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Abstract: The problem of predicting structural and dynamic behavior associated with thin smectic
films, both deposited on a solid surface or stretched over an opening, when the temperature is slowly
increased above the bulk transition temperature towards either the nematic or isotropic phases,
remains an interesting one in the physics of condensed matter. A useful route in studies of structural
and optical properties of thin smectic films is provided by a combination of statistical–mechanical
theories, hydrodynamics of liquid crystal phases, and optical and calorimetric techniques. We believe
that this review shows some useful routes not only for the further examining of the validity of a
theoretical description of thin smectic films, both deposited on a solid surface or stretched over an
opening, but also for analyzing their structural, optical, and dynamic properties.
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1. Introduction

Free-standing smectic films (FSSFs) and lipid membranes are curious and ubiquitous fluid-like
objects in the realm of soft-matter science. In the long-scale limit they can be considered to be a new
class of two-dimensional state embedded into three-dimensional space. Here the free-standing liquid
crystal (LC) systems, composed of a stack of smectic layers confined by surrounding air [1] or water [2],
or deposited on a solid surface, will be considered. Since there is no substrate, these freely supported
fluid-like films represent an excellent model of low-dimensional systems for the study of surface effects
as the film thickness is reduced.

It should be pointed out that in contrast to thin fluid-like films, there is a parallel world of
crystalline [3], glassy freely supported membranes [4], and graphene films [5], but we will focused
here on the fluid-like films composed of nano-sized sheets of LC matter.

Competition between surface and finite-sized effects leads to unusual physical properties
of LC systems with a finite number of layers. One of the most interesting features of such LC
systems is that under appropriate conditions they can be spread across an opening to form FSSFs
which can be considered to be a stack of smectic layers confined by the surrounding air or water.
Both meniscus, which connects the film with the solid frame, and the surface tension of the film are
responsible for stability of these films. Moreover, the presence of the surface tension is believed
to be responsible for intriguing surface ordering phenomena exhibited by these films. Unlike the
preferential surface melting exhibited by conventional solids, the FSSF/air or FSSF/water interface
appears to enhance the order of the surface layers so that they become ordered at temperatures well
above the bulk smectic-A-isotropic (AI) [1] or smectic-A-nematic (AN) [6] transition temperatures
TAI(N)(bulk). This interesting phenomena has been reported both for LC compounds exhibiting
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a first-order phase transition from smectic-A (SmA) to the isotropic (I) phase [1], as well as for
compounds which possess a second-order smectic-A-nematic (N) phase transition [6]. In both types
of systems, the central smectic layers of films begin to melt under increasing temperature above
TAI(N)(bulk). Thus, melting originates in the interior of the film and penetrates towards surfaces.
Accordingly, at each step of the layer-thinning process, one can observe the coexistence of different LC
phases, separated by phase limits (fronts) which move under temperature changes. The movement
of these phase fronts consists of successive spontaneous layer-by-layer thinning transitions (local
transformations of smectic layers into nematic and isotropic phases) of films, when the interior layer(s)
is(are) squeezed-out in meniscus. Thinning was observed for different low-temperature smectic
systems, such as SmA, SmC, and ferroelectric SmC∗, but we will focus here on the review of the
structural and dynamic properties of thin free-standing smectic-A films in air or water, as well as
deposited on the solid surface.

A great variety of phenomena, both structural and dynamic, can be observed in thin FSSFs:
layer-thinning transitions [1,2,6], stepwise reduction of heat capacity and reflectivity [1,6–8],
sawtooth behavior of the surface tension upon heating the FSSFs above TAI(N)(bulk) [9–12],
dynamics of removal of one or several layers from the N-layer FSSF during the layer-thinning
process [13–18], et al. In particular, it was shown that the AI or AN transitions occurs through a series
of layer-thinning transitions, causing the films to thin in a stepwise manner as the temperature is
increased above TAI(N)(bulk) [1,2], whereas the film tension, at each thinning, abruptly drops to a lower
value and then continues to increase with a smaller slope [9–12]. These transitions have been attributed
to the reduction of smectic fluctuations in the bounding layers [7,19–21]. Associated phenomena have
been observed in the capacities Cp near the layer-thinning transition temperatures. These have been
studied in different compounds [1,22,23] and consist of stepwise reductions of the value of Cp(T) as the
temperature T is raised above TAI(N)(bulk). Both by the calorimetric studies [1,2] and the theoretical
investigations [7,23] it has been shown that the reduction of Cp(T) is associated with the reduction of
the number of layers in the film.

In turn, according to experimental results obtained by applying the technique of fluorescence
scanning laser confocal microscopy [24], orientational and translational order of LCs across confining
films can be much more complex than that predicted theoretically by mean-field modeling [7,25,26].
This may suggest that complex molecular orderings in thin LC films, both deposited on the solid
surfaces or stretched over an opening, can appear as the result of the interplay between short-range
forces and long-range intermolecular interactions. What concerns bounding and surface interactions,
their significance for promoting layer alignment of molecules is obvious, although a detailed
explanation of underlaying anchoring processes is still far from completeness. Furthermore, it is
unclear whether these interactions should always be treated as if they were local. Indeed, whereas the
surface interactions are usually considered to be being strictly local, experimental results indicate
that they are nonlocal, albeit rather short-ranged [27]. On the contrary, the significance of long-range
couplings between molecules for the appearance of ordered structures in LC systems has often been
suggested, especially for the formation of the nematic phase [28]. Nevertheless, this question is still
not clarified in detail. Then, the explanation of the role of nonlocal surface interactions and long-range
intermolecular coupling in the organization of molecules in thin LC films is a challenging problem.

The understanding of how confinement influences the dynamics of the layer-thinning process
when one or several layer(s) is(are) squeezed-out from the smectic film into the meniscus has relevance
for several different areas of applied physics and material science. For description of the layer-thinning
transition in FSSFs, several theoretical approaches have been suggested. First of all, it has been
suggested that the squeezing-out transition is initiated by a thermally activated nucleation in which
a density fluctuation forms a small circular hole (void) of critical radius in the smectic film [17,18],
whereas in the second approach, the squeezing-out transition is initiated by spontaneous nucleation of
dislocation loops, the growth of which causes a film to thin [15,16].



Crystals 2020, 10, 321 3 of 47

This review aims to show some useful routes not only for further examining the validity of
theoretical descriptions of thin SmA films, both deposited on a solid surfaces or stretched over
an opening, when the temperature is slowly increased above the bulk transition temperature towards
either the nematic or isotropic phases, but also for analyzing their structural, optical, thermodynamic
and dynamic properties.

2. Static Properties of Free-Standing Smectic Films and Molecular Ordering in Thin Liquid
Crystal Films on a Solid Surfaces

There are several methods to investigate the coupling between structural and dynamic
properties of thin smectic films, both suspended in air or deposited on the solid surface,
and molecular structure. A usual route in these studies is provided by a combination
of statistical–mechanical theories [7,8,11–13,16–21,23,25,26] and optical and calorimetric
techniques [1,2,6,9,10,14,15,22,24,29–33].

2.1. Layer-Thinning Transitions and Optical Reflectivity Observed in FSSFs

One of the most effective techniques of the experimental investigation of thin LC films both
deposited on solid substrates or in freely suspended films is the study of their optical properties,
namely the optical transmission spectra [2,6] and the optical reflectivity [1,2,6], especially with the use
of the techniques of fluorescence confocal microscopy [24,29] and X-ray reflectivity [30]. By measuring
the optical reflectivityR of free-standing SmA films composed of certain LC compounds a remarkable
phenomenon of layer-thinning transitions in FSSFs upon heating above TAI(N)(bulk) has been revealed.
During these transitions the FSSF with initial thickness of several tens of smectic layers can thin
layer-by-layer and the film thickness reduction is suitably described by a power-law expression
N(t) ∼ l−ν, where N is the number of layers, l =

(
TAI(N)(N)− TAI(N)(bulk)

)
/TAI(N)(bulk) is the

reduced temperature, TAI(N)(N) is the temperature corresponding to the layer-thinning transition in
N-layer smectic film, and ν is the critical exponent value belonging to the interval [0.5, 0.9], for different
compounds [31]. It has been shown both by calorimetric and optical studies that the free-standing LC
films composed of 5-n-alkyl-2-(4-n-(perfluoroalkyl-metheleneoxy)phenyl) (H10F5MOPP) molecules may
exhibit the following thinning sequence: N = 15→ 11→ 9→ 8→ 7→ 6→ 5→ 4→ 3→ 2, as the
film temperature is increased. The two-layer SmA film, composed of H10F5MOPP molecules ruptures
in air at a temperature approximately 30 K above TAI(bulk) [1] and the thinning transition is thermally
driven and irreversible. For example, a two-layer film does not rupture for more than 5 h at 30 K above
TAI(bulk) and does not spontaneously thicken when cooled well into the SmA phase [32].

Only a small number of compounds possessing partially fluorinated alkyl chains show
a layer-by-layer thinning process in air but films of cyanobiphenyl′s compounds, for instance nCB,
just rupture when heated above TAI(bulk). In turn, the thinning effect in thin smectic films,
composed of decylcyanobiphenyls (10CB) and dodecylcyanobiphenyls (12CB) molecules in water on
heating above TAI(bulk) has been observed [2]. It was shown that these stable smectic films, composed
of cyanobiphenyl′s molecules, can be prepared in water with the help of a surfactant that induces
homeotropic anchoring of LC molecules at the film/water interfaces. These films undergo a one-step
thinning transition with the following thinning sequence: N = 9→ 8→ 7→ 6→ 5→ 4→ 3→ 2,
in which the film thickness decreases in a stepwise fashion until the film ruptures at ∼2 K above
TAI(bulk) [2]. This behavior is different from FSSFs in air: on heating to the isotropic phase the FSSFs in
air either just rupture, for vast majority of LC compounds, or show a layer-by-layer thinning transition,
for LC compounds possessing the partially fluorinated alkyl chains. Therefore, it clearly indicates
that the film’s environment plays a crucial role in formation of the thinning effect and FSSFs present
unusual physical properties which are associated with the interplay of surface and finite-size effects.

Experimentally obtained values both for the reflectivityR(T) and heat capacity Cp(T) decrease in
a series of sharp steps separated by wide plateaus as the temperature is increased (see Figures 1 and 2,
Ref. [1]). Moreover, the plateau values have been found to obey the laws R(T) ∼ N2 (N < 15) and
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Cp(T) ∼ N. Therefore, it is clear that the steps correspond to discrete reductions of the film thickness,
demonstrating the unique nature of this melting transitions. These transitions have been attributed to
the reduction of smectic fluctuations in the bounding layers. It takes place because these films thin
as the interior layers undergo the SmA-isotropic transition and the disjoining pressure [12] acting,
for instance, across the N-layer and (N− 1)-layer smectic film, is responsible for removal of one smectic
layer from the N-layer smectic film into the surrounding reservoir during the layer-thinning process.
It has also been shown, by means of high-resolution optical reflectivity investigations [32] that partially
fluorinated compound, such as 2-4-(1,1-dihydro-2-(2-perfluorobutoxy) perfluoroethoxy) phenyl-5-octyl
pyrimidine (H8F(4,2,1)MOPP), reveal a substantial compression of the smectic layer spacing during
the layer-thinning transitions. It was found that upon heating the N-layer perfluorinated film
(N = 10, 9, 8, 7, ..., 3) to its maximum temperature TAI(N) of existence, the average film layer thickness
L decreases monotonically to a certain minimum value Lm, and then, at the thinning transition to
the (N − 1)-layer film, L jumps to a nearly initial value. Upon further heating, the average smectic
layer thickness in the new (N − 1)-layer FSSF exhibits a similar behavior. It should be noted that a
change in the average layer spacing can be as large as ∼0.1 nm, and the minimum value of L in the
N-layer film, which is reached at the temperature TAI(N), decreases with decreasing the number N
of the film layers. In other words, the minimum value of L in the nine-layer FSSF is smaller than in
the ten-layer film, and Lm for eight-layer film is smaller than that in the nine-layer one, etc. These
results are in contrast with data on the optical reflectivities of FSSF’s made of a hydrogenated LC
compounds, such as n-pentyl-4′-pentanoyloxy-biphenyl-4-carboxylate (54COOBC), composed of molecules
with ordinary alkyl tails without fluorine atoms [33]. Though free-standing films of this material
also undergo layer-thinning transitions upon heating above TAI(bulk), their reflectivities, at given
number N of the film layers, do not change with increasing temperature up to its maximum value
TAI(N). If the reflectivity of the N-layer FSSF does not change upon heating up to the temperature
TAI(N) of its thinning transition, then the average layer thickness in this film is completely temperature
independent. The origin of such diverse behavior of the smectic layers in FSSFs of different mesogens
is not clear up to now.

The free-standing SmA films with two free bounding surfaces represent an excellent example of
low-dimensional systems for the study of surface effects. Among other properties of such systems,
research of surface tension behavior during the layer-thinning transitions is of both academic and
applied interest. Recently, by means of the high-resolution calorimetric technique, direct measurements
of the surface tension γ of the partially fluorinated 5-n-alkyl-2-(4-n-(perfluoroalkyl-metheleneoxy)phenyl)
films in air, during the layer-thinning transitions, has been carried out [10]. It has been found that at
each thinning the film tension γ abruptly drops to a lower value and then continues to increase with
a smaller slope. This effect tends to repeat for the rest of the sequence of the layer-thinning transitions
N = 15→ 11→ 9→ 8→ 7→ 6→ 5→ 4→ 3→ 2 as the film temperature is increased, where each
thinning is characterized by abrupt drops to lower values of γ(T), after which it then continues to
increase with a smaller positive slope.

Most of experimental techniques to study the effect of the molecular alignment of LC compounds
in thin cells are focused on geometric aspects of the molecular anchoring and stabilization at solid
surfaces. To achieve a better stabilization of LC mesophases and to gain a more precise control
of their behaviors, various methods to prepare bounding surfaces have been developed [33–37].
The primary method was based on producing micro-grooves on polymer coated surface and, next,
on using the rubbing technologies. By employing the atomic force microscopy, the rubbing process
has significantly been improved to allow the formation of grooves on the microscale [34]. Alternative
methods involve photolithography, enabling the imprinting of appropriate patterns onto photoactive
polymer substrates [35], the technique of creating self-assembled alignment surfaces or the process of
controlled self-assembly of LC molecules on surfaces [36], as well as the process of realigning of LC
molecules at surfaces by means of the infrared laser beam [37].
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Thus, experimental studies have shown that the introduction of fluorine functionality into a
LC molecule often leads to the change of the observed behavior significantly from that of similar,
fully hydroalkyl analogs. Exploring and understanding the mechanisms which connect the presence
of fluorine with those molecules’ novel macroscopic properties are therefore important both to advance
technology and to clarify the relevant underlying physical interactions.

On the other hand, the theoretical treatment of both structural and dynamic properties of thin
smectic films is not an easy task and requires a certain number of simplifying assumptions which may
only be justified by comparison between model predictions and experiment. Thus, the combination
of optical and calorimetric techniques with theoretical treatments provides a powerful tool for the
investigation of both structural and dynamic properties of mesogenic compounds containing flexible
moieties, especially partially fluorinated chains.

2.2. Formulation of the Mean-Field Model for the LC System Confined in Small Volume

2.2.1. The Surface Effect on the Molecular Ordering in thin LC Systems on a Solid Surface

In this Section it will be considered the LC system confined between two parallel surfaces.
Both the structural and optical properties of such LC system will be considered in the framework of
the mean-field model [25,26]. The smectic phase, consisting of N smectic layers (each of the thickness
d) oriented parallel to the bounding surfaces was considered to be the initial state of the LC system.
The geometry of the LC system used for theoretical analysis is shown in Figure 1.

