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Abstract: The ZnO@TiO2 core/shell nanowire arrays with different thicknesses of the TiO2 shell were
synthesized, through depositing TiO2 on the ZnO nanowire arrays using the pulsed laser deposition
process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images
show that these core/shell nanowires were homogeneously coated with TiO2 nanoparticles with high
crystallinity, appearing to be a rather rough surface compared to pure ZnO nanowires. The efficiency
of ZnO@TiO2 core/shell structure-based dye-sensitized solar cells (DSSCs) was improved compared
with pure ZnO nanowires. This is mainly attributed to the enlarged internal surface area of the
core/shell structures, which increases dye adsorption on the anode to improve the light harvest.
In addition, the energy barrier which formed at the interface between ZnO and TiO2 promoted the
charge separation and suppressed the carrier recombination. Furthermore, the efficiency of DSSCs
was further improved by increasing the thickness of the TiO2 shell. This work shows an efficient
method to achieve high power conversion efficiency in core/shell nanowire-based DSSCs.

Keywords: ZnO@TiO2 nanowire arrays; dye-sensitized solar cells; pulsed laser deposition method;
different thickness shell

1. Introduction

With the development of global industry, energy demand is rapidly increasing, while the traditional
fossil fuels are estimated to be depleted in a few decades. The environmental problems caused by
fossil fuels are also getting serious. Therefore, the development of new clean energy is imperative.
The large-scale photovoltaic cell is the most promising avenue to solve the energy shortage issue,
as it can convert the clean and unexhausted solar radiation to electric energy. Dye-sensitized solar
cells (DSSCs) are regarded as the most promising photovoltaic device with the advantages of being
flexible, inexpensive and easier to fabricate [1,2]. As the main component of DSSCs, the photosensitized
anode typically consists of porous semiconductor nanoparticle films (such as TiO2), with a typical
film thickness of 10 µm and a nanoparticle size of 10~30 nm in diameter [2]. These nanoparticle films
have a large internal surface area for the absorption of dye molecules to increase the light harvest.
However, grain boundaries of the nanoparticles cause the electron scatter or act as the electron trap to
dramatically decrease the electron diffusion [3]. The diffusion coefficient in the mesoporous network
is several orders of magnitude lower than that of anatase single crystalline TiO2 (~0.4 cm2 s−1) [4].
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Reported mobility values in this regime vary between 0.01 and 0.05 cm−2 V s−1 [5,6]. This shortage
becomes more serious when the thickness of photoelectrode film is increased, which results in the
limitation of the electron diffusion length in the nanoparticle anode to 10−15 µm [7]. The further
improvement of the power conversion efficiency is retarded because the effective thickness of the
anode films cannot be increased.

One-dimensional (1-D) nanostructures can effectively eliminate the shortage mentioned above,
because the grain boundaries effect could be restricted [8,9]. Moreover, 1-D nanostructures, such as
aligned vertically nanowire or nanotube arrays, could provide short electron transmission pathways
which ensure the rapid collection of photo-generated carriers throughout the device [10–12]. ZnO owns
higher electron mobility than that of TiO2, by 2–3 orders of magnitude. It is reported that the
electron mobility of ZnO bulk material is 200–300 cm2 V s−1 and ZnO single-crystal nanowires
is ~1000 cm−2 V s−1 [13–15], respectively. Therefore, 1-D ZnO nanowire is considered as one of the most
promising materials in solar cells, for fast electron transport with reduced recombination. It’s found
that the electron diffusion length increased in ordered 1-D ZnO nanowire arrays on the order of
100 µm [16,17]. So, the energy conversion efficiency can be improved by increasing the thickness of the
sensitized films. However, the key challenge of using vertically aligned 1-D nanostructure in DSSCs is
the low internal surface area comparison with mesoporous nanoparticle films, which results in less dye
adsorption and therefore low light-harvesting efficiency [18–20]. Long nanowires arrays are desired
to achieve the same efficiency as the mesoporous films. For example, Xu CK et al. [21] assembled
four layers of ZnO nanowire arrays with thickness of up to 40 µm, for using as an anode of DSSCs,
with power conversion efficiencies of up to 7%. However, the growth of long nanowires is commonly
time consuming [12]. So, this is an effective method to deposit a shell on these 1-D nanostructures, to
increase the surface roughness. The shell is also considered to be a blocking layer for suppressing the
electron-hole pair recombination by forming an energy barrier on the interface of ZnO@TiO2 [22,23].
Many novel core/shell structures, including ZnO@TiO2 [24], ZnO@In2S3 [25,26], ZnO@CdSe [27] and
so forth, have been achieved. The conversion efficiencies of such core/shell structures have been
improved. Therefore, surface modification contributes to high performance DSSCs. However, it is still
a challenge to control the thickness, size, crystallinity and homogeneity of the shell to optimize the
anode in DSSCs.

