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Abstract: In this study, an artificial neural network (ANN) model was used to simulate and predict
the Vickers hardness of AZ91 magnesium alloy. The samples of AZ91 alloy were aged at different
temperatures (Ta = 100 to 300 ◦C) for different durations (ta = 4 to 192 h) followed by water quenching
at 25 ◦C. The age-hardening response of the samples was investigated by hardness measurements.
The microstructure investigations showed that only discontinuous precipitates formed at low aging
temperatures (100 and 150 ◦C), while continuous precipitates invaded all the samples at a high aging
temperature (300 ◦C). Both discontinuous and continuous precipitates formed at the intermediate
aging temperatures (200 and 250 ◦C). X-ray diffraction (XRD) analysis revealed that the microstructure
comprised two phases: The α-Mg matrix and intermetallic β-Mg17Al12 phase. The alteration of the
crystalline lattice parameters a, c, and c/a ratio with the aging time at various aging temperatures
was also investigated. Both c and c/a ratio had the same behavior with aging time while a had an
inverse trend. The observed variations of the lattice parameters were attributed to the mode of
precipitation in AZ91 alloy. The ANN findings for the simulation and prediction perfectly conformed
to the experimental data.

Keywords: AZ91 magnesium alloys; age-hardening response; microstructure evolution; β-Mg17Al12

phase; artificial neural network model

1. Introduction

Magnesium alloys play an important role in engineering applications, on account of their excellent
properties such as high specific strength, high specific stiffness, good castability, excellent machinability,
and abundant resources. These properties improve energy efficiency and decrease carbon dioxide
emissions as well as other greenhouse gases [1,2]. Among various magnesium alloys, AZ91 alloy
(Mg-9 wt.% Al-1 wt.% Zn) has superior resistance to corrosion and good mechanical characteristics [3].
It is well established [4] that the solid solubility of Al in α-Mg matrix attains its maximum value
(12.7 wt.%) at 437 ◦C for the Mg-Al binary system. Zinc is added to this binary system to reduce the
high solid solubility of Al during the aging process. As the Al/Zn ratio exceeds 3:1, only β-Mg17Al12

phase precipitates. Consequently, corrosion resistance and mechanical properties will be improved [2].
The β-Mg17Al12 phase can be precipitated in the AZ91 alloys continuously or discontinuously. The

lamellar structure of discontinuous precipitation (DP) forms along the grain boundaries of α-Mg [5–10].
The continuous precipitation (CP) occurs in the form of lath-type or fine plate-type morphologies
inside α-Mg grains which have not been occupied by DP [11–14]. At low aging temperatures, DP
is favored while CP invades all samples at high aging temperatures. The continuous, as well as the
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discontinuous precipitates, are formed and controlled by the aging treatment conditions. They can
simultaneously or competitively appear at the aging temperatures ranging from 175 to 270 ◦C [15–17].

The mechanical characteristics of the as-cast Mg alloys, especially AZ91 alloy, can be improved
through the precipitation hardening during the aging treatment process. Several research reports [18–22]
have documented the variations in the mechanical characteristics of different Mg-based alloys with the
aging treatment. Kim et al. [2] concluded that the changes in the mechanical characteristics during the
aging process are associated with the alteration of β-Mg17Al12 precipitation behavior. The effect of
precipitation of β-Mg17Al12 phase on the creep behavior of AZ91 alloy aged at 150 and 200 ◦C has
also been studied [7]. The results showed that the β-Mg17Al12 phase suffers severe cracking, leading
to early failure. Robson and Paa-Rai [18] showed that insoluble Zn-Zr particles were present in the
microstructure of Mg-6Zn-0.6Zr (wt.%) alloy even after solution heat treatment. Therefore, in Zn-Zr,
particles most likely remained intact after homogenization treatment. Li et al. [19] concluded that
the Mg-5Zn-2Gd-0.4Zr (wt.%) alloy showed a significant age-hardening response with a hardness
increment from 62 HV to 72 HV by aging at 200 ◦C for up to 80 h. Xia et al. [20] investigated the
age-hardening behavior of Mg-4Sm-xZn-0.4Zn (x = 0, 0.3, 0.6, and 1.3 wt.%) alloy. They reported that all
samples exhibited significant precipitation hardening effect. The optimum composition was determined
as Mg-4Sm-(0.3-0.6)Zn-0.4Zr alloy. Liu et al. [22] studied the microstructure and precipitation behavior
of Mg-4Y-2Zn (at.%) extruded alloy during solution treatment and aging processes. During the aging
process, the nanoscale β′ phases were coherent with α-Mg precipitated in the matrix. Suresh et al. [23]
stated that the addition of 0.2 wt.% charcoal to the AZ91 alloy can significantly refine the microstructure
and accelerate the aging kinetics of refined alloys.