Figure 1. The geometry of the LC system used for theoretical analysis.

Two types of interactions will be considered, first, the short-range, rapidly decaying with distance,
interactions of the smectic layers with confining surfaces (Vi (i = 0, s)) and, second, the long-range
van der Waals interactions between smectic layers (Vij (i 6= j)) [25,26]. Taking into account that the
length of the smectic layers is much bigger than the thickness Nd, we can suppose that all the physical
quantities depend only on the z-coordinate counted from the lower bounding surface.

The set of the effective anisotropic potentials Φi (i = 1, ..., N) within the ith smectic layer can be
introduced in the framework of the mean-force approach [25,26]:

Φi (zi, βi) = [Vi +Ai + α (Vi + αBi) cos (2πzi)] P2 (cos βi) , (1)

with
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Ai =
N

∑
j 6=i

Vijηi, Bi =
N

∑
j 6=i

Vijσi, (2)

where

ηi = 〈P2 (cos βi)〉i (3)

is the local orientational order parameter (OP), while

σi =
1
α
〈P2 (cos βi) cos (2πzi)〉i (4)

is the local translational order parameter, P2(cos βi) is the second-order Legendre polynomial, βi is
the polar angle or the angle between the long axis of the molecule from the i-th layer and the director,
whereas zi = z/d is the dimensionless position of the molecule from the i-th layer, and the overbar has
been (and will be) eliminated in the following equations. It should be noted that both these potentials
Vi and Vij describe the interactions of the ith layer with confining surfaces and the pair interactions
between ith and jth molecules, respectively. Here 〈(...)〉i is the statistical–mechanical average with
respect to the one-particle distribution function of the ith layer [7,38]

hi (zi, βi) =
1
Qi

exp
[

Φi (zi, βi)

kBT

]
, (5)

where T is the absolute temperature of the system, kB is the Boltzmann constant, Qi =∫ 1
0 dzi

∫ 1
0 d cos βi exp

[
Φi(zi ,βi)

kBT

]
is the partition function of the ith layer, respectively. Please note that in

the smectic phase both OPs ηi and σi are nonzero, whereas in the nematic phase ηi 6= 0 and σi = 0,
respectively. Finally, in the isotropic phase both OPs ηi and σi are equal to zero. Both sums Ai and Bi
can be considered to be some weighted local order parameters. The constant α = 2 exp[−(πr0/d)2]

implicitly characterizes molecular packing within smectic layers, and r0 is a characteristic length
associated with the rigid core of the molecule.

Taking into account the experimental results, both potentials Φs and Φij are well described by
an exponentially decaying functions [25,26]

Φs

kBT
= −Vs

[
exp

(
− i

ξ

)
+ exp

(
−N + 1− i

ξ

)]
(6)

and
Φij

kBT
= −V0

1
|i− j|2 . (7)

Please note that both parameters Vs and V0 are positive, because all abovementioned interactions
are attractive. For simplicity, we assume that the surface potential Φs [Equation (6)] is symmetric with
respect to distances from surfaces. Furthermore, the characteristic length scale ξ, specifying the range
of the surface interactions, has been chosen equal to one [27]. It should be pointed out that the inverse
square distance dependence for the pair interlayer potential Φij is in accordance with the theoretical
result obtained for a pair of interacting surfaces [39,40]. Here, for convenience, the inverse reduced
temperature V0 ∼ 1/T has been used rather than the pure temperature [25,26].

The set of the OPs ηi and σi, corresponding to the ith layer of the film composed of a stack of
N layers can be obtained by solving the system of 2N nonlinear self-consistent Equations (1)–(5),
at a given number of film layers N, temperature T, and two parameters α and Vs/V0 of the model.
The distributions of the OPs ηi and σi across the N = 100 layer smectic film, at nine values of V0 is
shown in Figures 2a–d, 3e–h, and 4i [41], respectively.
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Figure 2. The set of thelocal ηi and σi OPs vs. i [41]. In all cases, Vs > 7V0.
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Figure 3. Same as in Figure 2a–d.
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Figure 4. Same as in Figures 2a–d and 3e–h.

It should be pointed out that the ratio Vs/V0 > 7 corresponds to the case of rather strong
surface interactions.

“Calculations showed that both OPs ηi and σi are positive for all layers, when the temperature
takes sufficiently low values (V0 ≥ 1.765) [41] (Figure 2a). This means that the SmA phase exists in
the whole confined LC system. Because both the surface and interlayer interactions are attractive,
smectic layers are more strongly stabilized in the middle part of the LC system than in the vicinity of
the bounding surfaces. On the other hand, the studied system is surface stabilized, and hence the LC
molecules exhibit the SmA ordering in domains close to surfaces. As the temperature further rises,
the smectic ordering begins to vanish in the vicinity of the bounding surfaces and, simultaneously,
the nematic ordering starts to arise in these domains [42]. This is illustrated in Figure 2b, where the
orientational OP ηi > 0, whereas the translational OP σi is equal to zero. Calculations showed that
for N = 100, the nematic phase starts to arise at the temperature T1 [41], corresponding to V0 = 1.765,
whereas the smectic ordering still prevails in the central domain of the LC system. Figure 2c,d shows
how with further increase of temperature, the layer melting transition from the smectic-A to the
nematic ordering propagates, largely into interior of the LC system. In turn, as shown in Figure 3e,
at higher temperature T2 (corresponding to V0 = 1.735), the smectic phase completely disappears
in the central domain of the LC system and, afterwards, for the temperature T3 (corresponding to
V0 = 1.418), the local isotropic domain (associated with ηi = 0 and σi = 0) begins to form in the vicinity
of the bounding surfaces, as shown in Figure 3f. As a consequence, Figure 4i shows that with increase
of temperature, the frontiers between the isotropic and centrally arising nematic domains move
(Figure 3g–h), until the nematic ordering completely vanishes (at the temperature T4, corresponding
to V0 = 1.38). In the case when V0 ≤ 1.38, i.e., above the reduced temperature T4, the isotropic phase
occurs in whole the LC sample, except for the small domains close to surfaces, where the surface
interactions hamper the disorder process, promoting the smectic order, which persists also at high
enough temperatures. Accordingly, smectic layers formed in the immediate vicinity of each of surfaces
can coexist with nematic and centrally formed smectic domain (Figure 2b–d), or can coexist with
isotropic and centrally formed nematic domain (Figure 3f–h). When temperature increases, fronts
between nematic or isotropic domains and the SmA domain, as well as fronts between isotropic and
nematic domains move, mainly towards the center of the LC system. Results presented in Figures 2–4
show the very complex behavior of both orientational and translational OPs, due to the interplay
between pair long-range intermolecular and nonlocal, relatively short-range [41] surface interactions.
Calculations also showed that the SmA, nematic and isotropic phases can coexist, whereas the phase
transitions from SmA to nematic, as well as from nematic to isotropic phases, as the temperature
increases, does not occur simultaneously in the whole volume of the LC system but only in some
domains of the LC sample. It should be pointed out that there are four characteristic temperatures,
Ti, (i = 1, 2, 3, 4), at which particular phases arise or vanish. (Please note that Ti ∼ 1/V(i)

0 is the
corresponding value of the reduced temperature.) For instance, at temperature T1 the nematic phase
starts to form in the vicinity of the bounding surfaces. Simultaneously, the smectic-A phase disappears
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within these domains, as shown in Figure 2b. How it is shown in Figure 3e, the vanishing process of
the smectic phase in the central domain of the LC system takes place at somewhat higher temperature
T2. In turn, Figure 3f shows that like the nematic phase, the isotropic phase begins to appear also in
the vicinity of the bounding surfaces, but at temperature T3 > T2. Finally, at temperature T4 > T3,
the nematic phase completely disappears.” [42].

Clearly, when the system is not very thin, its interior (sufficiently far from surfaces) is controlled
by interlayer interactions. However, when the thickness of a system is relatively small, in comparison
with the range of surface interactions, the behavior of the system is dominated by surface anchoring
couplings. Calculations showed [25] that the profiles presented in Figure 5 are qualitatively consistent
with those derived also for N = 25, but assuming that surface potentials are strictly local and
that two-layer potentials are independent of distance between the layers [7,19–21]. This indicates
that the underlying method based on averaging such potentials at each iteration of self-consistent
procedure applies for rather very thin real systems, entirely or almost entirely governed by surface
anchoring interactions.
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Figure 5. The set of the local ηi and σi OPs vs. i [25] for N = 25, VS = 3V0, and V0 = 1.4.

It should be pointed out that in the framework of the abovementioned mean-field approach for
description of LC system confined in the microsized volume [25,26], the reduced temperature T was
defined as T ∼ 1/V0. In the case where it is necessary to calculate the temperature values with high
accuracy, for example, in the case of unusual layer-thinning transition observed in FSSF, composed of
partially fluorinated H10F5MOPP molecules [1], a precise definition of the dimensionless temperature
is needed. It will be done in Section 2.2.3.

In turn, a new type of scaling behavior of the LC system interacting with the solid substrate will
be analyzed in the next Section.

2.2.2. Finite-Size Effect in Thin LC Films on a Solid Surface

Effects of surface ordering in LC systems confined between solid boundaries are of great
theoretical and experimental interest. In the previous Section a new theoretical approach for
analyzing the effect of surfaces on local molecular ordering in thin LC systems with planar
geometry of the smectic layers [25,26,41] was introduced. These results showed that due to the
interplay between pair long-range intermolecular forces and nonlocal, relatively short-range, surface
interactions, both orientational and translational orders of molecules across confining cells are complex.
In particular, it has been demonstrated that the SmA, nematic, and isotropic phases can coexist [25,26].
The phase transitions from SmA to nematic, as well as from nematic to isotropic phases, occur not
simultaneously in the whole volume of the system but begin to appear locally in some domains of the
LC sample. Phase-transition temperatures are demonstrated to be strongly affected by the thickness
of the LC system. The dependence of the corresponding shifts of phase-transition temperatures on
the layer number is shown to exhibit a power-law character. This new type of scaling behavior is
concerned with the coexistence of local phases in finite systems. The influence of a specific character of
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interactions of molecules with surfaces and other molecules on values of the resulting critical exponents
now will be analyzed.

The set of the temperature parameter shifts ti(N) = V(i)
0 (N)−V(i)

0 (500), i = 1, 2, 3, 4 as a function
of the number N of smectic layers can be obtained by solving the system of 2N nonlinear self-consistent
Equations (1)–(5), at a given number of film layers N, temperature T, and two parameters α and Vs/V0

of the model, and results of calculation of the temperature parameter shift ti(N) (i=1,2,3,4) [41] is
shown in Figure 6.
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Figure 6. Temperature parameter shifts t1(N) (curve 1), t2(N) (curve 2), t3(N) (curve 3), t4(N)

(curve 4) vs. the number N of smectic layers [41].

Here V(i)
0 (N) is the value of parameter V(i)

0 determined for the system of the size N. It should be

pointed out that values of V(i)
0 (N = 500) are treated as the bulk values. The log-log plots (Figure 7) of

the functions ti(N), (i = 1, 2, 3, 4) distinctly showed that the temperature shifts undergo the scaling
law [41]

ti(N) ∼ Nαi , (8)

whereas the values of critical exponents αi (i = 1, 2, 3, 4) are being independent of N. Values of
αi (i = 1, 2, 3, 4) corresponding to the appropriate local phase transitions are: α1 = −1.402, α2 = −1.122,
α3 = −1.488, and α4 = −1.172, respectively. Calculations showed that the following approximate
relations α1 ≈ α3 and α2 ≈ α4 are satisfied [41]. Critical exponents α1 and α3 describe processes of
the appearance (at least, in the vicinity of the bounding surfaces) of the nematic and isotropic phases,
respectively, while α2 and α4 characterize processes of disappearance (in the central domain of the LC
system) of the SmA and nematic phases, respectively. Values of pairs of the exponents (α1, α3) and
(α2, α4) distinctly differ each other because indices α1 and α3 correspond to the local phase transitions
that take place in noncentral parts of the LC system, dominated by the surface interactions, while
exponents α2 and α4 are associated with the local phase transitions within the central part of the LC
system, dominated by the van der Waals interactions. Therefore, the values of critical exponents are
determined by the type of interactions existing in the LC system [41]. Please note that the values of
exponents α1 and α3 are not identical, as well as α2 is not exactly equal to α4, although exponents of a
given pair (α1, α3) or (α2, α4) are associated with the same domain of the LC cell (i.e., peripheral or
central regions, respectively). It should be pointed out that surface interactions play dominating role
in the vicinity of the bounding surfaces, whereas the central part of the LC system is dominated by the
intermolecular interactions. However, each of the indices of a given pair refers to transitions between
different phases, characterized by different thermodynamic behavior of the studied LC system, which
is why indices of a given pair are not equal. The analysis of ordering in the studied surface stabilized
LC systems has been carried out for the set of the ratios between values of surface and intermolecular
interactions [41]. This ratio corresponds to temperatures of transitions between the studied local
phases, differently located with respect to surfaces of the considered LC system. All phases and phase
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transitions between them are characterized by the wide range of values of that interaction ratio. It
would be interesting to compare theoretical and experimental results for phase-transition temperatures
and for profiles of order parameters across the surface stabilized LC systems. However, till now, there
are no experimental results explaining these problems.

1.4 1.6 1.8 2.0 2.2

-2.6

-2.4

-2.2

-2.0

-1.8

-1.6

-1.4

 

 

lo
g(

T 1(N
) -

 T
1(N

=5
00

))

log(N)

1=-1.402

(a)

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1.0
 

 

lo
g(

T 2(N
) -

 T
2(N

=5
00

))

log(N)

2=-1.122

(b)

1.4 1.6 1.8 2.0 2.2
-3.0

-2.8

-2.6

-2.4

-2.2

-2.0

-1.8

-1.6

-1.4

 

 

lo
g(

T 3(N
) -

 T
3(N

=5
00

))

log(N)

3=-1.488

(c)

1.2 1.4 1.6 1.8 2.0 2.2

-2.2

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

 

 

lo
g(

T 4(N
) -

 T
4(N

=5
00

))

log(N)

4=-1.172

(d)

Figure 7. Values of critical exponents αi, i = 1, 2, 3, 4 [42] corresponding to the appropriate local phase
transitions. The solid lines represent the best linear fits.
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The finite-size effect studied theoretically in this review can be a motivation for experimental
studies, by applying, e.g., the fluorescence scanning laser confocal microscopy or the X-ray technique.
The initial experimental results obtained by applying the technique of fluorescence scanning laser
confocal microscopy [24,42,43] confirmed the inhomogeneity of molecular ordering in finite surface
stabilized LC systems [42].

It should be pointed out that the full phase diagram and the set of phase transitions of LC
system interacting with the solid surface can be obtained in the framework of the mean-field
approach which takes into account the translational-translational, orientational-orientational and
mixed correlations [44,45]. In the next Section, it will be demonstrated by an example of a freely
suspended smectic films.

