excellent agreements between this work 

and the literature are found for the bulk elastic constants of all crystals. In fact, the results in Tables 1 

and 2 are also very close to those measured by experiments, because bulk elastic constants are usually 

important parameters that are fitted to obtain the potentials.  

Table 1. Bulk elastic constants of cubic crystals (unit: GPa). 

Crystals Potentials C11 C12 C44 

Cu Ref. [15] 167 124 76 
 Cu_u3.eam 167.3 124.2 76.4 

Ni Ref. [15] 233 154 128 
 Ni_u3.eam 233.3 154.3 127.6 

Pd Ref. [15] 218 184 65 
 Pd_u3.eam 218.2 184.5 64.9 

Ag Ref. [15] 129 91 57 

 Ag_u3.eam 129.1 91.0 56.8 

Mo Ref. [16] 464.7 161.5 108.9 
 mo.fs.eam.alloy 465.9 161.7 108.9 

W Ref. [16] 522.4 204.4 160.6 
 W.eam.fs 534.3 210.2 164.9 

Si Ref. [43] 151.4 76.4 56.4 
 Si.sw 151.6 76.5 56.5 

GaAs Ref. [44] 123.6 48.2 39.4 
 GaAs.tersoff 123.9 48.3 39.2 

GaN(zincblende) Ref. [45] 287 169 128 
 GaN.tersoff 287.2 169.1 128.5 
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Table 2. Bulk elastic constants of hexagonal crystals (unit: GPa). 

Crystals Potentials C11 C33 C12 C13 C66 

Mg Ref. [46] 69.6 69.5 25.3 16 12.8 
 Mg_mm.eam.fs 69.1 69.4 26.0 16.1 12.8 

Zr Ref. [22] 150 175 85 67 36.0 
 Zr.eam.fs 150.9 177.0 84.5 70.3 35.8 

Ti Ref. [21] 180.0 217.1 87.4 76.6 51.4 
 Ti_v2.eam.fs 179.0 216.8 85.5 74.7 51.3 

GaN(wurzite) Ref. [45] 347 381 154 123 81 
 GaN.tersoff 345.4 380.4 158.1 123.2 82.2 

3.2. Surface Properties 

Through a semi-analytical method, Dingreville and Qu [40] calculated all surface properties of 

some FCC crystals in the Lagrangian frame with the same potential in this work, so their results and 

those from this work are first compared in Table 3 to validate the methodology. The results of surface 

energy density from the original potential paper [15] are also listed for reference. It can be seen from 

Table 3 that all the results of surface energy density are in excellent agreements. Furthermore, all the 

results of surface stresses from this work and Ref. [40] also agree very well with each other. On the 

contrary, some discrepancies can be seen in the results of surface stiffness from this work and Ref. 

[40], although most of them are still in fair agreement. Particularly, the constant, Γ����
(�)

, in the surface 

stiffness of Cu(111) and Ni(111) surfaces, and the constant, Γ����
(�)

, in surface stiffness of Ni(110) 

surface are calculated to have different signs between this work and Ref. [40]. The sound agreements 

of the results of all surface energy density, all surface stresses and many of the surface stiffness values 

guarantee the correctness of the calculation. In case that the situation demands rough surface stiffness 

values, one could use the data in Table 3 for reference. Otherwise, if one requires accurate surface 

stiffness values and finds conflicting values in Table 3, then one is encouraged to recalculate it 

through FP calculations. 