In this paper, the ZnO@TiO2 core/shell structures are synthesized using two steps. Firstly, the
vertical ZnO nanowires were fabricated by microwave heating method. Secondly, the TiO2 shell was
deposited on the surface of ZnO nanowires by pulsed laser deposition (PLD) process. By adjusting
the pulsed number, the ZnO@TiO2 core/shell structures with different thickness shells have been
obtained. It indicates that the TiO2 particles were coated uniformly on the surface of the ZnO nanowires.
The performance of the ZnO@TiO2 composited nanowire arrays based DSSCs was examined under
a solar simulator. Current density−voltage (J-V) curves show that the power conversion efficiency
increases with the thickness of the shell layer. This result indicates that this composited structure can
enlarge the internal surface area and consequently increase the light harvest.

2. Experimental Section

2.1. Preparation of Well Aligned ZnO Nanowire Arrays

The well aligned ZnO nanowire arrays were fabricated using the microwave-assisted hydrothermal
method on fluorine doped tin oxide (FTO) glass substrate, similar to our previous report [28].
Furthermore, 12.5 mM zinc nitrate hexahydrate (Zn(NO3)2·6H2O, 99.99%, product number: Z111706)
and 25 mM hexamethylenetetramine (HMTA, C6H12N4, ≥99.0%, product number: H116380) were
mixed to grow ZnO nanowire arrays. Then, the substrate with ZnO seeds was suspended vertically
in the beaker with the mixture aqueous solution heated by microwave oven for 2 h. After reaction,
the substrate was taken out and rinsed softly several times, using deionized (DI) water and dried in
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air flow (all chemicals in this work were purchased from Aladdin, Shanghai, China). Additionally,
ZnO nanowires are synthesized based on the following reaction:

(CH2)6N4 + H2O↔ 6 HCHO + 4 NH3 (1)

NH3 + H2O↔ NH4
+ + OH− (2)

Zn2+ + OH−↔ Zn(OH)2↔ ZnO + H2O (3)