2.2.3. Mean-Field Theory with Anisotropic Forces for Description of the Layer-Thinning Transition
in FSSFs

In this Section we will present an overview of mean-field approaches for describing the structural
and thermodynamic properties, such as the Helmholtz free energy, entropy, and heat capacity,
of free-standing smectic films. This will be done in the framework of the mean-field approaches,
with anisotropic forces [7,12,17], where a free-standing smectic-A film is composed of N discrete
smectic layers with a thickness of the order of the molecular length d and with total number of particles
M = ∑N

i=1 Ni, where Ni is the number of molecules per layer, which is assumed to be the same for all
layers. The molecules within each layer are assumed to interact only with molecules of the same layer
and those of the two neighboring ones. In the framework of these mean-field approaches, the set of
potentials Φi (i = 1, ..., N) within the ith smectic layer can be introduced [7,38]

Φ1 (z1, β1) = −
V0

3

[
W0

V0
η1 + η2 + α cos (2πz1)

(
W0

V0
σ1 + σ2

)]
P2(cos β1),

Φ1<i<N (zi, βi) = −
V0

3

[
i+1

∑
j=i−1

ηj + α cos (2πzi)
i+1

∑
j=i−1

σj

]
P2(cos βi),

ΦN (zN , βN) = −
V0

3

[
W0

V0
ηN + ηN−1 + α cos (2πzN)

(
W0

V0
σN + σN−1

)]
P2(cos βN), (9)

where zi is the dimensionless distance through the smectic film, V0 is the force potentials which is
responsible for the molecule-molecule interaction, W0 is the parameter corresponding to “enhanced”
pair interactions in the bounding layers, and the constant α implicitly characterizes molecular packing
across smectic layers [38]. Physically, these approaches indicate that we replace V0 by W0 within the
first and last layers, whereas for all interior layers 1 < i < N the interaction coefficient V0 has not been
changed. It should be pointed out that the effective anisotropic potential Φi (i = 1, ..., N) in the form
of Equation (9) is a reduced version of the potential Φi in the form of Equation (1).

The set of OPs ηi and σi corresponding to the ith layer of the smectic film composed of a stack
of N SmA layers in air can be obtained by solving the system of 2N nonlinear self-consistent
Equations (3)–(5), with the effective anisotropic potential Φi (i = 1, ..., N) in the form of Equation (9),
at a given number of film layers N, temperature T, and the two parameters α and W0/V0 of the model.
Having obtained the set of OPs ηi and σi (i = 1, ..., N), one can calculate the full Helmholtz free energy
of the LC system as F(N, T) = 1

N ∑N
i=1 Fi, where Fi is the Helmholtz free energies corresponding to

the ith layer. In turn, the dimensionless full Helmholtz free energy per molecule for each layer can be
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written as f = 1
N ∑N

i=1 fi, where fi =
Fi

NiV0
is the dimensionless Helmholtz free energy corresponding

to the ith layer, which can be calculated as [7,12,17,46]

f1 =
1
6

[
W0

V0
η1

(
W0

V0
η1 + η2

)
+ α

W0

V0
σ1

(
W0

V0
σ1 + σ2

)
− 2θ ln Q1

]
,

f1<i<N =
1
6

[
ηi

i+1

∑
j=i−1

ηj + ασi

i+1

∑
j=i−1

σj − 2θ ln Qi

]
,

fN =
1
6

[
W0

V0
ηN

(
W0

V0
ηN + ηN−1

)
+ α

W0

V0
σN

(
W0

V0
σN + σN−1

)
− 2θ ln QN

]
, (10)

where θ = 3kBT
V0

is the dimensionless temperature and Qi =
∫ i
(i−1) dz

∫ 1
0 hi(x, z)dx, (i = 1, ..., N) is the

partition function of the ith layer, respectively.
In the scope of our research interest is also to investigate the experimentally observed phenomenon

of the stepwise reduction of the value of heat capacity [7,17]

cv =
Cv

MkB
=

T
MkB

(
∂S
∂T

)
v
= θ

(
∂s
∂θ

)
v

(11)

as the temperature θ is raised above the dimensionless θAI(bulk) = 3kBTAI(bulk)/V0 [1]. In order to
calculate the values of cv, one must first calculate the entropy of the system per molecule s = 1

N ∑N
i=1 si,

where

− θ

3
si = 2 fi +

θ

3
ln Qi, (1 ≤ i ≤ N). (12)

Here si =
Si

NikB
is the dimensionless entropy per molecule corresponding to the ith layer.

Recently, an experimental phenomenon of the stepwise behavior of surface tension upon heating
the smectic-A film above θAI(bulk) has been observed [9]. It was shown that the film tension Γ, at each
thinning abruptly jumps to a lower value and then continues to increase with a smaller slope [9]. In the
framework of the mean-field approach, the dimensionless surface tension γ = Γ a

V0
of the smectic film

per molecule at constant volume v = V/M, can be calculated as [11,46]

γ =

(
∂ f
∂a

)
p,v,θ

= −
(

z
∂ f
∂z

)
p,v,θ

, (13)

where p is the dimensionless pressure per molecule and a = ad3 is the area per molecule at constant p
and v. At the same time, the calculation of surface tension Γ =

(
∂F
∂A

)
P,V,T

= − 1
A

(
z ∂F

∂z

)
P,V,T

took into

account the fact that V = ANd = const, where F is the Helmholtz free energy of the smectic film and
A is the LC/vacuum interface area.

In the case when the FSSF is subjected to the external electric field E directed both across
(

E ‖ k̂
)

and along
(
E ‖ î

)
the smectic layers, the set of effective anisotropic potentials Φi (i = 1, ..., N) can be

rewritten in the form [11]
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Φ1 (z1, β1) =

−V0

3

[
W0

V0
η1 + η2 + ∆C (η1) + α cos (2πz1)

(
W0

V0
σ1 + σ2

)]
P2(cos β1),

Φ1<i<N (zi, βi) =

−V0

3

[
i+1

∑
j=i−1

ηj + ∆C (ηi) + α cos (2πzi)
i+1

∑
j=i−1

σj

]
P2(cos βi),

ΦN (zN , βN) =

−V0

3

[
W0

V0
ηN + ηN−1 + ∆C (ηN) + α cos (2πzN)

(
W0

V0
σN + σN−1

)]
P2(cos βN), (14)

where

C (ηi) =

{
ηi +

1
2 , for E ‖ k̂,

1− ηi, for E ‖ î,

and ∆ = ε0εaE2

n0V0
is the dimensionless parameter corresponding to the electric field E applied across or

along the smectic layers. Here ε0 is the dielectric permittivity of vacuum, εa is the dielectric constant
of the smectic film, and n0 is the number of density. In the framework of the mean-field approach,
the dimensionless Helmholtz free energy corresponding to the ith layer can be written as [11]

f1 =
1
6

[
W0

V0
η1

(
W0

V0
η1 + η2

)
+ α

W0

V0
σ1

(
W0

V0
σ1 + σ2

)
− 2θ ln Q1

]
,

f1<i<N =
1
6

[
ηi (∆ + 1)

i+1

∑
j=i−1

ηj + ασi

i+1

∑
j=i−1

σj − 2θ ln Qi

]
,

fN =
1
6

[
W0

V0
ηN

(
W0

V0
ηN + qN−1

)
+ α

W0

V0
σN

(
W0

V0
σN + σN−1

)
− 2θ ln QN

]
, (15)

where W0
V0

= W0
V0

+ ∆.
Equations from (3) to (5), with the effective anisotropic potential Φi (i = 1, ..., N) in the form

of Equations (9)–(12) and (15) are the relations which are needed to calculate both the structural,
optical and thermodynamic properties of the free-standing SmA films. The set of external parameters
used in calculations are N, α, and W0/V0, respectively. For the case of films composed of the partially
fluorinated H10F5MOPP molecules, both calorimetric and optical reflectivity studies were carried out
with initially 25-layer thick films, above the bulk SmA-Isotropic transition temperature (TAI(bulk) ∼
358 K). Taking into account this fact, in the theoretical investigations the initial thickness of the film
was chosen as being equal to N = 25 [7,11,12,17,19–21]. According to the McMillan’s theory [38],
the first-order bulk AI transition occurs for α ≥ 0.98, so, the choosing of α = 1.05 is acceptable.
When choosing the value of W0/V0, one is usually guided by the fact that the partially fluorinated
free-standing smectic films composed of the H10F5MOPP molecules are stable above the θAI(bulk).
This allows the assumption that the value of the interaction constant W0 should be greater than V0. In
the number of theoretical investigations [7,11,12,17,19–21] the strong surface-enhanced pair interactions
with W0 = 5 V0 has been chosen. Taking into account that the partially fluorinated compound
H10F5MOPP has bulk SmA-I transition temperature TAI(bulk) ∼ 358 K, (θAI(bulk) ∼ 0.675) and for
α = 1.05, according to the McMillan’s theory [38], the value of kBTAI(bulk)/0.2202V0 = 1.021, one can
estimate that the value of V0 is equal to ∼ 2.2× 10−20 J. Please note that values of the dimensionless
temperature θ = 3kBT

V0
often vary between 0.60 (∼ 318.2 K) and 0.80 (∼ 424.3 K) [7,11,12,17].
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In the next Section we will review several examples of numerical simulation of the layer-thinning
transitions in free-standing partially fluorinated smectic films as the temperature is increased above
TAI(bulk).

2.2.4. Layer-Thinning Transitions in Free-Standing Partially Fluorinated Smectic Films

“When the temperature θ is slowly increased above θAI(bulk) towards either the nematic or
isotropic phases, competition between surface and finite-size effects leads to unusual properties of
FSSFs. High-resolution optical reflectivity investigations show [33] that in the partially fluorinated
compound, such as 2-4-(1,1-dihydro-2-(2-perfluorobutoxy) perfluoroethoxy) phenyl-5-octyl pyrimidine
(H8F(4,2,1)MOPP), the order of the surface layers appears to enhance, so they become ordered at
temperatures well above θAI(bulk). The temperature θ′s effect on the behavior of the orientational ηi(θ)

and translational σi(θ) OPs in the smectic film with N = 25 layers has been investigated numerically by
solving the set of 2N self-consistent nonlinear equations from (3) to (5), with the effective anisotropic
potential Φi (i = 1, ..., N) in the form of Equation (9) [7], and the numerical result is shown in
Figure 8a,b.
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Figure 8. Plot of ηi(θ) (i = 1, 5, 10) (a) and σi(θ) (i = 1, 5, 10) (b) vs. θ [7].

The set of the model parameters used in these calculations are N = 25, α = 1.05, and W0 = 5 V0,
respectively. In the low-temperature region 0.60 ≤ θ ≤ 0.675 (318.2 K ≤ T ≤ 358 K), results
for orientational ηi(θ) (Figure 8a and translational σi(θ) OPs (Figure 8b OPs showed [7] that these
equations have a stable unique solution, which is characterized by high values of ηi(θ) (Figure 8a,
squares and up and down triangles) and σi(θ) OPs (Figure 8b, squares and up and down triangles),
both in the vicinity of the bounding surfaces, as well as near the film center. In the high-temperature
region 0.685 ≤ θ ≤ 0.8 (363.3 K ≤ T ≤ 424.3 K), one also has a stable unique solution, which is
characterized by vanishing both OPs ηi(θ) and σi(θ) near the film center, whereas in the vicinity of the
bounding surfaces, both OPs still maintain relatively high values. In [7,19], this type of solution was
called a “quasi-smectic” state. At intermediate temperatures 0.675 ≤ θ ≤ 0.685 (358 K ≤ T ≤ 363.3 K)
both types of solutions of the self-consistent equations exist, although, for clarity, Figure 8 shows only
the quasi-smectic profiles.

Calculations also showed that both ηi(θ) and σi(θ) profiles demonstrate strong ordering in the
vicinity of the bounding surfaces, due to the stronger pair interactions within the first and last layers
than for all interior layers, which decreases rapidly with distance from those surfaces. For instance,
both the ηi(θ) (Figure 8a, up triangles (i = 5)) and σi(θ) (Figure 8b, up triangles (i = 5)) OPs fall
continuously to some finite values [7], whereas those parameters corresponding to the interior layers
close to the film center (Figure 8a,b, down triangles (i = 10)) drop to 0.

Furthermore, on the basis of the behavior of the free energy, one can calculate the values of the
layer-thinning transition temperatures [7]. For instance, in the case of strong (W0 = 5 V0) “enhanced”
pair interactions in the bounding layers, the value of the temperature θAI(N = 25) is equal to
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∼ 0.678 (TAI(N = 25) ∼ 359.6 K). Here θAI(N = 25) and TAI(N = 25) denote the dimensionless and
dimensional layer-thinning transition temperatures, respectively. According to these calculations [7],
the distributions of the OPs ηi(θ) and σi(θ) across the 25-layer smectic film, at three dimensionless
temperatures θ = 0.65 (∼ 344.74 K), 0.67 (∼ 355.35 K), and 0.69 (∼ 366 K), are characterized by
a monotonic decrease of both ηi(θ) and σi(θ) with increasing distance (or number of layers) from the
bounding surface towards the interior of the film.

In the case of strong (W0 = 5 V0) “enhanced” pair interactions in the bounding layers, (see
Figure 9a–c [7]) these distributions are characterized by minima in the middle part of the film and
decreasing values of these OPs with increase in temperature.
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Figure 9. Plot of ηi (curves 1) and σi (curves 2) vs. i [7] for three temperature values θ: (a) 0.65, (b) 0.67,
and (c) 0.69, respectively.

Having obtained the profiles of OPs ηi(θ) and σi(θ), and using Equations (10) and (11),
the distributions of both the dimensionless Helmholtz free energy f (i) (Figure 10a) and entropy
s(i) (Figure 10b) can be calculated [7].
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Figure 10. Plot of the Helmholtz free energy f (i) (a) and entropy s(i) (b) vs. i [7], for three values of θ:
0.66 (down triangles), 0.665 (up triangles), and 0.67 (squares), respectively.

Calculations that were performed for three temperature θ values [7]: 0.66 (down triangles), 0.665
(up triangles), and 0.67 (squares), showed that the free-energy profiles demonstrate monotonic growth
of the value of f (i) up to the 8th layer from each boundary, where the function f (i) saturates and
does not change with further increase of i. Physically, this means that all film layers are subjected to
attractive forces from the bounding surfaces. The results of calculations shown in Figure 8 indicate that
at temperatures close to the layer-thinning value θAI(N = 25) ∼ 0.678, strong ordering takes place
only in the vicinity of the bounding surfaces, whereas far from the surfaces ordering drops to lower
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values than in the bounding layers. As a result, anyone can find that when the temperature varies from
below θAI(N = 25) to a lower value θ = 0.66, there are smaller differences between the Helmholtz
free-energy f (i) profiles (see Figure 10a, contrasting the up and down triangles from the squares).
The same tendency can be seen in the case of the entropy s(i) profiles (see Figure 10b). The distribution
of the free-energy profiles across the smectic film changes dramatically as the temperature increases.
When the layer-thinning transition temperature corresponding to the case of strong interaction with
W0 = 5 V0 (θAI(N = 25) ∼ 0.678 (TAI(N = 25) ∼ 359.6 K)) for a film initially containing 25 layers is
reached, the interior layers become unstable and the system undergoes the discontinuous transition to
the quasi-smectic state [7]. Such an effect has been seen earlier in the behavior of the order parameters
in Figure 8. The distributions of both the f (i) and s(i) profiles in the high-temperature region θ > 0.678
are shown in Figure 11a,b, for temperatures θ = 0.68 (squares), 0.685 (up triangles), and 0.69 (down
triangles), respectively.
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Figure 11. Same as in Figure 10a,b, but for next three temperature θ values [7]: 0.68 (squares), 0.685 (up
triangles), and 0.69 (down triangles), respectively.

Now the distribution of f (i) across the N = 25 layer smectic film is characterized by maxima
in the vicinity of both bounding surfaces. Calculations showed that the forces acting on the interior
layers are in the opposite direction to the attractive ones. As a result, the interior layers are compressed
and squeezed by the bounding layers.

The temperature θ′s effect on the Helmholtz free energy f (θ) and entropy s(θ) of the smectic films
containing 25, 13, 11, 10, 8, and 6 layers are shown in Figures 12a,b and 13a,b, respectively.
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Figure 12. (a) Plot of f (θ) vs. θ [7], for three film thicknesses: N = 25 (curve 1),13 (curve 2), and 11
(curve 3), respectively. (b) Same as (a), but for s(θ).
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Figure 13. (a,b). Same as in Figure 12a,b [7], but for next three film thicknesses: N = 10 (curves 1), 8
(curves 2), and 6 (curves 3), respectively.