An artificial neural network (ANN) model is commonly used for both simulation and prediction
of the mechanical properties of metals and alloys. The ANN is inspired by a biological neural
network, consisting of interconnected artificial nodes or neurons that can model complicated functional
relationships [24]. Okuyucu et al. [25] predicted yield strength, elongation, and tensile strength
of aluminum friction stir welding joints at heat affected zone (HAZ) with mean error 0.656, 7.596,
and 1.650, respectively, whereas Asadi et al. [26] anticipated the hardness profile and grain size of
AZ91/SiC of friction stir processing (FSP) nanocomposite plate with maximum training error 1.8%
and 0.5%, respectively. Yousif et al. [27] established an ANN model for the prediction of tensile stress,
bending stress, and elongation of friction stir welding of AA6061 aluminum. The errors of tensile
stress, bending stress, and elongation were reported to be 1.7524%, 7.3777%, and 11.98%, respectively.
Ghetiya et al. [28] used ANN with 4–8–1 architecture to predict the tensile strength of friction stir
welding (FSW) joint with less than 3% error. In their research, Arunchai et al. [29] employed the
ANN to model the resistance spot welding (RSW) joints with an accuracy of 95%. Ansari et al. [24]
presented a computational model based on ANN to analyze the friction stir extrusion (FSE) process of
magnesium. Multilayer neural network was used to discover the correlation between FSE parameters
and average grain size of the produced wires. The accuracy of the developed model can be shown
through root mean square error (RMSE) and linear regression analyses. Recently, Habashy et al. [30]
applied the ANN for modeling the composite hardness (Hc), yield stress (σy), and film hardness (Hf) of
titanium dioxide nanoparticles at different temperatures, dwell times, and relative indentation depths
(β). Mean squared error values for the prediction of Hc, σy, and Hf were found to be 1.4369 × 10−16,
3.9368 × 10−16, and 6.807 × 10−18, respectively.

The present work intended to investigate the applicability of ANN model to simulate and predict
the age-hardening response of AZ91 alloy. The ANN results were compared with the measured
experimental data.

2. Experimental Procedures

The AZ91 magnesium alloy chemical composition obtained by Magnesium Elektron is listed
in Table 1. Block samples with the dimensions 15 mm × 15 mm × 10 mm of the studied alloy were
designed for hardness measurements and microstructure characterization. In order to achieve solution
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annealing, the specimens were exposed to solution heat treatment at a temperature of 420 ◦C for 24 h
in a protective argon atmosphere. The annealing furnace (model no. T-5.0x10-w-200, Heraeus type,
Germany), power 380 V/50 Hz, 80 Amp was used in the present work. Temperature variations during
heat treatment were recorded by a 0.8-mm diameter chromel-alumel (type K) thermocoupler, which
was connected to a computer-based acquisition system. Later, all samples were dropped into the water
at 25 ◦C (room temperature) so as to quench and conserve the supersaturated solid solution. Finally,
the solution-treated specimens were aged at various temperatures (Ta = 100, 150, 200, 250, and 300 ◦C)
for different durations (ta = 4, 8, 12, 24, 48, 96, 144, and 192 h) followed by water quenching at 25 ◦C
in order to study the age-hardening response of AZ91 alloy as shown in Figure 1. The temperature
measurement accuracy was ±1 ◦C.

Table 1. Chemical compositions (wt.%) of the alloy used in the present study.

Al Zn Mn Si Cu Fe Mg

8.4 0.27 0.09 <0.02 <0.001 <0.001 Bal.
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Figure 1. A schematic diagram showing the heat treatment procedure.