2.2. Preparation of TiO2 Shell

TiO2 nanoparticles were deposited on ZnO nanowires by PLD process, with different pulse
numbers of 1000, 3000, and 5000 respectively (schematic drawing was shown in Figure 1). The FTO
substrates with ZnO nanowire arrays and the TiO2 target were transferred into the PLD chamber.
The preparation condition is similar to our previous work [29], the pressure of the chamber was
~6 × 10−4 Pa, the high purity oxygen gas pressure was ~5 Pa, the pulse energy was 450 mJ, and the
temperature in the chamber was 450 ◦C. After deposition, the samples were annealed at 450 ◦C in situ
for 30 min under the oxygen gas pressure of 4 × 10−3 Pa, for reducing defect and improving crystalline.
The crystallization and thickness of TiO2 shells could be controlled by tuning the experimental
parameters, such as pulse number, energy, temperature and the distance between substrate and target.Crystals 2020, 10, x FOR PEER REVIEW 4 of 9 
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reaction (the faster the rate), the sharper the top of the nanowires. From Figure 2a, it is evident that 
there is enough space between these nanowires. This is not only beneficial to the deposition of the 
TiO2 shell on the ZnO nanowires, but also helpful for the entrance of dye molecules. Figure 2b is the 
SEM image of pure ZnO nanowires with high magnification. It can be seen that the surfaces of the 
nanowires are rather smooth. The SEM images of nanowires coated with a layer of TiO2 are shown 
in Figure 2c,d. Figure 2c displays the sample which is ZnO nanowire core deposited with a TiO2 shell; 
the coated nanowires still maintained the nanowire morphology, as shown in Figure 2a, while the 
shape is changed slightly. In the SEM image with large magnification (Figure 2d), a lot of small 
nanoparticles are found to cover the core nanowires. The surfaces of the nanowires after coating 
become rough compared with pure ZnO nanowires (Figure 2b), indicating the successful coating of 
TiO2 on the surface of ZnO nanowires, to form the ZnO@TiO2 core/shell nanowires. Though the TiO2 
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Figure 1. Schematic drawing of the synthesis process of the samples. (a) FTO glass substrate; (b) ZnO
seed layer; (c) ZnO nanowire arrays; (d) TiO2 shell is deposited on ZnO surface by PLD; (e) ZnO@TiO2

nanowire arrays; (f) sandwich structure of solar sell.

2.3. Fabrication of DSSCs

The area of the ZnO@TiO2 core/shell nanostructures is 0.5 cm2. The ZnO@TiO2 core/shell structures
were first sintered at 450 ◦C for 1 h, to eliminate any residual organics and moisture. After sintering,
the samples were left to cool to 100 ◦C and then immediately immersed in an ethanol solution of
0.5 mM (Bu4N)2[Ru(4,4′-(COOH)-2,2,-bipyridine)2 (NCS)2] (N719 dye, 90%, product number: B132959)
for 12 h [30]. The samples were withdrawn from the solution, rinsed in acetonitrile, and dried in air.
The platinum film coated on the FTO glass substrate was used for counter electrode and then the
sandwiched structure was assembled. The distance between the two electrodes is 50µm. The electrolytic
solution consisted of 0.1 M LiI (99.995%, product number: L118835), 0.1 M I2 (product number: I298615),
0.5 M tert-butylpyridine (96%, product number: B109674) and 0.6 M tetrabutylammonium iodide
(≥99.0%, product number: T103716) in acetonitrile. It was introduced into the gap formed by the
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two electrodes by capillary force. The performance of the DSSCs was measured under AM 1.5 G
(100 mW/cm2) simulated sunlight.

3. Characterizations

The morphologies of the samples were observed by field emission scanning electron microscopy
(FESEM, FEI Inspect F50, USA). The crystal structures of ZnO@TiO2 core/shell nanowire arrays were
studied by X-ray diffraction (XRD, Rigaku Smartlab, Japan) with Cu-Kα radiation (λ = 0.15406 nm).
Transmission electron microscope (TEM) images were carried out by a Tecnai G2 F20 TEM (FEI, USA).
Energy-dispersive X-ray (EDX) spectroscopy was also conducted during the SEM experiments.

4. Results and Discussion

The XRD result is similar to our previous work (Figure 2) [29] and proves that all the diffraction
peaks of ZnO can be indexed as being of the hexagonal wurtzite-type ZnO (JCPDS card No. 36-1451),
with space group of P63mc. The diffraction peaks of TiO2 can be indexed as of anatase TiO2 with
interplanar spacing of 0.35 nm, and the intensity of the typical peak is stronger with the thickness of
the TiO2 shell.