Calculations were carried out for the set of the model parameters [7] α = 1.05 and W0 = 5 V0,
respectively. In Figure 12a,b the distribution of both the f (θ) and s(θ) vs. θ, for several film thicknesses:
N = 25 (curve 1), N = 13 (curve 2), and N = 11 (curve 3) (Figure 12a,b), and N = 10 (curve 1),
N = 8 (curve 2), and N = 6 (curve 3) (Figure 13a,b), respectively are shown. Results of calculations
showed that the SmA-I transition occurs through the sequence of layer-thinning transitions 25 →
13→ 11→ 10..., as the temperature is increased. The calculated free energy f (θ) per molecule for the
25-layer thick film vs. θ is shown in Figure 12a (curve 1), and demonstrates smooth behavior with
increase of θ, whereas the value of s(θ) (Figure 12b, (curve 1)) demonstrates a discontinuous rise at
θAI(N = 25) ∼ 0.678 (TAI(N = 25) ∼ 359.6 K) greater than 40 kB per molecule, due to the transition
to the quasi-smectic state and corresponding change in slope of the free-energy curves. A similar
discontinuity in s(θ) is seen in Figure 13b for N = 10 (curve 1). Discontinuities in s(θ) also occur for
the other values of N, but are not seen in the figures due to the fixed vertical length scale.

Following the transition of N-layer film to the quasi-smectic state, it has been determined the
number of layers (N − n) remaining in the film with non-vanishing smectic order near the film
center to be such as to provide a lower free energy than the N-layer state at the same temperature,
as well as with a higher transition temperature. Calculations showed [7] that the next stable state
with lower free energy occurs at N = 13, then at N = 11, etc. The corresponding layer-thinning
temperatures θAI(N) are: θAI(N = 25) ∼ 0.678 (∼ 359.6 K), θAI(N = 13) ∼ 0.697 (∼ 369.7 K),
θAI(N = 11) ∼ 0.706 (∼ 374.44 K), θAI(N = 10) ∼ 0.7106 (∼ 377 K), θAI(N = 9) ∼ 0.717 (∼ 380.3 K),
θAI(N = 8) ∼ 0.729 (∼ 386.6 K), θAI(N = 7) ∼ 0.736 (∼ 390.3 K), θAI(N = 6) ∼ 0.743 (∼ 394 K), etc.

In the following Section several structural, thermodynamic and optical properties of free-standing
smectic films, as the temperature is above θAI(bulk), will be considered. [7]

2.2.5. Heat Capacity, Surface Tension, Disjoning Pressure and Optical Refectivity of FSSFs

A great variety of thermodynamic properties has been observed in FSSFs. Among other,
a very interesting phenomena is the stepwise reduction of heat capacity cv(θ) when the temperature
is increased above θAI(bulk). In the framework of the abovementioned mean-field approach,
the temperature θ′s effect on the cv(θ) at constant volume of the smectic film with 25 layers, in two
cases of strong interactions W0 = 5 V0 and 10 V0, has been investigated numerically [7] and the results
are shown in Figure 14a,b [7].
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Figure 14. (a) Plot of cv(θ) vs. θ [7]. Here the interaction constant W0 = 5.0 V0. (b) Same as (a),
but W0 = 10 V0.

Calculations showed that the heat capacity cv(θ) ∼ 104 anomaly (i.e., heat-capacity peaks)
(Figure 14a) at temperature θAI(N = 25) ∼ 0.678 (TAI(N = 25) ∼ 359.6 K), is associated with the
interior first-order SmA-I transition, where the entropy change is greater than 40 kB (Figure 12b, curve
1) per molecule, and demonstrates a discontinuous rise at θAI(N = 25), whereas the value of cv(θ)

(Figure 14a), in the temperature range 0.655 ≤ θ ≤ 0.677, varies between 280, at θ ∼ 0.655, and 450,
at θ = 0.677, respectively. Please note that in the case when the “enhanced” pair interactions in the
bounding layers are in two times stronger W0 = 10 V0, the temperature θ′s effect on the cv(θ) has the
same qualitative behavior (see Figure 14b) and the value of the layer-thinning transition temperature
θAI(N = 25) is practically the same as in the weaker case. In the temperature range 0.655 ≤ θ ≤ 0.677
the value of cv(θ) (Figure 14b) varies between 300, at θ ∼ 0.655, and 480, at θ = 0.677, respectively.

“Heat capacity cv(θ) values of the partially fluorinated H10F5MOPP 25-layer film, calculated in
the framework of the mean-field approach, at temperature θ ∼ 0.674 (∼ 357 K), below both the bulk
SmA-Isotropic transition temperature and the layer-thinning transition temperature corresponding
to strong (W0 = 5 V0) interactions in the bounding layers, are equal to ∼ 420, or ∼ 82.5 [ µJ

K cm2 ],

or ∼ 5.74× 10−21 [ J
K mol ] [7], respectively. In turn, the measured, by means of calorimetric techniques,

value of CP, at the same temperature corresponding to “plateau” values of the heat capacity, is equal
to ∼ 80 [ µJ

cm2K ], or ∼ 5.9× 10−21 [ J
K mol ] [1]. Hence, it has been obtained a good agreement between the

theoretically predicted [7] and experimentally obtained [1] results. In recalculations of the theoretical
values of cv(N) per H10F5MOPP molecule to compare with the measured Cp(N) values, it has been
used the fact that the total number of molecules M per unit area in the film, denoted as ns, can be
estimated as ns = n0l, where n0 ∼ 1.5× 1021 cm−3 is the number density and l = Nd is the thickness
of the N-layer film. Since d is of the order of the molecular length ∼ 3.0 nm [33], ns can be estimated as
ns ∼ N × 4.5× 1014cm−2.

The result of comparing of the calculated value on cv(N), obtained in the framework of the
mean-field approach, and the experimentally measured values of Cv(N) shows that the extended
McMillan’s approach “enhanced” by anisotropic interactions in the bounding layers, with W0 = 5 V0,
is more suitable for describing both the structural and thermodynamic properties of a partially
fluorinated H10F5MOPP smectic film than with W0 = 10 V0, which gives cv ∼ 450, or ∼ 86.7 [ µJ

K cm2 ],
at temperature θ ∼ 0.674 (∼ 357 K).

The calculated data [7] on the dimensionless heat capacity cv(N) per molecule, and the
recalculated dimensional heat capacity Cv(N), corresponding to N layer films, as well as the
“plateau” temperatures θ(N) for the sequence of the abovementioned layer-thinning transitions (with
W0 = 5V0) are collected in Table 1. Calculations showed that these plateau temperatures satisfy [7]:
θ(25) < 0.678 < θ(13) < 0.697 < θ(11) < 0.706 < θ(10) < 0.7106 < θ(9) < 0.717 < θ(8) <

0.729 < θ(7) < 0.736 < θ(6) < 0.743, where the numbers correspond to the successive layer-thinning
transition temperatures given earlier. The observed data on Cp(N) for the free-standing partially
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fluorinated H10F5MOPP smectic films also correspond to a series of “plateau” values for the sequence
of the layer-thinning transitions 25 → 15 → 11 → 9 → 8... etc., [1]. In the range of film thicknesses
investigated, the reduction of Cv(N) is, at least qualitatively, in agreement with the experimentally
observed decrease of Cp(N) with decrease of N.

Table 1. The calculated data on cv(N) and measured values of Cv(N), corresponding to the sequence
of the layer-thinning transition in free-standing partially fluorinated H10F5MOPP smectic films.

(Temp.) (Theor.) (Theor.) (Temp.) (Exp.)

N(theor.) θ(N)(theor.) cv(N) Cv(N)[ µJ
cm2K ] N(exp.) θ(N)(exp.) Cp(N)[ µJ

cm2K ]

25 0.674 420 82.5 25 0.674 80
13 0.685 264 52 15 0.676 48
11 0.702 215 42.4 11 0.678 35
10 0.708 184 36.3 9 0.68 30
9 0.711 155 31 8 0.682 25
8 0.722 134 27 7 0.684 22
7 0.73 117 23 6 0.686 18
6 0.741 85 17 - - -

Comparisons of the theoretical and experimental reductions of heat-capacity values at “plateau”
regions in thin smectic films away from the layer-thinning transition temperatures should be unaffected
by questions of the layer-thinning mechanisms. Nevertheless, these mechanisms may affect the
“anomalies” shown by the heat-capacity peaks in Figure 14. Such anomalies have not been presented
in experimental studies of SmA layer-thinning transitions, to our knowledge, but only in studies of
SmA to hexatic-B transitions of smectic films [22], and we hope the present review will spur further
experimental work in this direction [7].

Recently, it has been carried out the high-resolution study of the film tension γ as the film is
heated through the layer-by-layer melting process, and the sawtooth behavior of the surface tension
upon heating the FSSF above θAI(bulk) was observed [9,10]. The understanding of how confinement
influences the γ(θ) of thin smectic film when one or several layer(s) is(are) squeezed-out to meniscus
has been investigated theoretically [11,12,47]. It has been done in the framework of the mean-field
approach with anisotropic forces [7]. “The temperature θ′s effect both on the dimensionless Helmholtz
free energy f (θ) (see Equation (10)) and surface tension γ(θ) (see Equation (13)) per H10F5MOPP
molecule in the smectic film, in the case when there is no electric field E = 0 or ∆ = 0, corresponding
to a sequence of layer-thinning transitions 25 → 13 → 11 → 10 → 9 → 8 → 7 → 6, has been
investigated numerically by solving the set of 2N self-consistent nonlinear equations from (3) to (5),
with the effective anisotropic potential Φi (i = 1, ..., N) in the form of Equation (9). The results are
shown in Figure 15a,b [11].
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Figure 15. Plot of f (θ) (a) and γ(θ) (b) per H10F5MOPP molecule vs. θ [11], corresponding to
a sequence of layer-thinning 25→ 13→ 11→ 10→ 9→ 8→ 7→ 6.
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Calculations showed that above θ ∼ 0.675 (∼ 358 K), both the 25-layer free energy f (θ) and
surface tension γ(θ) profiles demonstrate monotonic growth of these values with the smaller slope
and abruptly jumps to the lower and higher values, respectively, at θAI(N = 25) ∼ 0.678 (∼ 359.6 K),
where the film thins to 13 layers. This effect tends to repeat for the rest sequence of layer-thinning
transitions 13→ 11→ 10→ 9→ 8→ 7→ 6, where each thinning is characterized by abrupt jumps to
the lower or higher values, both for f (θ) and γ(θ), respectively, and then continues to increase with
the smaller, practically constant, positive slope. Please note that the value of γ(25) per H10F5MOPP
molecule of the 25-layer film is lower by a factor ∼4 than the value of γ(6) per molecule of the
6-layer film, where the numbers correspond to the successive layer-thinning process described earlier.
In order to carry out the direct comparison between the high-resolution measured data on the surface
tension Γ [9,10] and calculated, in the framework of the extended McMillan’s approach “enhanced” by
anisotropic interactions in the bounding layers, with W0 = 5 V0, value on γ(θ) [11], the dimensionless
value of γ has been obtained. The calculated value of γ(θ = 0.67), for the case of H10F5MOPP 25-layer
at temperature θ = 0.67 (∼353 K), is equal to 0.0073 or Γ = 0.0181 N/m, while the measured value
of Γ is equal to 0.014 N/m. Hence, it has been obtained a good agreement between the theoretically
predicted [11] and experimentally obtained [9,10] results.

It should be noted that the calculated values of surface tension show relatively small decrease
of Γ(N) as the film thins in correspondence to the sequence of the layer-thinning transitions 25 →
13 → 11 → 10 → 9 → 8 → 7 → 6. Calculations also showed [11] that the corresponding average
values of Γ(N) are: Γ(25) ∼ 0.0181, Γ(13) ∼ 0.018, Γ(11) ∼ 0.0179, Γ(10) ∼ 0.0179, Γ(9) ∼ 0.0178,
Γ(8) ∼ 0.0175, Γ(7) ∼ 0.0174, and Γ(6) ∼ 0.0172. Here all data are in [N/m] [12].

These results show that the extended McMillan’s approach “enhanced” by anisotropic interactions
in the bounding layers is suitable for describing both the structural and thermodynamic properties
of a partially fluorinated H10F5MOPP smectic film through the sequence of the abovementioned
layer-thinning transitions.

“To examine the external field ∆’s effect on the layer-thinning transition sequence and both on
f (θ) and s(θ), calculations of the above values, for the case when the electric field E is directed across
the film [11,47], has been carried out. Calculations showed that the dimensionless field ∆’s effect on the
layer-thinning sequence is reflected in the change of the layer-thinning transition sequences and of both
values of the first multilayer jumps in the thickness and the corresponding layer-thinning temperatures
θAI(N). For instance [11,47], in the case of ∆ = 0.02 the corresponding layer-thinning temperatures
θAI(N) are: θAI(N = 25) ∼ 0.7 (∼ 371.3 K), θAI(N = 12) ∼ 0.702 (∼ 372.4 K), θAI(N = 11) ∼ 0.704 (∼
373.4 K), θAI(N = 10) ∼ 0.7075 (∼ 375.3 K), θAI(N = 9) ∼ 0.711 (∼ 377.1 K), θAI(N = 8) ∼ 0.719 (∼
381.4 K), θAI(N = 7) ∼ 0.727 (∼ 385.6 K), and θAI(N = 6) ∼ 0.76 (∼ 403.1 K), whereas in the case of
∆ = 0.08 the corresponding layer-thinning temperatures θAI(N) are: θAI(N = 25) ∼ 0.704 (∼ 373.4 K),
θAI(N = 14) ∼ 0.707 (∼ 375 K), θAI(N = 12) ∼ 0.709 (∼ 376.1 K), θAI(N = 10) ∼ 0.713 (∼ 378.2 K),
θAI(N = 9) ∼ 0.716 (∼ 379.8 K), θAI(N = 8) ∼ 0.723 (∼ 383.5 K), θAI(N = 7) ∼ 0.731 (∼ 383.5 K),
and θAI(N = 6) ∼ 0.76 (∼ 403.1 K), respectively. In these calculations the following model parameters
were chosen as α = 1.05 and W0/V0 = 5. Therefore, in the case of ∆ = 0.0, the first thinning transition
from 25 → 13 takes place at θAI(N = 25) ∼ 0.678 (∼ 359.6 K), whereas with the growth of ∆ up
to 0.08, the first thinning transition from 25 → 14 takes place at θAI(N = 25) ∼ 0.704 (∼ 373.4 K),
what is on 13.8 K higher than in the case of ∆ = 0.0. Both the temperature θ′ and field ∆’s effects on
the dimensionless Helmholtz free energy f (θ) in the smectic-A film, for the cases of ∆ = 0.02, 0.04,
and 0.08, is shown in Figure 16a–c, respectively.
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Figure 16. Plot of f (θ) per H10F5MOPP molecule vs. θ [11], for the cases ∆ = 0.02 (a), 0.04 (b), and 0.08
(c), corresponding to the sequences of layer-thinning transitions 25→ 12→ 11→ 10→ 9→ 8→ 7→
6, 25→ 15→ 13→ 12→ 10→ 9→ 8→ 6, and 25→ 14→ 12→ 10→ 9→ 8→ 7→ 6, respectively.