The surface properties of BCC, diamond and zincblende crystals are listed in Table 4 and those 

of hexagonal crystals are listed in Table 5, respectively. By comparing these with the available results 

in literature, it can be seen that the surface energy density and surface stress of BCC pure metals of 

Mo and W in Table 4 and the HCP pure metals of Mg, Zr and Ti in Table 5, are in excellent agreement, 

since they are obtained using the same potential through MS calculations. For semiconductor 

materials, the surface energy density of the three wurzite GaN surfaces are taken from the FP 

calculations [30] in Table 5. There is no report about those of zincblende GaN surfaces, because GaN 

usually crystallizes in the wurtzite lattice, while the much less common zincblende GaN could only 

be grown under certain conditions. In Table 4, the surface energy density of the three Si and GaAs 

surfaces, as well as the surface stress of the GaAs(111) surface, are taken from Ref. [47], which were 

obtained through analytical calculations with force constants and surface bonding model. There are 

some results from FP calculations in literature [23–27,29] about the surface energy density of Si and 

GaAs surfaces, but they were given in units of eV per cell or per surface atom, and only the surface 

energy density of the GaAs(110) surface [28] was mentioned in unit of eV per unit area for our 

comparison. However, although the referenced results of semiconductor materials are taken from 

different resources, good agreements with those of this work are found in Table 4 and Table 5, which 

demonstrate the validity of the methodology in this work. In this case, the readers could follow the 

same methodology to obtain the property of other materials, according to their own interest and with 

their own choice of interatomic potentials. 
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Table 3. Surface properties of face-centered-cubic (FCC) crystals (unit: J/m2). 

 Cu   Ni   Pd   Ag   

 Ref. [15] Ref. [40] Cu_u3.eam Ref. [15] Ref. [40] Ni_u3.eam Ref. [15] Ref. [40] Pd_u3.eam Ref. [15] Ref. [40] Ag_u3.eam 

(100)             

Γ(�) 1.28 1.288 1.288 1.58 1.572 1.570 1.37 1.377 1.364 0.705 0.703 0.702 

Γ��
(�)

  1.396 1.396  1.321 1.319  1.981 2.000  0.816 0.815 

Γ����
(�)

  −0.712 −0.748  −0.865 −0.771  −2.36 −2.706  −1.245 −1.353 

Γ����
(�)

  5.914 5.885  10.722 10.600  2.611 2.089  3.343 3.331 

Γ����
(�)

  −0.992 −0.283  −0.927 −0.282  −3.25 −2.366  −1.666 −1.260 

(110)             

Γ(�) 1.4 1.413 1.412 1.73 1.721 1.719 1.49 1.482 1.478 0.77 0.768 0.764 

Γ��
(�)

  1.126 1.125  1.054 1.062  1.23 1.337  0.492 0.503 

Γ��
(�)

  0.993 0.992  0.706 0.710  1.656 1.771  0.684 0.690 

Γ����
(�)

  −7.798 −10.656  −13.031 −17.581  −4.775 −7.561  −5.51 −7.741 

Γ����
(�)

  −2.263 −3.933  0.95 −2.288  −6.654 −8.697  −2.246 −3.923 

Γ����
(�)

  −3.6 −5.694  −5.045 −8.872  −2.086 −4.461  −2.332 −4.226 

Γ����
(�)

  −4.436 −3.980  −7.827 −7.604  −3.378 −2.552  −3.296 −2.965 

(111)             

Γ(�) 1.17 1.181 1.181 1.45 1.436 1.436 1.22 1.224 1.215 0.62 0.62 0.617 

Γ��
(�)

  0.866 0.863  0.457 0.451  1.848 1.899  0.636 0.633 

Γ����
(�)

  2.054 1.922  6.526 6.281  −2.914 −3.531  0.888 0.749 

Γ����
(�)

  1.086 1.133  3.986 3.857  −1.014 −0.915  1.194 1.116 

Γ����
(�)

  −1.071 0.798  −1.188 1.450  −2.354 −0.367  1.173 0.119 
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Table 4. Surface properties of body-centered-cubic (BCC), diamond and zincblende crystals (unit: J/m2). 