To reveal the microstructure of the investigated samples, they were ground and polished according
to the usual magnesium alloys’ procedures [31]. Then, the prepared specimens were etched for about
90 s in a nitric acid solution (4 mL HNO3 and 96 mL C2H5OH). Afterward, the samples were cleaned
with anhydrous ethyl alcohol and then dried with air blast. The microstructure examinations were
performed on a light microscope Olympus BH2 (Olympus Co., Ltd., Bangkok, Thailand) equipped
with a Leica DC 200 MTV-3 camera. A Shimadzu D6000 X-ray diffractometer (Shimadzu Corporation,
Tokyo, Japan) with Cu-Kα radiation operated at 30 kV and 30 mA (with wavelength λ of 0.15406 nm)
was used to distinguish the formed phases.

The age-hardening response was investigated using a Vickers hardness testing machine under
a load of 0.5 kg for 10 s at room temperature. To ensure reproducibility, the average of 10 random
indentations was taken to calculate each reported hardness value.

3. Artificial Neural Network (ANN)

A nonlinear function mapping of the input variables in the corresponding network output
variables was provided by the artificial neural network (ANN), and it was not required to have the real
mathematics form of the relation between the input and output variables [30]. The most commonly
used type of feedforward neural network is multilayer perceptron (MLP). MLP neural network has
many layers of simple neurons which are coordinated in a manner that every neuron in a layer is linked
to every neuron in the following by weight (see Figure 2). These layers are an input layer, at least one
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hidden layer, and an output layer. The sum of weighted inputs was calculated by all neuron and then
converted by the next transfer function:

n j =
1

1 + exp(−x)

where nj is the output of the j-th neuron, and x is provided with:

x =
n∑

i=1

wi jpi + b j

where wij is the weights applied from the i-th neurons in the previous layer to the j-th neurons, pi is
the output from the i-th neuron, and b is a bias term.
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The MLP networks utilize a supervised learning technique. Both back propagation error (BPE) and
training data, in the training algorithm, are provided to the networks by the weights adjustment and
biases until the expected values for the network are consistent with the actual values. This adjustment
is made with the BPE training algorithm by the comparison between the actual value tij and the
expected values aij of the network by calculating the total sum of the square error (SSE) for the n data
of the training dataset,

SSE =
n∑

i=1

(
ti j − ai j

)2

In this study, the ANN model based on multilayer perceptron was used to compute Vickers
hardness values. The ANN model was configured to have aging temperatures and aging times as
inputs and Vickers hardness values as output, as shown in Figure 3. Various network settings were
attempted to provide the best mean square errors (MSE) and the best results using the input-output
scheme. The three hidden layers’ configuration with different neurons were chosen. In every hidden
layer, the number of neurons was 34, 24, and 25, respectively. The transfer functions were logsig
function for all hidden layers and linear pureline function for output layer.
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4. Results and Discussion