Above θ ∼ 0.68 (∼ 359.6 K) the 25-layer free energy f (θ) per H10F5MOPP molecule increases
with the smaller slope and abrupt jumps to the lower values at θAI(N = 25, ∆ = 0.02)∼ 0.7 (∼ 371.3 K),
θAI(N = 25, ∆ = 0.04) ∼ 0.7 (∼ 371.3 K), and θAI(N = 25, ∆ = 0.08) ∼ 0.704 (∼ 373.4 K), where
the film thins to 12, 15, and 14 layers, respectively. This effect tends to repeat for the rest sequence of
layer-thinning transitions 12 → 11 → 10 → 9 → 8 → 7 → 6, for ∆ = 0.02, 15 → 13 → 12 → 10 →
9 → 8 → 7 → 6, for ∆ = 0.04, and 14 → 12 → 10 → 9 → 8 → 7 → 6, for ∆ = 0.08, respectively,
where each thinning is characterized by abrupt jump to the lower values of f (θ), and then continues
to increase with the smaller, positive slope. Both the temperature θ′ and field ∆’s effects on the γ(θ)

per H10F5MOPP molecule in the smectic-A film, for the cases of ∆ = 0.02, 0.04, and 0.08, is shown in
Figure 17a–c, respectively.
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Figure 17. Plot of γ(θ) per H10F5MOPP molecule vs. θ [11], for the cases of ∆ = 0.02 (a), 0.04 (b),
and 0.08 (c), corresponding to the same as in Figure 2 sequences of layer-thinning transitions.

These calculations showed that at each thinning the film tension γ(θ) abruptly jumps to the
higher value and then continues to increase with the smaller slope [11,47], with growth of θ within the
temperature interval θAI(N) < θ < θAI(N− n). The calculated data both on the dimensionless γ(∆)
and dimension Γ(∆) surface tension per H10F5MOPP molecule for the 25-layer film [11], vs. ∆, at the
fixed temperature 359 K, are collected in Table 2 [11].

Table 2. The calculated γ and measured Γ values of the surface tension in free-standing partially
fluorinated H10F5MOPP 25-layer smectic film vs. ∆ [11].

∆ 0.00 0.02 0.04 0.08
γ 0.0081 0.00922 0.0093 0.00937

γ [N/m] 0.0178 0.0224 0.0226 0.0228
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According to these calculations, the ∆’s effect is characterized by increase of γ(∆) up to 29% with
increasing of ∆ from 0.0 up to 0.08.

We can now estimate the magnitude of the electric field E necessary for the experimental
observation of the effect of ∆ on the change of the first layer-thinning transition temperature from
θAI(N = 25) ∼ 0.678 (∼ 359.6 K), in the case of ∆ = 0.0, to θAI(N = 25) ∼ 0.7 (∼ 371.3 K), in the
case of ∆ = 0.02. It can be obtained by applying the electric field E ∼ 1.36× 10−2 [C/m2] across the
25-layer smectic-A film.

Therefore, based on these calculations one may conclude that the external electric field may affect
not only the layer-thinning transition sequences, but also the change of the first multilayer jump in the
film thickness and increase the value of the surface tension. Later effect is caused by enhancing of the
order in the surface layers under the influence of the electric field applied across the layers.

These results indicate that the mean-field approach based on the extended McMillan’s theory can
be usefully applied for describing the effect of the external electric field both on the layer-thinning
transitions and surface tension of free-standing smectic films. It has been shown, by solving the
self-consistent nonlinear equations for the order parameters, that for the regime of strong interaction
with W0/V0 = 5, both the layer-thinning transition temperatures and values of the surface tension
grow with increasing of ∆. Taking into account that there is good agreement between theoretical
predictions and experimental results, this work lends credibility to the theoretical interpretation of the
surface tension data and to the validity of the mean-field approach.”[11].

The number of the optical techniques, such as the measurements of the optical transmission
spectra [6] or the optical reflectivity [1,2,6] of thin smectic films, are the most effective experimental
techniques which allow us to study these smectic films with the high-resolution. Measurements of the
optical reflectivityR of thin smectic film composed of partially fluorinated molecules (H10F5MOPP)
revealed a remarkable phenomenon of layer-thinning melting in smectic films upon heating above
θAI(bulk) [1]. It was shown that the experimentally obtained values of R(θ) decrease in a series
of sharp steps separated by plateaus as the temperature is increased [1,6]. In turn, the theoretical
description of reflectivityR(θ), which has been done in the framework of mean-field approach [8,47],
shows that the values ofR(θ) also decrease in a series of the stepwise reduction of reflectivity when
the temperature is increased above θAI(bulk). In the limiting case, when the smectic film is sufficiently
thin and the wavelength k0 of incident radiation is within the visible range, the reflectivityR can be
written as [8,47]

R =
k2

0
4

[
N

∑
i=1

(
n2

i − 1
)
Li

]2

, (16)

where the refractive indices n2
i can be expressed in terms of the OP ηi and the film thickness Li,

corresponding to the ith layer. In turn, the film thickness Li can be found as [7,8]

Li (N, T) = L0

[
1− P (N, T)

Bi (N, T)

]
, (17)

where

P (N, T) = −∆F (N, T)
L(N)

(18)

is the disjoining pressure acting on the film layers from the bounding surfaces, and

Bi (N, T) = B0

[
σi (N, T)

σb (T)

]2
(19)

is the compressibility modulus of the ith layer. Here L(N) = 1
N ∑N

i=1 Li, where Li is the thickness of
the ith layer, σi (N, T) and σb (T) are the values of the translational OPs corresponding to the ith layer
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and the bulk SmA phase, respectively, and B0 and L0 are the compressibility modulus and the layer
thickness in the absence of the disjoining pressure, respectively. It should be pointed out that the set of
translational OP σi, corresponding to the ith layer, as well as the change ∆F = F(N, T)− F((N− 1), T)
of the total Helmholtz free energy of the smectic film, can be calculated in the framework of the
abovementioned mean-field theory [7,8,12]. Please note that the change of the total Helmholtz free
energy ∆F of the smectic film is equal to the work which must be performed on the film unit surface area
to decrease its thickness by one layer. Here F(N, T), is the full Helmholtz free energy corresponding to
the N-layer smectic film. In principle, two variants can be realized, the first variant is when the value
of ∆F is positive, then the disjoining pressure P prevents the thinning of FSSF, and the film layers are
subjected to a stretching force. On the other hand, when the value of ∆F is negative, the disjoining
pressure promotes a thinning of the smectic film, and its layers are subjected to a compressive force.
Calculations showed that both the ηi and σi OPs for smectic layers demonstrate strong ordering in
the bounding domains, and the profiles of ηi and σi are characterized by rapid decrease of both OPs
with distance from those surfaces. This nonuniformity of the film was taken into account when the
reflectivity and layer- thinning compression have been computed.

The electric field ∆’s effect on the smectic layers should give rise to the change of their thicknesses
Li (N, θ, ∆). According to Equations (17)–(19), the thickness Li (N, θ, ∆) of the ith film layer is the
function of the disjoining pressure P (N, θ, ∆) and the compressibility modulus Bi = B0 [σi/σ(bulk)]2

for each layer i of FSSF of a given thickness N.
The temperature θ′s effect on the dimensionless disjoining pressure P(θ, ∆) = P(θ, ∆)/V0n0,

investigated in the framework of the mean-field approach, is shown in Figure 18.
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Figure 18. Plot of P(θ, ∆) vs. θ [47] during the layer-thinning transitions corresponding to cases I (a),
II (b), and III (c), respectively.

These calculations correspond to the sequences of the layer-thinning transitions, for three
cases [47]: ∆ = 0 (case I), ∆ = 0.08

(
E ‖ k̂

)
(case II), and ∆ = 0.08

(
E ‖ î

)
(case III), respectively,

and showed that the external electric field (∆ = 0.08), both directed across (case II) and along (case
III) smectic film, has the strong influence on P(θ, ∆). Indeed, in both cases II and III, the values of
P(θ, ∆ = 0.08) (Figure 5b,c) are on average by two orders of magnitude greater than the value of
P(θ, ∆ = 0) (Figure 18a) for the case I. Please note that the nature of such the electric field ∆’s effect
on P(∆) is due to the ∆’s effect on the Helmholtz free energy f (∆). Indeed, the values of f (∆ = 0.08)
are approximately by one order of magnitude greater than the values of f (∆ = 0) (see Figures 15 and
16), when the electric field is absent. As a result, anyone can find that the values of P(∆ = 0.08) are on
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average by two orders of magnitude greater than the value of P(∆ = 0). This means that the average
dimensional disjoining pressure P in the smectic film with N = 25 layers is [47]

P ∼


6.6× 105 N/m2, for ∆ = 0.08, E ‖ k̂,
4.3× 105 N/m2, for ∆ = 0.08, E ‖ î,
3.1× 103 N/m2, for ∆ = 0.

Based on these calculations, one can conclude that the layer-thinning transitions are characterized
by abrupt (stepwise) increase of P(N) when the film thins from N-layer to (N − 1)-layer film, then
from (N − 1)-layer to (N − 2)-layer film, and so on. All smectic layers during the thinning process
are subjected to the compressive force which grows with N as [12] P(N) ∼ O

(
1
N

)
. The electric

field ∆’s effect on the smectic layers should give rise to the change of their dimensionless thicknesses
Li (N, θ, ∆) = Li (N, θ, ∆) /L0. The behavior of the dimensionless smectic layer thickness profiles
Li (N = 25, ∆) across the 25-layer partially fluorinated H10F5MOPP smectic film, for several values of
∆ [47], showed that the interior film layers are compressed much stronger than the bounding layers.
In the case of ∆ = 0.0, the interior layers are compressed weaker than in cases when the electric field is
applied. Calculations also showed that with decreasing of the film thickness the biggest compressions
of interior layers are increased, from Li=13(N = 25) ∼ 0.98, for 25-layer film, to Li=5(N = 10) ∼ 0.845,
for 10-layer film, respectively. Physically, this means that in the case of thinner films all the layers are
subjected to bigger compressive forces than in the case of thicker ones. The dimensionless field ∆’s
effect on the average film thicknesses L(θ, ∆) in the smectic film corresponding to the sequence of the
abovementioned layer-thinning transitions is shown in Figure 19, and characterized by the stepwise
decreasing of L(θ, ∆) [8,47].
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Figure 19. Plot of L(θ, ∆) vs. θ, for the free-standing partially fluorinated H10F5MOPP smectic film at
each thinning, for cases I (∆ = 0) (a), II (∆ = 0.08) (b), and III (∆ = 0.08) (c), respectively.

Calculations showed that at each thinning the film thickness abruptly jumps to the higher values
and then continues to decrease with the smaller slope, with growth of θ within the temperature interval
θAI(N) < θ < θAI(N − n). Here N − n is the number of smectic layers remaining in the film after
each thinning.

Behavior of the average film thicknesses L(T) measured in the smectic film composed of
2-(4-(1,1-dihydro-2-(2-perfluorobutoxy) perfluoroethoxy) perfluoroethoxy) phenyl-5-octyl pyrimidine
(H8F(4,2,1)MOPP) molecules also exhibit the upward jumps at each thinning transition [33].
These results show that the extended McMillan’s approach “enhanced” by anisotropic interactions in
the bounding layers is suitable for describing the stepwise reductions of the smectic film thickness
through the sequence of the abovementioned layer-thinning transitions. Hence, it has been obtained a
good agreement between the theoretically predicted [8] and experimentally observed decrease of L(θ)
with decrease of N, for the FSSF composed of partially fluorinated molecules H8F(4,2,1)MOPP.
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The understanding of how the temperature θ and the electric field ∆ effects on the reflectivity
R (θ, ∆) in the smectic film [47] through the sequence of the abovementioned layer-thinning transitions,
has been obtained in the framework of the mean-field approach [47]. The calculation results are
shown in Figure 20 and indicate that the reflectivity also demonstrates the stepwise reductions of
R (θ, ∆) during the sequence of the abovementioned layer-thinning transitions. Plot of R (θ, ∆) =

R (θ, ∆) /L2
0k2

0 vs. θ, for the case II, and several values of ∆ [47] is shown in Figure 20. Here the set of
∆ values are: 0 (a), 0.02 (b), 0.04 (c), and 0.08 (d), respectively.
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Figure 20. Plot of R (θ, ∆) vs. θ, for the case II, and for several values of ∆ [47]: 0.00 (a), 0.02 (b), 0.04
(c), and 0.08 (d), respectively.

These results indicate that the mean-field approach based on the extended McMillan’s theory can
be usefully applied for describing not only the layer-thinning transitions which occurs through the
series of layer-thinning causing the films to thin in a stepwise manner as the temperature is increased
above θAI(bulk), but also several structural, thermodynamic and optical properties of free-standing
smectic films. Taking into account that there is a good agreement between theoretical predictions and
experimental results, this mean-field approach lends credibility to the theoretical interpretation of a
wide range of structural and optical data.

In the next Section the diffusion phenomena in thin smectic films will be discussed.

2.2.6. Translational and Orientational Diffusion across the Smectic Films

Although several approaches have been proposed to theoretically describe the diffusion process
in liquid crystals [48–51], it is still too early to talk about the development of a theory which would
make it possible to describe the diffusion processes in thin smectic films based only on the form of
the Hamiltonian. In the bulk of the SmA phase the translational diffusion process across the smectic
layers implies a passage through a potential barrier Φ. Taking into account that in the smectic-A
phase the coordinate system is chosen so that the direction of z-axis coincides with direction of the
director n̂, the potential barrier Φ (z + d) = Φ (z) is a periodic function of z, with the period d, which
is the layer spacing. The jump rate for molecular diffusion in the bulk of the SmA phase can be
described, for instance, by the translational diffusion model [52], which assumes a stochastic Brownian
process, in which each molecule moves in time as a sequence of small steps caused by collisions
with its surrounding molecules and under the influence of the potential Φ (z), which is set up by
these molecules. This diffusional process can be described by the translational diffusion tensor whose
principal elements (Dxx = Dyy = D⊥, Dzz = D‖) are determined in a frame fixed on the molecule.

Recently, a molecular model based upon the random walk theory [52] has been proposed to
describe translational diffusion in freely suspended smectic films [53]. It was shown that for the
calculation of the translational diffusion coefficient (TDC) D‖ across the smectic layers both in the bulk
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of the film, as well as in the vicinity of the bounding surfaces the set of ηi and σi OPs, obtained by
using the mean-field McMillan’s approach [7] with anisotropic forces [39] are required.

“The random walk theory allows us to calculate the translational diffusion across the smectic
layers when a molecule makes a jump from (i + 1)th to ith layer. It can be realized when the molecule
reaches “the boundary” between these layers with a “positive” momentum. Here the layers are
counted from the film/air interface to the bulk of the film. In that case, the TDC can be written as [53]

Di,i+1 = Di,i+1
‖ =

〈z2
i,i+1〉

τi,i+1
, (20)

where 〈z2
i,i+1〉 = 〈z2〉 =

∫ d
0 z2h (z) dz is the mean-square jump length from (i + 1)th to ith layers, h (z)

is the one-particle distribution function (see Equation (5)), and τi,i+1 is the time required the molecule
to jump from (i + 1)th layer to the ith ones. In turn, the time τi,i+1 can be written as

τi,i+1 = τ0 exp
[

∆Φi,i+1

kBT

]
, (21)

where τ0 is the time of oscillation of the molecule about the equilibrium position in the bulk of the
smectic film, and

∆Φi,i+1 = Φi (max)−Φi+1 (min) (22)

is the height of the potential barrier. Here Φi (max) and Φi+1 (min) are the values of maxima and
minima neighborhood potentials belonging to ith and (i + 1)th layers, respectively. For calculation of
the potential barrier ∆Φi,i+1 one needs an effective anisotropic periodic potential

Φi (zi) =
∫ +1

−1
d (cos θi)Φi (zi, θi) (23)

within the ith smectic layer. By implementing the integration in the last equation one obtains the set of
expressions for the height of the potential barrier

− 3
V0

Φ1 (z1) =
W0

V0
η1 + η2 + ∆

(
η1 +

1
2

)
+ α cos (2πz1)

(
W0

V0
σ1 + σ2

)
,

− 3
V0

Φ1<i<N (zi) =
i+1

∑
j=i−1

qj + ∆
(

ηi +
1
2

)
+ α cos (2πzi)

i+1

∑
j=i−1

σj,

− 3
V0

ΦN (zN) =
W0

V0
ηN + ηN−1 + ∆

(
ηN +

1
2

)
+ α cos (2πzN)

(
W0

V0
σN + σN−1

)
, (24)

where zi = zi/d is the dimensionless space variable. Notice that the overbar in the space variable z has
been (and will be) eliminated in the last as in the following equations.