 Mo  W  Si  GaAs   GaN(zincblende) 
 Ref. [19] mo.fs.eam.alloy Ref. [19] W.eam.fs Ref. [47] Si.sw Ref. [47] Ref. [28] GaAs.tersoff GaN.tersoff 

(100)           

Γ(�) 2.1 2.100 2.924 2.975 2.53 2.356 2.2  1.429 3.380 

Γ��
(�)

 2.241 2.240 3.032 3.393  0.002   0.524 −0.636 

Γ����
(�)

  −18.862  −13.794  −11.423   −11.465 −13.906 

Γ����
(�)

  −16.093  −14.505  −1.242   −1.416 −0.592 

Γ����
(�)

  −2.168  −6.993  −3.832   −2.153 −7.436 

(110)           

Γ(�) 1.829 1.829 2.575 2.608 1.78 1.666 1.5 0.91 0.924 2.307 

Γ��
(�)

 2.019 2.019 2.385 2.489  0.005   0.521 −0.852 

Γ��
(�)

 0.775 0.774 0.271 0.258  0.003   0.988 −1.527 

Γ����
(�)

  −3.568  −0.257  −16.350   −15.639 −22.743 

Γ����
(�)

  −9.262  −9.778  −6.163   −4.037 −6.115 

Γ����
(�)

  7.617  9.342  −8.444   −7.475 −13.152 

Γ����
(�)

  −0.707  0.476  −4.699   −2.067 −10.133 

(111)           

Γ(�)  2.356  3.337 1.46 1.361 1.3  0.751 1.864 

Γ��
(�)

  0.801  0.392  0.001 0.5  0.988 −1.502 

Γ����
(�)

  −20.118  −25.246  −3.829   −3.058 1.139 

Γ����
(�)

  6.041  3.730  −3.836   −5.056 −1.472 

Γ����
(�)

  −12.560  −14.568  −7.574   1.486 0.572 
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Table 5. Surface properties of hexagonal crystals (unit: J/m2). 

 Mg  Zr  Ti  GaN(wurzite)  

 Ref. [48] Mg_mm.eam.fs Ref. [22] Zr mm.eam.fs Ref. [21] Ti_v2.eam.fs Ref. [30] GaN.tersoff 

(0001)         

Γ(�) 0.238 0.238 1.022 1.022 0.993 0.998 2.0027 1.865 

Γ��
(�)

  0.289 1.161 1.140 0.96 0.959  −1.502 

Γ����
(�)

  1.041  −0.347  −0.191  0.791 

Γ����
(�)

  0.947  0.502  0.616  −1.094 

Γ����
(�)

  0.148  0.231  0.138  0.247 
 (1 0 1 0)          

Γ(�)  0.263 1.086 1.086 1.061 1.061 1.7624 1.995 

Γ��
(�)

  0.063 0.655 0.504 0.481 0.477  −1.348 

Γ��
(�)

  0.168 0.476 0.666 0.68 0.648  −1.354 

Γ����
(�)

  −0.359  −9.039  −2.991  −1.003 

Γ����
(�)

  −2.158  −8.234  −10.369  −18.547 

Γ����
(�)

  0.791  −5.305  −2.913  −4.437 

Γ����
(�)

  −3.594  1.214  −0.055  −12.293 
 (1 1 2 0 )          

Γ(�)  0.343 1.23 1.232 1.187 1.188 1.9707 2.315 

Γ��
(�)

  0.123 0.844 0.905 0.915 0.916  −0.906 

Γ��
(�)

  0.317 0.989 1.010 1.019 1.018  −1.303 

Γ����
(�)

  −7.452  −16.977  −16.299  −27.498 

Γ����
(�)

  −3.681  −9.752  −12.866  −22.276 

Γ����
(�)

  −1.649  −7.660  −7.211  −10.043 

Γ����
(�)

  −0.194  −2.688  −3.642  −5.771 

 
 



Crystals 2020, 10, 329 11 of 14 

4. Discussions 

It is of interest to make comparative studies of the surface properties to uncover trends in their 

behaviors. For the surface energy density, the results of all the crystals in this work are positive. In 