Figure 2a,b display the whole SEM images of the aligned ZnO nanowire arrays fabricated by
microwave heating method on the FTO substrate. It’s clear to see that these nanowires were not all
grown perpendicularly to the substrate, and the diameter of the nanowires are not uniform; this is
due to the fact that the surface of the FTO glass substrate is very rough, so the nucleation sites are not
uniform, resulting in them not being vertically aligned and not being uniform of the growth nanowire
arrays. The length of nanowires is ~3.5 µm. In addition, the top of the nanowires is a little tapered,
which is related to the rate of injection of fresh solution using our method. The faster the chemical
reaction (the faster the rate), the sharper the top of the nanowires. From Figure 2a, it is evident that
there is enough space between these nanowires. This is not only beneficial to the deposition of the
TiO2 shell on the ZnO nanowires, but also helpful for the entrance of dye molecules. Figure 2b is the
SEM image of pure ZnO nanowires with high magnification. It can be seen that the surfaces of the
nanowires are rather smooth. The SEM images of nanowires coated with a layer of TiO2 are shown in
Figure 2c,d. Figure 2c displays the sample which is ZnO nanowire core deposited with a TiO2 shell; the
coated nanowires still maintained the nanowire morphology, as shown in Figure 2a, while the shape is
changed slightly. In the SEM image with large magnification (Figure 2d), a lot of small nanoparticles
are found to cover the core nanowires. The surfaces of the nanowires after coating become rough
compared with pure ZnO nanowires (Figure 2b), indicating the successful coating of TiO2 on the
surface of ZnO nanowires, to form the ZnO@TiO2 core/shell nanowires. Though the TiO2 shell layer
reduces the space between these nanowires, there is still enough space between these nanowires for
electrolyte transformation. As for the thickness of the TiO2 shell, we can change it by adjusting the
number of the laser pulses. Figure 3a,b show the SEM images of the samples with TiO2 shells of 1000
and 5000 pulses, respectively. Similar nanowires with rough surfaces, such as those shown in Figure 2,
can be also observed. The different roughness of the surface is caused by the thickness of the TiO2

shell layer.
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Figure 2. Cross-sectional SEM images of aligned ZnO nanowire arrays (a,b) and ZnO@TiO2 core/shell
nanowire arrays by microwave heating method followed by PLD process, depositing TiO2 with
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Figure 3. SEM of ZnO@TiO2 core/shell nanowire arrays synthesized with 1000 pulses (a) and
5000 pulses (b), respectively.

Figure 4 displays the energy dispersive X-ray (EDX) spectra of synthesized pure ZnO (1#) and
ZnO@TiO2 core/shell nanowire arrays, with different pulse numbers of 1000 (2#), 3000 (3#) and 5000
(4#), respectively. These spectra indicate that the core/shell nanowires are composed of Zn, O and Ti
elements only. The intensity of the peak corresponding to Ti element increases with the pulse number.
The atomic ratio of the Ti element is about 2.7%, 8.0% and 11.8% for the sample of 2#, 3# and 4#,
respectively. The inset (Figure 4) shows the atomic ratio of Ti as the function of pulse numbers. It is
shown that the amount of Ti element is almost linearly increased with the number of the laser pulses.
This suggests that the thickness of the TiO2 shell can be well adjusted by changing the pulse number.
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The TEM images of an individual ZnO@TiO2 core/shell nanowire are presented in Figure 5a,b.
The small nanoparticles on the surface of the core nanowire are TiO2. It can be clearly seen that the
whole ZnO nanowire was rather homogeneously coated with TiO2 shell. The average size of the TiO2

nanoparticles is about 5 nm. Figure 5c shows the high-resolution (HR) TEM images of ZnO@TiO2

core/shell nanowire, fabricated by PLD depositing TiO2 layer on ZnO nanowire. From Figure 5c,
the interface between ZnO and TiO2 can be clearly identified. Figure 6d shows the enlarged HRTEM
image of the interface region between the ZnO core and the TiO2 shell. The lattice spacing of ZnO and
TiO2 shown in Figure 5d are 0.25 and 0.35 nm, which match the lattice spacing of (002) plane of ZnO
and (101) plane of anatase TiO2, respectively. The lattice fringes in the ZnO and shell layer of TiO2

indicate that the ZnO@TiO2 core/shell nanowire is well crystallized. Therefore, it’s a useful method for
synthesizing core/shell structures by the PLD process deposited shell layer on the core nanowire arrays.
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Figure 6. Photocurrent density-voltage curves of ZnO and ZnO@TiO2 core/shell nanowire arrays, with
different thicknesses of the TiO2 shell.