Furthermore, it is convenient to rewrite expressions for potential barriers as [53]
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−3∆Φ1,2

V0
= − 3

V0
(Φ1 (max)−Φ2 (min)) =

=
W0

V0
η1 + η2 + α

(
W0

V0
σ1 + σ2

)
+ ∆ (η1 − η2)

−η1 − η2 − η3 + α (σ1 + σ2 + σ3) ,

−3∆Φi,i+1

V0
= − 3

V0
(Φi (max)−Φi+1 (min)) =

= ηi+1 + ηi + ηi−1 + α (σi+1 + σi + σi−1) + ∆ (ηi − ηi+1)

−ηi − ηi+1 − ηi+2 + α (σi + σi+1 + σi+2) ,

−3∆ΦN,N−1

V0
=

3
V0

(ΦN (max)−ΦN−1 (min)) =

=
W0

V0
ηN + ηN−1 + α

(
W0

V0
σN + σN−1

)
+ ∆ (ηN−1 − ηN)

−ηN − ηN−1 − ηN−2 + α (σN + σN−1 + σN−2) . (25)

Having obtained the set of OPs ηi and σi (i = 1, ..., N) one can calculate the potential barrier
∆Φi,i+1, the mean-square jump length from (i + 1)th to ith layers [53]

〈z2
i,i+1〉 = 〈z2〉 =

∫ 1

0
z2h (z) dz, (26)

and the TDC Di,i+1 = Di,i+1
‖ .

The calculated values of Di,i+1 (θ, ∆ = 0) /DN/2,N/2+1 (θ, ∆ = 0) vs. the number i, in the smectic
film with N = 25 layers and in the absence of the electric field (E = 0) are shown in Figure 21.
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Figure 21. Plot of Di,i+1 (θ, ∆ = 0) /DN/2,N/2+1 (θ, ∆ = 0) vs. i [53] in the absence of the electric
field (E = 0), and for three values of θ: 0.67 (squares), 0.675 (up triangles), and 0.677 (down
triangles), respectively.

Calculations showed [53] that the distribution of the profiles
Di,i+1 (θ, ∆ = 0) /DN/2,N/2+1 (θ, ∆ = 0) across the 25 layer smectic film, in the absence of the
electric field (∆ = 0.0), corresponding to three temperature θ values 0.67 (squares), 0.675 (up triangles),
and 0.677 (down triangles), respectively, are characterized by the monotonic increase of the ratio
Di,i+1 (θ, ∆ = 0) /DN/2,N/2+1 (θ, ∆ = 0) up to the middle-film’s values, with increasing distance (or
number of layers) from the bounding surface towards the interior of the film. In the case of strong
(W0 = 5V0) “enhanced” pair interactions in the bounding layers these distributions demonstrate
monotonic growth of the value of Di,i+1 (θ, ∆ = 0) /DN/2,N/2+1 (θ, ∆ = 0) up to the eighth layer
from each boundary, where the function Di,i+1 (θ, ∆ = 0) /DN/2,N/2+1 (θ, ∆ = 0) saturates and does
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not change with further increase of i. In turn, near the bounding surface the motional constant
Di,i+1 (θ, ∆ = 0) /DN/2,N/2+1 (θ, ∆ = 0) drops to zero, i.e., the strong “enhanced” pair interactions
completely suppresses the diffusion process in the bounding layers. The distribution of the number of
Di,i+1 (θ, ∆ = 0) /DN/2,N/2+1 (θ, ∆ = 0) profiles across the smectic films, during the sequence of the
layer-thinning transitions 25→ 13→ 11→ 10 [53], as the temperature is increased above the value
θAI(bulk) ∼ 0.675, is shown in Figure 22.
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Figure 22. Plot of Di,i+1 (θ, ∆ = 0) /DN/2,N/2+1 (θ, ∆ = 0) vs. i, in the absence of the electric field
(∆ = 0.0). Here the sequence of the layer-thinning transitions is 25→ 13→ 11→ 10 [53].

Here, calculations have been carried out in the absence of the electric field (∆ =

0.0) [53]. The electric field E′s effect on the dimensionless translational diffusion coefficient
Di,i+1 (θ, ∆) /DN/2,N/2+1 (θ, ∆) as a function of layer number i, in the smectic film with N = 25
layers, both in the cases of ∆ = 0.0 and ∆ = 0.08) [53], is shown in Figure 23.
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Figure 23. Plot of Di,i+1 (θ, ∆) /DN/2,N/2+1 (θ, ∆) vs. i, for two values of ∆: first, for ∆ = 0.0,
and second, for ∆ = 0.08 [53], respectively.

These calculations showed that the electric field ∆ has a weak effect on distribution of
Di,i+1 (θ, ∆) /DN/2,N/2+1 (θ, ∆) across the 25-layer smectic film and the diffusion process is completely
suppressed in the bounding layers [53]. Such behavior of the TDC is due to the fact that the potential
barrier ∆Φ1,2 is much bigger than ∆Φi,i+1 (i = 2, ..., N/2) as the temperature is increased above the
bulk value θAI(bulk), because of the strong ordering in the vicinity of the bounding layers.

It should be noted that the abovementioned mean-field model is applicable to describe diffusion
across smectic layers, because one deals with the potential barrier which is set up across the smectic
layers but not within the smectic layers.
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To calculate the dimension value of translational diffusion coefficient Db
‖ (N) in the smectic

film one can use the Maclaurin expansion of momentum autocorrelation function f (t) = 〈~p(0) ·
~p(t)〉/〈~p(0) · ~p(0)〉. For such purposes, the function f (t), in the form of damped oscillation, has been
adopted for calculation of the dimensional value of diffusion coefficient [53]

Db
‖ (N) ≡ Db (N) =

kBT
m

∫ ∞

0
f (t) dt, (27)

where the angle brackets indicate the equilibrium ensemble average [52]. Taking into account that the
coefficients of Maclaurin series in time of function f (t) are in principle calculable [53], a two-parameter
functional expression for f (t) takes the form [54]

f (t) = cos (αδt) / cosh (αt) , (28)

where the parameter α determines the rate of decay, and δ gives the rate of oscillation relative to the
time scale determined by α. All this allows us to record the diffusion coefficient Db (N), in terms of α

and δ, which takes the form [54]

Db (N) =
kBT
m

π

α
cosh−1

(
πδ

2

)
, (29)

where parameters α and δ are given in Ref. [53]. The calculated data on Db (N = 25), at T = 367 K (θ =

0.67) and d = 3.26 nm [55], for 25-layer partially fluorinated H10F5MOPP smectic film, gives ∼
6 µm2/s. In turn, the experimentally obtained data on Db (N) (N = 25, 13, 11, 10), for 25-layer smectic
film composed of 4-octyl-4′-cyanobiphenyl molecules, gives ∼ 3 µm2/s [56,57]. Hence, it has been
obtained a good agreement between the theoretically predicted [53] and experimentally obtained [55]
results.” [53].

“In turn, the rotational dynamics of a uniaxial molecule in anisotropic phase can be described
in the framework of the rotational diffusion model [58], which is based on the concept that the
molecular reorientation proceeds through a random sequence of large-amplitude angular jumps from
one orientation to another [51]. In that model, a molecule is considered to be an ellipsoid aligned
along, or close to n̂, where the diffusional jump results in rotation of the molecule from β ∼ 0 to β ∼ π.
This assumes that a molecule to make jump by a minimal successful angle π, if reaches “the boundary”
between the βi ∼ 0 and βi ∼ π orientations, and has a positive angular-momentum projection pβ

onto any axis perpendicular to n̂.. In the framework of this model, the rotational self-diffusion (RSD)
coefficient Dω ≡ D⊥ can be written as [51]

Dω ≡ D⊥ =
1
2

kωπ2, (30)

where

kω =
1
I

∫ ∞

−∞
dpϕ

∫ ∞

0
dpβ pβ

∫ 2π

0
dϕF (pϕ, pβ, ϕ, β)β= π

2
(31)

is the rotational jump rate, I is the moment of inertia of the molecule with respect to the minor axis of
the ellipsoid, pβ and pϕ are the angular-momentum components, F

(
pϕ, pβ, ϕ, β

)
is the one-particle

distribution function of the LC film on the solid surface. The function F does not depend on the
azimuthal angle ϕ, and, moreover, in the vicinity of the equilibrium state, the momentum projections
are neither correlated between them nor with the conjugated angles ϕ and β. In this case, the function
F can be written as a product of three functions

F
(

pϕ, pβ, β, ϕ
)
= F

(
pϕ

)
F
(

pβ

)
f (cos β) , (32)



Crystals 2020, 10, 321 32 of 47

where F
(

pϕ

)
and F

(
pβ

)
are the Maxwellian distribution functions, whereas f (cos β) is the ODF.

By integrating Equation (31) one obtains the final expression for the coefficient RSD [51,59,60]

Dω = π3

√
kBT
2πI f

(π

2

)
= π3

√
θV0

6πI f
(π

2

)
. (33)

Thus, Dω is the function of temperature θ, I , and the value of the ODF at β = π
2 .

Physically, this means that the one-particle function f (cos β) of the LC phase has a rather sharp
maximum at the point β = 0 (i.e., around the director n̂), rapidly decreasing as β tends to π

2 . At β = π
2

the function f (βi) is small but finite, and defines the “gate” width in orientational space through
which the molecule diffuses from one orientation to another. Therefore, having obtained the ODF
f
(

π
2
)
, one can calculate, using Equation (33), Dω as the function of θ and I .

The numerical analysis of rotational diffusion processes in thin smectic film (N = 25) deposited
on the solid surface (with W0/V0 = 3.0 and W1/V0 = 10.0) showed that only a strong electric field
∆ = 0.1 has a visible effect on the dimensionless coefficient [61] Dω (i, θ) /Dω (bulk) (i = 1, 25) (see
Figure 24).
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Figure 24. Plot of Dω (i, θ) /Dω (bulk) [61], (a) for i = 1, and (b) for i = 25, vs. θ, for four values of ∆:
0 (down triangles), 0.001 (up triangles), 0.01 (circles), and 0.1 (squares), respectively.

Here W0 and W1 are two parameters of the LC system which are defined for the enhanced pair
interactions in the LC/vacuum and LC/solid bounding layers, respectively, and the dimensionless
electric field ∆ = 0.1 can be obtained by applying the electric field∼ 7× 10−2 C/m2 across the 25-layer
smectic film. Calculations showed that the motional constant Dω (25, θ) /Dω (bulk) decreases in the
low-temperature range (0.57 ≤ θ ≤ 0.59), up to 20% [61], with increasing of ∆ from 0 to 0.1, both in
the first (i = 1, Figure 24a) and the last (i = 25, Figure 24b) layers [61]. In the high-temperature range
(0.59 ≤ θ ≤ 0.61) the effect of the electric field ∆ decreases, and finally disappears at the end of the
temperature interval (0.57 ≤ θ ≤ 0.61). In the case of a strong electric field (∆ = 0.1), calculations
showed that curves describing Dω (i, θ) /Dω (bulk) vs. θ, both for the first (i = 1) and the last (i = 25)
layers, are practically congruent curves [61].

The parameter α’s effect on Dω (i, θ, α) /Dω (bulk) for two values of ∆ is shown in
Figures 25 and 26.
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Figure 25. Plot of Dω (i, θ) /Dω (bulk) [61], (a) for i = 1, and (b) for i = 25, vs. θ for different values
of parameter α: 0.6 (squares), 0.7 (up triangles), 0.8 (down triangles), and 0.9 (rhombus), respectively.
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Figure 26. Same as in Figure 25, but the value of ∆ is equal to 0.1.

Calculations showed [61] that in the case when the electric field is absent (∆ = 0), and in the
low-temperature limit 0.57 ≤ θ ≤ 0.61, the lower values of α, i.e., 0.6 and 0.7, produce the higher
values of Dω (25, θ) /Dω (bulk) (see Figure 26b), whereas in the first layer (i = 1), the lower values of
α produce the higher dimensionless RSD coefficient only at the beginning of that temperature interval.
At the end of the temperature interval [0.57 ≤ θ ≤ 0.61] the higher values of Dω (1, θ) /Dω (bulk) are
produced at α = 0.8 (see Figure 26a). In the case of a strong electric field (∆ = 0.1), the dependence
of Dω (i, θ) /Dω (bulk) vs. θ is shown in Figure 26, and demonstrates the same qualitative behavior
as in the case when the electric field is absent, only in the last (i = 25) (see Figure 26b) layer. In the
first layer (i = 1) and at the end of that temperature interval the higher values of Dω (1, θ) /Dω (bulk)
are produced at α = 0.7 (see Figure 26a). With the growth of the value of ∆ from 0 to 0.1, the biggest
values of Dω (i, θ) /Dω (bulk) (i = 1, 25) [61] are produced by the molecules with the lower values of
the alkyl tail length α = 0.6, 0.7, and 0.8. These calculations, based on the alkyl tail length α’s effect on
Dω (i, θ, α) /Dω (bulk) (i = 1, 25), and displayed in Figures 24–26, showed that the parameter α has a
strong effect on the rotational diffusion process in the smectic film deposited on the solid surface and
subjected to the strong electric field. In all the cases described above, the value of the moment of inertia
of the molecule with a change in α, did not change [61]. Calculations of the coefficient Dω (bulk) in
the bulk of the LC phase composed of 8CB molecules, at T = 307 K, with I = 7.41× 10−44 [kg m2] and
f
(

π
2
)
∼ 10−4, gives Dω (bulk) ∼ 3× 108 s−1, which is in a good agreement with experimental 2H

NMR (0.5− 3)× 108 s−1 [62] values. Please note that the function f
(

π
2
)

has been obtained by solving
the system of nonlinear Equations (3) and (4), for two bulk OPs ηb and σb with the effective anisotropic
potential Φ (z, cos β) = V0

[
ηb + ασb cos

( 2πz
d
)]

P2 (cos β).” [61].
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Taking into account that from an order-of-magnitude point of view, there is a good agreement
between theoretical predictions and experimental results for RSD coefficient in the bulk of the LC
phase, this mean-field model lends credibility to the theoretical interpretation of the motional data and
to the validity of that theoretical approach.

We conclude Section 2 by pointing out that the combination of the mean-field models with the
experimental techniques provides a powerful tool for exploring and understanding the mechanisms
which clarify the relevant underlying physical interactions.

3. Dynamics of the Layer-Thinning Processes in Free-Standing Smectic Films

The dynamic properties of LC systems confined within small spaces, such as the free-standing
smectic films, are quite different from their bulk dynamics. A unique properties of FSSFs is their
ability to demonstrate the layer-thinning transitions above TAI(N)(bulk). Balance between surface
and finite-sized effects leads to unusual layer-by-layer thinning when the interior layer(s) is(are)
squeezed-out by the bounding ones. It has been assumed that the squeezing-out is initiated by a
thermally activated nucleation process in which a density fluctuation forms a small hole of critical
radius in the center of the circular smectic film [17]. If the hole inside the film is taken to be of circular
shape with a radius ε and with a thickness of the order of the molecular length d, then under the effect
of the pressure gradient ∇P one can develop the squeezing-out process between the squeezed-out
and non-squeezed-out areas. In that case [12,17] ∇P is responsible for the driving out of one or
several smectic layer(s) from the N-layer smectic film. The dynamics of the bounding area, which is
separated by the layer-thinning transition front, during the layer-thinning transition N → N − 1, will
be described by using the conservation laws for mass and linear momentum [17,18], with and without
accounting for the coupling between the smectic film and the meniscus.