FCC pure metals, the surface energy density is ordered as (110) > (100) > (111). This is as expected, 

since the (111) plane is the most densely packed plane for FCC crystals, while the (110) plane is the 

least densely packed. Similar trends can be found for other crystals following the packing density of 

each plane. In BCC pure metals, it is ordered as (111) > (100) > (110). Moreover, the two different 

elements in the zincblende structure are arranged as two diamond structures individually, with some 

offset; therefore, in diamond Si, zincblende GaAs and GaN, all the surface energy density is ordered 

as (100) > (110) > (111). Similarly, the two different elements in the wurzite structure are arranged as 

two HCP structures individually with some offset; therefore, in HCP pure metals and wurzite GaN, 

it is ordered as (1120)  > (1010) > (0001). Furthermore, the surface energy of different planes in a 

crystal could be used to determine the equilibrium morphology and equilibrium growth rate in the 

direction normal to each plane, e.g., the surface energy data could be fed into Wulff construction, to 

determine the shape and exposed surfaces of nanoparticles [49]. 

For the surface stress, the results of almost all crystals in this work are positive, but those of 

zincblende and wurzite GaN are all negative. In this case, the absolute values of GaN are used for 

comparison in the following. Since the surface stresses in cubic (110), hexagonal (1010)  and 

(1120)  surfaces are different along the two in-plane directions with Γ��
(�)
≠ Γ��

(�)
, averaged surface 

stress is used for comparison. In BCC pure metals of Mo and W, it is ordered as (100) > (110) > (111), 

and the same trend is found in other BCC pure metals of V, Nb, Ta [19]. On the contrary, in FCC pure 

metals of Cu and Ni, it is ordered as (100) > (110) > (111), but different ordering of (100) > (111) > (110) 

is found in Pd and Ag. In diamond Si, zincblende GaAs and GaN, it is ordered as (111) > (110) > (100). 

On the other hand, the surface stress in HCP pure metals is ordered as (0001) > (1120)  > (1010), 

but different ordering of (0001) > (1010) > (1120)  is found in wurzite GaN. 

For the surface stiffness, the results are found to vary with different signs in different surfaces 

for all crystals, so no clear trend can be drawn for the surface stiffness. As pointed out by Shenoy [39], 

unlike the positive definiteness of the bulk stiffness tensor to guarantee the stability of the crystal, the 

surface stiffness tensor does not need to be positive definite, because a surface cannot exist 

independent of the bulk, so the stability of the crystal is maintained as long as the total energy (bulk 

+ surface) satisfies the positive definiteness condition. Furthermore, it should be noted that all the 

results of surface energy density and surface stress are on the order of several J/m2, but the results of 

the surface stiffness could reach tens of J/m2. This indicates that surface stiffness could play an 

important role in changing the constitutive law seen in the classical elasticity theory, and it should 

not be neglected for the investigation of nano-sized structural elements. 

5. Conclusions 

This work investigates surface properties of some typical cubic and hexagonal crystals through 

MS calculations. FCC pure metals (Cu, Ni, Pd and Ag), BCC pure metals (Mo and W), diamond Si, 

zincblende GaAs and GaN are taken as typical examples of cubic crystals, while HCP pure metals 

(Mg, Zr and Ti), and wurzite GaN are taken as typical examples of hexagonal crystals. Bulk elastic 

constants are first obtained for all crystals to validate the methodology. Certain surface properties of 

some crystals in this work are also compared with available results in literature, to guarantee the 

correctness of the methodology. Sound agreements of the bulk and surface properties between this 

work and the literature are found. New results are presented for the surface stiffness of BCC pure 

metals, surface stress and surface stiffness of HCP pure metals, Si and compound crystals. The surface 

energy densities are calculated to be positive for all crystals, and the surface stresses are positive for 
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almost all crystals, but those of zincblende and wurzite GaN are negative. On the contrary, the surface 

stiffnesses are found to vary, with different signs in different surfaces for all crystals. Furthermore, 

the results of surface energy density and surface stress are on the order of several J/m2, but the results 

of the surface stiffness could reach tens of J/m2. Moreover, comparative studies of surface energy 

density, surface stress and surface stiffness are carried out, to uncover trends in their behaviors. 
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