

Article Physical Characteristics of Cilostazol–Hydroxybenzoic Acid Cocrystals Prepared Using a Spray Drying Method

Maho Urano ¹, Megumi Kitahara ¹, Kae Kishi ¹, Eiichi Goto ¹, Tatsuaki Tagami ¹, Toshiro Fukami ^{2,*} and Tetsuya Ozeki ^{1,*}

- ¹ Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
- ² Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
- * Correspondence: fukami@my-pharm.ac.jp; ozekit@phar.nagoya-cu.ac.jp

Received: 27 March 2020; Accepted: 14 April 2020; Published:

Table S1. Screening of compositions for the preparation of CLZ-4HBA cocrystals using the solvent evaporation methods. CLZ and 4HBA were mixed at a stoichiometric ratio of 1:1, and samples were further prepared as described in the Materials and Methods section.

	CLZ (g)	4HBA (g)	Solvent (mL)	
а	0.50	0.187	Acetone	100
b	0.50	0.187	Acetone/Methanol = $1/1$ (v/v)	100
с	0.50	0.187	Acetone/Methanol = $1/1$ (v/v)	40
d	1.0	0.374	Acetone	200
e	1.0	0.374	Acetone/Methanol = $1/1$ (v/v)	100

Figure S1. Molecular arrangement in the crystal structures of the CLZ cocrystals; (**a**) CLZ-4HBA cocrystal, (**b**) CLZ-2,4DHBA cocrystal (**c**) CLZ-2,5DHBA cocrystal. Images were produced using Mercury® based on a previous study [20].

Figure S2. The PXRD of CLZ-4HBA cocrystals prepared using the solvent evaporation method. The composition of the sample solutions is described in Table S1.

Figure S3. (a) PXRD analysis of spray-dried CLZ-2,5DHBA cocrystals and spray-dried 2,5DHBA crystals. (b) Type I (disordered) 2,5-DHBA and (c) Type II (ordered) 2,5-DHBA images acquired using the Mercury® software.