3.1. Squeezing-Out Dynamics of Layer-by-Layer Thinning Transition in FSSF without Accounting for
the Meniscus

“The evolution of the bounding area, which is separated by the layer-thinning transition front,
from the N-layer to (N − 1)-layer smectic film, without accounting for the effect of meniscus, has been
studied on the basis of conservation laws for mass and linear momentum [17]. The dynamics of the
bounding area between the squeezed-out and non-squeezed-out areas in the FSSF has been investigated
for the case of the circular shape with the area A0 = πR2, where R is the radius of the total smectic
film. In the framework of this approach the squeezing-out process starts from a small hole in the center
of the circular smectic film. This hole is formed as a result of the thermally activated nucleation process
in which a density fluctuation forms the small hole in the FSSF [17]. The evolution of the size of the
small hole is determined by the balance between the bulk and surface thermodynamic forces, and the
nucleus grows only when its size δ = πε2d exceeds a critical value δc. Since the boundary between the
squeezed-out and non-squeezed-out areas in the FSSF has been investigated for the case of the circular
shape with the area A(t) = πr2(t), and the squeezing-out process continues until the area of the
circle A(t) reaches the value A0 = πR2, the shape of the bounding line can be treated as dislocation.
Please note that during the thinning process all smectic layers are subjected to the compressive force P
acting across the FSSF upon heating to the isotropic temperature. This allows us to assume that the
disjoining pressure [12,17,63] P acting across the N-layer and (N − 1)-layer smectic film is responsible
for develop of the pressure gradient∇P between the squeezed-out and non-squeezed-out areas [12,17].
And since the disjoining pressure P(N − 1) acting across the (N − 1)-layer film is greater then P(N)

acting across the N-layer smectic film [12,17,63], one can assume that the disjoining pressure (DP) is
responsible for the pressure gradient ∇P which drives the squeezed-out smectic layer. All this allows
us to assume that the conservation laws for mass and linear momentum must be held. Bearing in mind
that the layer-thinning process in FSSF is characterized by removal of interior isotropic layer(s) from
the overheated film, it should be taken into account only the continuity equation and the Navier–Stokes
equation for the velocity field v(r, t). Taking into account the thickness of the smectic film, one can
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assume, with high accuracy, that the mass density ρ across the FSSF does not change, and one deals
with an incompressible fluid. The incompressibility condition gives that [17]

∇ · v = 0, (34)

whereas the linear momentum balance equation can be written as [17]

ρ
∂v(r, t)

∂t
= −∇rP(r) +∇rσrz(r, t), (35)

where σrz is the stress tensor component corresponding to the viscous force. In this case, it is convenient
to choose a cylindrical coordinate system, where only one nonzero radial component v(r, t) of the
velocity vector v, directed parallel to the smectic layers, exists

v = v(r, t)êr, (36)

whereas the pressure

P = P(r), (37)

is a function only of the radius r, and êr is the unit radial vector. The relevant solutions of
Equations (34) and (35) can be written in the forms

v(r, t) =
B(t)

r
, (38)

and

σrz(r, t) =
1
2

α4
∂v(r, t)

∂r
= −1

2
α4

B(t)
r2 , (39)

respectively, and α4 is the shear viscosity coefficient. Substituting Equations (38) and (39) into
Equation (35) gives [17]

1
r

dB(t)
dt

= −1
ρ

∂P(r)
∂r

+
1
2

α4

ρ

B(t)
r3 . (40)

This equation has a solution [17,64]

ln
( r

R

) dB(t)
dt

= −1
ρ

∆P− α4

4ρ

B(t)
r2 , (41)

where the ∆P = P(N)− P(N − 1) is a disjoining pressure dropping across the front of the moving
boundary area during the layer-thinning transition N → N− 1. Taking into account that A(t) = πr2(t),
the last equation can be rewritten as [17]

1
2π

ln
(

A(t)
A0

)
d
dt

[
dA (t)

dt

]
= −2∆P

ρ
− α4

4ρ

1
A

dA (t)
dt

, (42)

where

B (t) =
1

2π

dA (t)
dt

.

In the following, the second time derivative term in Equation (42) has been
neglected. Indeed, at the left end of the time’s interval [0, tR], r varies very slowly and the
second-order time derivative of r2 or A(t) can be ignored, whereas at the right end of the same
interval, limt→tR ln

(
A(t)
A0

)
= 0. Here tR is the time which is needed to completely squeeze-out one
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smectic layer. In these circumstances, the last Equation (42), which determines the value of the area
A (t) takes the form

dA (t)
dt

+
8∆P
α4

A (t) = 0, (43)

and its solution can be written as

A (t) = κc exp
[
−8∆P

α4
t
]

, (44)

where κc = πε2
c , and εc is the radius of the critical nucleus. In turn, the expression for the velocity

v(r, t) can be written as

v(r, t) = −4δc

π

∆P
α4

1
r

exp
(
−8∆P

α4
t
)
= −4ε2

c ∆P
α4

1
r

exp
(
−8∆P

α4
t
)

, (45)

where r ∈ [εc, R]. The time tR which is needed to completely squeeze-out one smectic layer can be
obtained from the relation A0 = πR2 = δc exp

(
− 8∆P

α4
tR

)
, which gives

tR = − α4

4∆P
ln
(

R
εc

)
. (46)

Here we need to take into account the fact that the time tR is inversely proportional to ∆P =

P (N)− P (N − 1) and this value is always negative.
To examine the ∆P’s effect on tR in the FSSF corresponding to the N → (N − 1) layer-

thinning transition, one need to have the values of the disjoining pressure P (N) and P (N − 1),
when the FSSF thins from N-layer to (N − 1)-layer film. The numerical study of the disjoining
pressure P (N, T) of FSSFs for two cases, first, for the initially 25-layer film composed of the partially
fluorinated 5-n-alkyl-2-(4-n-(perfluoroalkyl-metheleneoxy) phenyl (H10F5MOPP) molecules in air [12],
and, second, for the initially 10-layer film composed of decylcyanobiphenyl (10CB) molecules in
water [63], on heating to the isotropic temperatures has been carried out. Calculations showed
that the layer-thinning transitions are characterized by abrupt (stepwise) rises to the higher values of
P (N − 1) with respect to P (N), when the film thins from N-layer to (N− 1)-layer film, and all smectic
layers, during the thinning, are subjected to the compressive force which grows with the number of
N as [12,63] P (N) ∼ O

(
1
N

)
. Such behavior of P (N) provides the negative values of the DP [12,63]

∆P = P (N) − P (N − 1). A number of data on the ∆P both in free-standing partially fluorinated
H105FMOPP film in air [12], and in cyanobiphenyl 10CB film in water [63] is collected in Table 3 [17].

With Equation (46) and data on ∆P one can calculate the values of tR [in sec] and the average
velocity u = R/tR [in m/sec]. These data also are collected in Table 3.

The calculation results collected in Table 3 correspond to the 25-layer FSSF composed of partially
fluorinated H10F5MOPP molecules in air (The first seven lines from the top) [17], and to the 10-layer
FSSF composed of 10CB molecules immersed in water (The fifth, forth, and third lines from the bottom),
respectively. The measured data on the average thinning speed of single-layer thinning in 5-layer
smectic film composed of H8F(4,2,1) MOPP molecules in air is given in two last lines [15].
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Table 3. The calculated values of ∆P (N), tR and u = R/tR in FSSFs.

−∆P [ N
m2 ] tR [s] u [m

s ]

Smectic 25− layer film in the air [theor.] [10]
10→ 9 0.66× 103 38.9× 10−5 0.26
9→ 8 2.64× 103 9.7× 10−5 1.03
8→ 7 1.74× 103 14.8× 10−5 0.67
7→ 6 3.98× 103 6.5× 10−5 1.54

Smectic 25− layer film in the air [theor.] [13]
10→ 9 1.01× 104 2.5× 10−5 3.93
9→ 8 0.5× 104 5.1× 10−5 1.94
8→ 7 3.0× 104 0.86× 10−5 11.63

Smectic 10− layer film in the water [theor.] [12]
9→ 8 1.65× 105 1.35× 10−6 74.07

u [aver.] [m
s ]

Smectic 5− layer film in air [exptl.] [24]
5→ 4 0.06
4→ 3 0.1

The results of disjoining pressure ∆P calculation performed using two different approaches [12]
(see Table 3, for instance, the first three lines from (1) to (4)) (case I), and [19] (see Table 3, for instance,
the lines from (5) to (7)) (case II)), (case II), gave results that differ from each other on average by one
order of magnitude. Please note that the values of ∆P has been calculated for the same sequence of the
layer-thinning transitions 10 → 9 → 8 → 7 in the FSSF composed of the same partially fluorinated
H10F5MOPP molecules. As expected, the results of the time tR calculation performed using two
different approaches (I) and (II) also gave results that differ from each other on average by one order of
magnitude. The results of calculations also showed that the disjoining pressure ∆P values calculated
for FSSF in water (case III) and air differ from each other by several orders of magnitude. Therefore,
the values of ∆P which drives the squeezed-out one smectic layer in the case III are in two orders and
one order higher than in the cases I and II, respectively [17]. This variation in pressure ∆P values leads
to the fact that the time tR required for complete squeezing-out one smectic layer in case III is much
less than in both cases I and II. The same situation is repeated when calculating the average velocities
u = R/tR, whose results are shown in the last column of Table 3 [17]. In all these calculations the value
of α4 is equal to 0.1 [Pa s] and R = 100 [µm].

The condition for determining the value of the critical radius εc can be obtained by minimizing
the energy W required to form a small circular hole. The value of this energy W, formed by the three
contributions, can be written in the form [17]

W (ε) = 2π (N − n) dγε− 2πε2γ− 1
2

Bd (N − n)πε2, (47)

where ε denotes the radius of the hole. Here, the first contribution is due to the line tension, while the
second one is due to the interfacial contribution. Finally, the third term in Equation (47) is an elastic
energy contribution. It should be noted that the first contribution to Equation (47) has a positive
value, where γ is the interfacial LC/air tension, n is the number of squeezed-out layers, and B is the
compressional elastic constant which has the dimension of an energy per volume V = πε2 (N − n) d.

The last two terms give a negative contribution, where the first minus sign is due to the fact
that in the process of creating of the hole, molecules are removed from the interface to the meniscus,
whereas the second minus sign is due to the fact that in the process of creation of the hole the smectic
film is compressed by the disjoining pressure. This contribution, due to the elastic force, will tend to
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stabilize the hole. The condition for calculating the critical radius εc now takes the form ∂W (ε) /∂ε = 0,
which gives

εc =
2 (N − n) dγ

4γ + Bd (N − n)
. (48)

When calculating the value of εc in the partially fluorinated H10F5MOPP 10-layer smectic film
in air, we must have the following values: the values of the LC/air tension [11] γ ≈ 0.02 [N/m],
d ≈ 3 [nm] and the values of B = 107 [N/m2]. The results of calculations εc, which corresponds to
the layer-thinning transitions 10→ 9→ 8→ 7→ 6, are as follows [17] (in [nm]): εc(10→ 9) ≈ 3.43,
εc(9→ 8) ≈ 3.38, εc(8→ 7) ≈ 3.31, and εc(7→ 6) ≈ 3.23, respectively. For the decylcyanobiphenyl
(10CB) molecules in water the value of the LC/water tension γ is equal to 0.18 [N/m] [63], and
εc(9→ 8) is equal to 12.96 [nm] [17]. Calculations of dislocation loop kinetics in overheated FSSF in
air, composed of H8F(4,2,1)MOPP molecules, showed that the velocity of thinning front is equal to
0.06− 0.1 [m/s] in 3-layer smectic film. That data on the velocity is also collected in the last column of
Table 3 [17]. The evolution of the area of the circle A (τ) /A0 vs. τ = t/tR(max) [17], for the number
of squeezing-out regimes in the FSSF in air: (1)-(10 → 9), (2)-(9 → 8), (3)-(8 → 7), and (4)-(7 → 6),
respectively, is shown in Figure 27.
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Figure 27. Plot of A (τ) /A0 vs. τ = t/tR(max) [17], for the number of squeezing-out regimes in the
smectic film in air: (1)-(10→ 9), (2)-(9→ 8), (3)-(8→ 7), and (4)-(7→ 6), respectively.

Here tR(max) is equal to the time tR corresponding to the 10 → 9 layer-thinning transition in
FSSF composed of partially fluorinated H10F5MOPP molecules in air. The results of calculations of the
circular area A (τ) /A0 show that the squeezing-out is accelerated at the final stage of the processes.
Indeed, for instance, in the case of the layer-thinning transition 10 → 9 the value of the velocity
u (R, tR), at the edge of the circular smectic film of the radius of R, is equal to 2.52 [m/s], what is on
one order high than the value of the average velocity u = R/tR, which is equal to 0.26 [m/s]. In all
these calculations the value of the shear viscosity was equal to α4 ≈ 0.1 [Pa s]. In turn, the results
of experimental studies [65] indicate that the value of the rotational viscosity coefficient (RVC) γ1

in the volume of the LC phase is very different from the value of RVC near the bounding surfaces.
This fact must therefore be taken into account to obtain more reliable estimates of the shear viscosity
coefficient α4.

It should also be noted that the value of the effective radius of nucleus has a strong influence
on the dissipation at the smectic film/meniscus interface. Indeed, it has been shown that in smectic
films the separated dislocations are coupled by means of the dissipation in the meniscus [66], and this
dynamic coupling may change the effective radius of nucleus up to 10 times with respect to the static
critical radius. As a result, the time required to completely squeeze-out one smectic layer in the smectic
film will increase several times.” [17].
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3.2. Squeezing-Out Dynamics of Layer-by-Layer Thinning Transition in FSSF Accounting for the Meniscus

“In the previous paragraph we described the dynamics of squeezing-out of the number of smectic
layers from the N-layer film without accounting for the effect of the meniscus. The evolution of
the bounding area, which is separated by the layer-thinning transition front, from the N-layer to
(N − 1)-layer smectic film, without accounting for the effect of meniscus, has been studied on the
basis of conservation laws for mass and linear momentum [17]. The dynamics of the bounding area
between the squeezed-out and non-squeezed-out areas in the FSSF has been investigated for the case
of the circular shape of the smectic film. This section will generalize the previous case to the case
of accounting for the influence of the meniscus [17,18]. In this approach, the mechanism which is
responsible for squeezing-out process, is based on the concept of the the disjoining pressure. In the
previous paragraph, it was shown that the disjoining pressure P(N) acting across the N-layer film is
smaller than P(N − 1) acting across the N − 1-layer smectic film [12,17]. As a result, it is formed the
pressure gradient ∇P which drives the squeezed-out smectic layer in the zone far from the meniscus.
We will assume that the influence of the meniscus extends only to the area R− δ ≤ r ≤ R closely
adjacent to the interface between the FSSF and meniscus. As a result, the process of evolution of the
bounding area will be affected by the additional pressure P1 caused by the coupling of the smectic film
with the meniscus. Here δ is the distance, counted from the smectic film/meniscus edge, where that
effect occurs. All this allows us to assume that the conservation laws for mass and linear momentum
must be held. Thus, the equation of the balance of linear moments acting on the unit volume of the
smectic film, taking into account the influence of the meniscus, can be written as [18]

ln y (τ)
d2y (τ)

dτ2 +
2π2

y (τ)

[
α4tN
2ρA0

dy (τ)
dτ

+

(
dy (τ)

dτ

)2
]
+

2∆P
ρA0

t2
N = 0, (49)

where τ = t/tN is the dimensionless time, tN is the normalization time, and ∆P will be modeled by
the linear function of the radius r (t) as

∆P =

{
∆P, (εc ≤ r < R− δ),
P1
δ (r (t)− R) + ∆P + P1, (R− δ ≤ r ≤ R).