Figure 6 shows the J-V characteristics of pure ZnO nanowire arrays (1#) and ZnO@TiO2 core/shell
structures with different thicknesses of TiO2 shells (2#, 3# and 4#) based DSSCs. The open circuit
voltage (Voc), short circuit current density (Jsc), fill factor (FF) and power conversion efficiency (η)
of pure ZnO and ZnO@TiO2 nanowire arrays were listed in Table 1. As expected, the Jsc and η are
increased with the increase of the TiO2 shells’ thickness. The FF is also increased, so that the η of
4# is almost three times higher than that of the pure ZnO nanowire arrays. This improvement is
probably for several reasons. First, the internal surface area of the coated ZnO is enlarged for the fine
nanoparticles on the surface of ZnO nanowires, promoting more dye to be adsorbed on the anode to
increase the light harvest. From Figures 2 and 3, the surface of the nanowires, after being coated with a
layer of TiO2, becomes rough compared with pure ZnO nanowires, so that more dye is adsorbed on
the surface to improve the power conversion efficiency. The efficiency of the ZnO@TiO2 core/shell
nanowire array-based DSSCs increases with the thickness of the TiO2 shell increasing, which is mainly
attributed to the larger surface area for the thicker TiO2 shell and therefore increasing the dye-loading
amount. Second, the TiO2 barrier layer can improve the chemical stability of ZnO nanowire [31].
Third, the heterojunction which formed at the interface between ZnO and TiO2 promoted the charge
separation and suppressed the carrier recombination [32].

Table 1. The photovoltaic parameters of the dye-sensitized solar cells (DSSCs) based on the ZnO and
ZnO@TiO2 core/shell nanowire arrays, with different thicknesses of TiO2 shell.

Samples Jsc (mA/cm2) Voc (V) FF η (%)

1# 4.03 0.64 0.27 0.71
2# 6.23 0.65 0.31 1.24
3# 6.89 0.71 0.30 1.46
4# 8.63 0.68 0.35 2.04

5. Conclusions

We successfully synthesized ZnO@TiO2 core/shell nanowire arrays through depositing TiO2

particles by PLD process on the ZnO nanowire arrays, fabricated by a controllable hydrothermal
growth method. SEM and TEM images show that the anatase TiO2 particles with high crystallinity
were homogeneously coated on the vertical ZnO nanowires. By changing the pulse number during
the PLD experiments, the thickness of TiO2 shells can be adjusted. The efficiency of the ZnO@TiO2

core/shell nanowire arrays based DSSCs increases with the thickness of the shell increasing. Because
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the shells of TiO2 were homogenously deposited on the whole surface of the ZnO nanowires, the
composited nanowires have an enlarged internal surface area to increase the amount of dye loading.
So, the characteristics of the ZnO@TiO2 core/shell nanowire arrays were greatly improved, compared
with those of the pure ZnO nanowire. Moreover, the effects of shell thickness of the core/shell structures
based DSSCs were investigated. It is found that the efficiency of DSSCs was further improved
through increasing the thickness of TiO2 shell, which is mainly attributed to the TiO2 nanoparticles
homogeneously coated on the whole ZnO nanowire. Therefore, the inner surface of the core/shell
structures increases and dye-loading amount was enhanced. The heterojunction which formed at
the interface between ZnO and TiO2 promoted the charge separation and suppressed the carrier
recombination. Because coating TiO2 nanoparticles on ZnO nanowire can greatly increase the internal
surface area to increase the light harvest, it can achieve the comparative high η in rather short 1-D
nanostructure arrays. For the fast electron transportation and long electron diffusion length in 1-D
nanostructure, 1-D core-shell nanowire is a promising structure to obtain DSSCs with high performance.
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