Here y (τ) = A (τ) /A0 [18] and ∆P = P(N) − P(N − 1) is a disjoining pressure dropping
across the front of the moving boundary area during the layer-thinning transition N → N − 1.
If in the previous paragraph the value of disjoining pressure dropping across the moving front
during the layer-thinning transition N → N − 1 was determined only by the disjoining pressure
∆P = P(N)− P(N − 1), now an additional pressure P1 acting from the meniscus on the smectic film
should be accounted. Thus, the P′1s effect will be extended to the submicrometer’s distance δ, and that
effect will be modeled by the linear function ∆P (r) of the distance r. Therefore, at r = R, ∆P is equal
to P1 + ∆P, whereas at r = R− δ, ∆P is equal to ∆P. The justification of the choice of the linear form of
the distance dependence of ∆P is dictated by the submicrometer’s range of δ.

In the previous paragraph, without taking into account the influence of the meniscus, it was shown
that Equation (42) can be simplified so that both the second time derivative term and the nonlinear term
in Equation (42) [17] can be neglected. The neglecting of these two terms in Equation (49) was justified
by the fact that the velocity v is small and at the left end of the time’s interval [0, tR], y (t) varies very
slowly and one can ignore the second-order time derivative of y (t), whereas at the right end of the
same interval, limt→tR y (t) = 1. Here tR is the time which is needed to completely squeeze-out one
smectic layer. It should be noted that the time tN does not always coincides with the time tR. Taking
into account the above limitations, Equation (49), for the determination of y (τ), takes the form [18]

dy (τ)
dτ

+ 8y (τ)
[

λ1

(√
y (τ)− 1

)
+ λ2

]
= 0, (50)
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where λ1 = tRP1εc
δα4

and λ2 = tR(∆P+P1)
α4

are two parameters of the smectic system, whereas εc is the

radius of the critical nucleus. Linear Equation (50), with the initial condition y (τ = 0) =
( εc

R
)2,

has a solution

−4τ =
1

λ2 − λ1
ln

 √
y (τ)

λ1

(√
y (τ)− 1

)
+ λ2

(
λ1 +

R (λ2 − λ1)

εc

) . (51)

In this case, the relationship y (τ) = 1 can be used for obtaining the value of the dimensionless time

−4τR (P1, δ) =
1

λ2 − λ1
ln
[

1
λ2

(
λ1 +

R (λ2 − λ1)

εc

)]
, (52)

which is needed to completely squeeze-out one smectic layer accounting for the pressure P1. In the
limiting case P1 = 0, when the effect of the meniscus on the smectic film is negligible, Equation (50)
has the solution

y (τ) =
exp [−8 (λ2 − λ1) τ] (λ2 − λ1)

2

[λ1 exp [−4 (λ2 − λ1) τ]−A]2
, (53)

where A = λ1 +
R(λ2−λ1)

εc
is the parameter of the smectic film.

It should be noted that when the influence of the meniscus can be ignored, the value of
dimensional time tR (P1 = 0) = − α4

4∆P ln
(

R
εc

)
, calculated using Equation (52) coincides with the

value of the time given in Equation (46)) [17]. In turn, the velocity v(r, t) of the boundary between
the squeezed-out and non-squeezed-out domains of the smectic film can be determined by using
the equation

v(r, t) =
1

2πr
dA (t)

dt
. (54)

Thus, the velocity v(r, t) is proportional to the first-order time derivative of y (τ) and inversely
proportional to the radius r (τ) .

Further detailed analysis will be given for evolution of the bounding area from the N-layer to
(N − 1)-layer smectic film during the layer-thinning process, based on accounting for both the second
time derivative term and the nonlinear term in Equation (49) (case I), and when both these terms
are neglected (case II) [18]. The results of calculations of the dimensionless squeezed-out area y (τ)
(see Equation (49)) and the velocity v (r, τ) (see Equation (54)) of the bounding area between the
squeezed-out and non-squeezed-out domains, accounting for the meniscus′ effect will be presented.
The effect of the disjoining pressure ∆P = P(N)− P(N − 1) and the additional pressure P1, caused by
coupling of the smectic film with the meniscus, the distance δ and the radius of the critical nucleus εc

on the nature of the squeezing-out dynamics, for the number of dynamic regimes, will be investigated.
Calculations were performed for the following values of ∆P and εc [18]: ∆P = −0.66× 103 N/m2,
εc = 3.43 nm, for the case 10 → 9, ∆P = −2.64× 103 N/m2, εc = 3.38 nm, for the case 9 → 8,
∆P = −3.98× 103 N/m2, and εc = 3.23 nm, for the case 7→ 6, respectively. In all these calculations
the value of α4 is equal to 0.1 Pa s and R = 100 µm.

In the case I, the nonlinear ordinary differential Equation (49) has been solved using the
Runge–Kutta method of fourth order [67], and the result of calculation of the reduced area y (τ) =
A (τ) /A0 vs. τ = t/tR(P1 = 0), without accounting for the meniscus effect (P1 = 0), are shown in
Figure 28 (curves 1), for several layer-thinning transitions: 10→ 9 (Figure 28a), 9→ 8 (Figure 28b),
and 7→ 6 (Figure 28c) [18], respectively. In the case II (curves 2), the reduced area y (τ) = A (τ) /A0,
calculated using Equation (53), as the function of the reduced time τ = t/tR(P1 = 0), are also shown
in Figures 28. Here τR (I, II) is the time which is needed to completely squeeze-out one layer from the
N-layer smectic film without accounting for the pressure P1, i.e., the time when y (τR (I, II)) is equal to
1. In this case τR (I) was obtained by means of numerical solution of Equation (49), whereas τR (II)
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was calculated using Equation (53) [18]. These calculations showed that the numerical result (case I)
for evolution of y (τ) vs. τ, for the layer-thinning transition 10→ 9, is faster approximately on the 20%
with respect to the analytical result (case II) (see Figure 28a). It should be noted that at the final stage
of the process of squeezing-out of the smectic layers, the results obtained by numerical methods and
using analytical expressions are more and more close to each other results. For instance, in the cases
9→ 8 and 7→ 6 this difference almost disappears (see Figure 28b,c) [18].
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Figure 28. Plot of A (τ) /A0 vs. τ = t/tR(P1 = 0) [18] for two squeezing-out regimes in FSSF and
for the case of P1 = 0: (a)-(10 → 9), (b)-(9 → 8), and (c)-(7 → 6), respectively. Curves (1) (case I) are
obtained by means of numerical solution of Equation (49), whereas curves (2) (case II) are calculated
using Equation (53).

Having obtained the evolution of the y (τ) function, in the process of thinning the smectic film,
one can calculate the velocity v (τ) vs. τ, for two layer-thinning transitions: 10→ 9 and 7→ 6 regimes.
The results of these calculations are shown in Figure 29 [18].
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Figure 29. Plot of v (τ) vs. τ = t/tR(P1 = 0) [18], for the 10 → 9 (a) and 7 → 6 (b) squeezing-out
regimes, respectively. Curves (1) and (2) correspond to cases I and II, respectively.

The curve (1) was calculated analytically using Equations (53) and (52), while the curve (2) was
calculated numerically, using data on the function y (τ). Both results indicate that the dependence
of the dimensionless velocity is characterized by the gradual increase in v (τ) with increasing of τ.
In addition, the results of the comparisons indicate that the influence of both the second time derivative
term and the nonlinear term in the Navier–Stokes equation (Equation (49)) in the further calculations
can be neglected.
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The results of the calculation of the dynamics of thinning for the 10→ 9 squeezing-out regime,
under the action of ∆P, accounting for the coupling of the smectic film with the meniscus, are shown
in Figure 30a,b.
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Figure 30. Plot of y (τ) = A (τ) /A0 vs. τ = t/tR(P1 = 0) [18], for the 10→ 9 squeezing-out regime in
the smectic film in air and for two values of P1: (a) −0.1∆P (curve 1) and −0.9∆P (curve 2), respectively.
Here δ = 600εc. (b) Same as in (a), but for δ = 300εc.

Figure 30a,b show the evolution of y (τ) vs. τ = t/tR (P1 = 0) for two values of the pressure P1

acting on the smectic film, first, P1 = −0.1∆P (curve 1) and, second, P1 = −0.9∆P (curve 2), respectively.
These calculations were performed for two values of distance δ, first, for δ = 600εc(∼ 2µm), second,
for δ = 300εc(∼ 2µm). The calculation results also showed that the meniscus has a strong effect
on the time tR (P1), whereas the distance δ practically does not affect that time. Indeed, for P1 =

−0.9∆P (∼ 0.6× 103 N/m2) the value of the dimensionless time τR (P1 = −0.9∆P) (τR (P1 6= 0) =

tR (P1 6= 0) /tR (P1 = 0)) is equal to 9.88 (∼ 4 × 10−3 s) (Figure 30a (curve 2)), whereas for P1 =

−0.1∆P, the value of the dimensionless time τR (P1 = −0.1∆P) is equal to 1.11 (Figure 30a (curve
1)), which is practically 9 times less. In all these cases the distance δ is equal to 600εc(∼ 2µm).
In the case when the distance δ decreases in 2 times, from δ = 600εc to 300εc, the value of the time
τR (P1 = −0.9∆P, δ = 600εc) ≈ 9.88 (Figure 30a (curve 2)), which is practically the same as in the
case of τR (P1 = −0.9∆P, δ = 300εc) ≈ 9.76 (Figure 30b (curve 2)). The same tendency is kept for
the case when the pressure P1 is reduced by 9 times, from P1 = −0.9∆P to −0.1∆P. In this case,
the time τR (P1 = −0.1∆P, δ = 600εc) ≈ 1.11 (Figure 30a (curve 1)) which is the same as in the case
of τR (P1 = −0.1∆P, δ = 300εc) ≈ 1.11 (Figure 30b (curve 1)). These calculations showed that the
influence of the meniscus is significant only when P1 → −∆P, and can be taken into account only
at distances δ being of a few percent of the value of R. It is clearly seen that the evolution of the
A (τ) /A0 profile is slowed down only at the final stage of the squeezing-out processes, when the
values of the pressure P1 reach the values of −∆P. Taking into account the fact that the value of
∆P = P (N)− P (N − 1) is negative, one can conclude that the positive value of P1 = −∆P completely
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slows down the squeezing-out process, whereas the negative values of P1 lead to accelerating of the
squeezing-out process during the layer-thinning transition.

Therefore, on the basis of this dynamic model of the squeezing-out process, everyone can make
the conclusion that the external pressure, caused by coupling the smectic film with the meniscus,
has a strong effect on that process and this dynamic coupling may significantly change the time
which is needed to completely squeeze-out one or several layer(s) from the free-standing smectic film.
Having obtained the data on tR (P1 6= 0), one can calculate the average velocity u = R/tR (P1 6= 0)
[in m/s]. For instance, in the case of 10 → 9 transition and P1 = −0.9∆P, the value of the time
tR (P1 = −0.9∆P) is equal to 9.88× tR (P1 = 0). Taking into account that tR (P1 = 0), for the case of
10 → 9, is equal to 38.9× 10−5 [s] (see Table 1, Ref. [17]), one can estimate the average velocity
u (R, P1 = −0.9∆P), at the edge of the circular smectic film of the radius R = 100 µm, as 0.026 m/s,
what is in agreement with the value of the velocity of the thinning front ∼ 0.06 m/s, obtained by
means of the video measurements in overheated free-standing smectic film in air [15].

Thus, the results of calculations performed in the framework of the abovementioned dynamic
model, which takes into account the influence of the meniscus on the smectic film, showed that
the pressure gradient ∇P which develops between the squeezed-out and non-squeezed-out areas is
responsible for the successive removal of one or several layer(s) from the N-layer smectic film during
the layer-thinning process. It has been assumed that the squeezing-out is initiated by a thermally
activated nucleation process in which the density fluctuation forms a small circular hole (void) of
critical radius in the center of the circular smectic film. The origin of ∇P is a disjoining pressure
(DP) acting across the N-layer and (N − 1)-layer smectic film, respectively. Taking into account the
additional pressure P1, which is responsible for coupling of the smectic film with the meniscus, a more
realistic description of the thinning process in free-standing smectic film, when the temperature is
slowly increased above θAI(bulk), has been proposed. In the framework of this model it was shown
that the time tR (P1 6= 0) which is needed to completely squeeze-out one layer from the N-layer smectic
film is inversely proportional to ∆P + P1. Bearing in mind that the value of ∆P = P (N)− P (N − 1)
is negative, one can conclude that the positive value of P1 = −∆P completely slows down the
squeezing-out process, whereas the negative values of P1 lead to accelerating of the squeezing-out
process during the layer-thinning transition.” [18].

It should be noted that there is not yet a clear consensus on the mechanisms by which the
layer-thinning occurs. Different mean-field theories have been used to obtain a qualitative description
of the layer-thinning transitions [7,8,11,12,14,16,19,63], but the theoretical thinning temperatures were
much larger than the experimental values [1]. Common features of all these theories are the existence
of enhanced smectic ordering at the free surfaces of the film and the fact that thinning occurs when the
smectic ordering in the interior of the film becomes sufficiently weak. Apart from details of the models
used, the main differences among the theories are in the description of the kinetic processes by which
layer-thinning occurs, i.e., whether this is by uniform squeezing-out of the melted interior [17,18],
or via spontaneous nucleation of dislocation loops between domains of differing thickness [13,14,66].
Another mean-field theory [16], based on the generalization of the de Gennes model for a “presmectic”
fluid confined between two solid walls, by means of including a quadratic term in the surface smectic
OP while neglecting the external field term, also presents a simple analytical formula for variation of
TAI(N) with N. Hence, further study on a wider range of compounds will be required to sort through
the correlation between the transition temperatures resulting from the mean-field approaches and
experimental measurements.

Please note that only the first set of the mean-field approaches [7,8,11,12,19–21] provides us
an opportunity to calculate the disjoining pressure which is responsible for setting up of the pressure
gradient, which drives the squeezed-out smectic film.
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4. Conclusions

In this review, some recent progress made in the area of predicting structural and dynamic
behavior associated with thin smectic films, both deposited on a solid surface or stretched over
an opening when the temperature is slowly increased above the bulk transition temperature towards
either the nematic or isotropic phases, has been discussed. The theoretical treatments for both of
dynamic and static processes of flexible molecules in thin smectic films require a certain number of
simplifying assumptions, which may only be justified by comparison between model predictions
and experimental results. For instance, according to the set of mean-field theories followed here,
thinning takes place when the smectic layer structure throughout the middle of the film vanishes.
In an alternative theory, supported by experimental study, layer-thinning occurs in compounds which
undergo first-order SmA-I transitions by spontaneous nucleation of dislocation loops, the growth
of which causes a film to thin. A model of this thinning, predicting a layer-thinning transition
temperature TAI(N) dependence, is functionally different from the power-law relation first described
in [1] but fits experimental data closely. Another mean-field theory, based on the generalization
of the de Gennes model for a “presmectic” fluid confined between two solid walls by means of
including a quadratic term in the surface smectic OP while neglecting the external field term, also
presents a simple analytical formula for variation of TAI(N) with N which also fits experimental data
very closely. Hence, further study on a wider range of compounds will be required to sort through
the correlation between the transition temperatures resulting from the mean-field approaches and
experimental measurements.

Thus, the combination of experimental techniques, such as the optical and calorimetric
measurements, and theoretical approaches, based on the extended McMillan’s theory,
provides a powerful tool for investigating both the structural and dynamic properties of real smectic
films, deposited on a solid surface or stretched over an opening.
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