Figure 4 depicted the age-hardening response of AZ91 magnesium alloy at various aging
temperatures. The dashed lines interpolate the experimental points represented by the markers. A little
augment in the hardness with increasing aging time was detected for specimens aged at 100 ◦C.
The hardness values started to increase considerably when aging at 150 ◦C without the attainment of
its peak hardness within the examined time interval. After aging at 200 ◦C, the hardness considerably
improved with the extension of aging time, achieving its peak value after 24 hours, and, subsequently,
further aging times reduced the hardness values. The same tendency was found at the 250 ◦C aging
curve as that at 200 ◦C, but with the lower hardness values. For 250 ◦C aging curve, the peak hardness
was reached after about 12 h, which was 12 h earlier than that at 200 ◦C. This points out that the
age-hardening response of AZ91 was accelerated at a higher temperature. No major hardness changes
were observed for the AZ91 alloy aged at 300 ◦C.
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The vital agents that dominate the characteristics of precipitation-hardened alloys are the size,
type, distribution, and morphology of the new strengthening precipitates in the original matrix [32].
The variations in the age-hardening curves at various aging temperatures can be ascribed to the
interaction between the moving dislocations and β-Mg17Al12 precipitates. At the lower aging
temperature of 100 ◦C, the hardness increased slightly with an increase in aging time from 4 to
192 h. The microstructure of AZ91 samples aged at 100 ◦C for 4 and 192 h are, respectively, shown in
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Figure 5a,b. The microstructure investigation showed the existence of α-Mg as a matrix and there was
no β-Mg17Al12 phase for sample aged for 4 h (Figure 5a). This may be rendered to that 4 hours were
insufficient aging time to produce the DP. With the increment in the aging duration up to 192 h, the
discontinuous precipitation colonies of the β (Mg17Al12) phase (dark contrast of the second phase)
started to form within the primary α-Mg matrix (light background) (Figure 5b). The existence of a
slight volume fraction of the second phase (β-Mg17Al12) would lead to a little increase in the hardness.
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When the samples aged at 150 ◦C, the hardness values improved continuously with the aging
time increment. No peak hardness was detected for AZ91 samples aged at 150 ◦C even after aging for
192 h. Our results are consistent with those reported by Celotto [33], who found that the peak hardness
at 150 ◦C reached 100 HV after aging for 10,000 h. Figure 6a−d displays typical optical images of
samples aged at 150 ◦C for 4, 24, 96, and 192 h, respectively. It is obviously seen that the microstructure
containing the β (Mg17Al12) phase existed at the α-Mg grain boundaries. By extending aging time, the
nucleation sites of DP increased and the previously formed DP continued to expand towards the inside
grains and into the adjacent grains as distinguished from the microstructures of samples aged for 24
and 96 h (Figure 6b,c). After aging for 192 h, the sample was invaded by the DP (Figure 6d). It has
been reported [34] that the β (Mg17Al12) phase nucleated at the grain boundaries then developed as
the grain boundaries, migrating towards the adjacent grains. The depletion of Al solute atoms behind
grain boundaries should associate this migration. Zheng et al. [35] indicated that the migration of
the grain boundary would enhance the nucleation and growth of DP. Therefore, the grain boundary
migration performed a significant role in the nucleation and growth of DP [36]. Figure 6 confirms
that the volume fraction of DPs increased with the aging time, resulting in higher hardness values
(Figure 4).

Figure 7 exhibits typical optical images of samples aged at 200 ◦C for different times. After the
aging treatment for 4 h, it was detected the lamellar structure of the DPs distributed along the grain
boundaries of the α-Mg matrix (Figure 7a). The microstructure evolution showed that the whole sample
had been invaded by the DP as the aging time increased from 4 to 24 hours (Figure 7b). However,
when the sample aged for 24 hours, the maximum hardness value was achieved. The DPs that acted as
an impediment to dislocation motion led to a maximum hardness value. The reduction in the hardness
values with the aging period interval (24−92 h) might be attributed to the existence of both CPs and DPs
(Figure 7c). It has been stated [37,38] that the growth rate of discontinuous precipitates would terminate
if the grains were filled with the DPs or if CPs began to grow considerably and hinder the propagation
of the discontinuous precipitates. Thus, the volume fraction of continuous precipitates grew as the
aging time increased from 24 to 96 h, and that of discontinuous precipitation gradually reduced,
resulting in lower hardness values. Earlier studies [39,40] declared that discontinuous precipitates
were effectively inhibited as the continuous precipitates were formed. Dissimilar to the microstructure
of the sample aged for 92 h (Figure 7c), plenty of lath-shaped precipitates occupied the whole sample,
and no discontinuous precipitates were detected (Figure 7d). Since the CPs consisting of coarsely
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lath-shaped precipitates lie on the base plane of matrix, there are great opportunities for dislocations to
bypass the obstacles leading to lower hardness values. Comparing the micrographs shown in Figures 7
and 8, it is clear that the microstructure is identical, while the volume fraction of β-phase differs. The
samples aged at 200 ◦C had volume fraction of β-phase that was considerably denser than that of
the 250 ◦C samples, which could explain the higher hardness values for samples aged at 200 ◦C. The
hardness response for all the AZ91 samples aged at 300 ◦C for various times (4–192 h) was nearly
constant, and it was found to be lower than that of the samples aged at 250 ◦C. The low hardness
response for aging at 300 ◦C may be rendered to the formation, growth, and coarsening of CPs. The
CPs of the small number and large size were less effective to prevent the dislocations’ motion. This
trend would lead to a loss of hardness. The CPs’ precipitating during aging at 300 ◦C in the present
work agrees with the previous results of AZ91 alloy investigations [8,33,41].
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X-ray diffraction (XRD) measurements were applied for the studied samples aged at different
temperatures for various aging durations. The recorded XRD series for all the investigated samples
included both α-Mg with hcp crystal structure according to JCPDS card no. 65-3365 and body-centered
cubic crystal structured (β-Mg17Al12 phase) according to JCPDS card no. 73-1148. The crystalline
lattice parameters a, c, and c/a ratio were calculated for α-Mg matrix at different aging temperatures
and indexed with errors in Table 2 by the aid of X-ray data. The errors were calculated for a, c, and
c/a ratio with respect to their standard values recorded in JCPDS card no. 65-3365 for α-Mg phase
(a = 3.208 Å, c = 5.21 Å, and c/a = 1.62406). For α-Mg phase of hcp crystal structure, the interplanar
distance, d, between these two planes (100) and (101) can be correlated to a and c lattice parameters
through the following equation:

1
d2 =

4
3

(
h2 + hk + k2

a2

)
+

l2

c2 (1)
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Table 2. The calculated crystalline lattice parameters a, c, and c/a ratio for α-Mg matrix at different
aging temperatures and various aging times.

Aging Temperature (◦C)

Lattice
Parameter

Aging
Time (h) 100 Error

% 150 Error
% 200 Error

% 250 Error
% 300 Error

%

a (Å)

4 3.175 1.03 3.179 0.9 3.194 0.43 3.19 0.56 3.183 0.79
8 3.176 0.99 3.18 0.87 3.197 0.34 3.2 0.25 3.184 0.75
12 3.177 0.96 3.181 0.85 3.21 0.06 3.23 0.69 3.185 0.72
24 3.179 0.9 3.183 0.78 3.24 0.99 3.216 0.24 3.186 0.69
48 3.181 0.84 3.204 0.12 3.227 0.58 3.21 0.062 3.187 0.65
96 3.182 0.81 3.212 0.125 3.22 0.37 3.207 0.0312 3.188 0.62

144 3.183 0.78 3.224 0.499 3.22 0.37 3.205 0.0935 3.188 0.62
192 3.184 0.75 3.229 0.655 3.22 0.37 3.205 0.0935 3.188 0.62

c (Å)

4 5.213 0.058 5.21 0 5.19 0.384 5.21 0.192 5.213 0.115
8 5.211 0.019 5.205 0.084 5.1736 0.699 5.206 0.787 5.211 0.134
12 5.21 0 5.206 0.077 5.17 0.768 5.206 0.576 5.21 0.154
24 5.209 0.019 5.202 0.077 5.185 0.479 5.202 0.465 5.209 0.249
48 5.208 0.038 5.198 0.154 5.196 0.269 5.198 0.384 5.208 0.269
96 5.207 0.058 5.179 0.595 5.177 0.633 5.179 0.578 5.207 0.288

144 5.206 0.077 5.168 0.806 5.17 0.768 5.168 0.595 5.206 0.326
192 5.205 0.096 5.158 0.998 5.168 0.806 5.158 0.614 5.205 0.326

c/a

4 1.642 1.098 1.639 0.912 1.625 0.053 1.630 0.371 1.635 0.683
8 1.641 1.027 1.637 0.796 1.618 0.357 1.615 0.539 1.634 0.618
12 1.640 0.976 1.636 0.778 1.611 0.829 1.604 1.253 1.633 0.567
24 1.639 0.893 1.634 0.631 1.600 1.463 1.613 0.703 1.631 0.439
48 1.637 0.81 1.622 0.106 1.610 0.853 1.617 0.446 1.630 0.388
96 1.636 0.759 1.612 0.719 1.608 1.004 1.6151 0.547 1.629 0.338

144 1.635 0.708 1.603 1.298 1.606 1.138 1.616 0.502 1.628 0.299
192 1.634 0.657 1.597 1.642 1.605 1.176 1.6156 0.521 1.628 0.299

Figure 9a illustrates the variation of a with aging time for all the investigated samples aged at
various temperatures. The lines joining the markers are guides for the eye. It is clearly seen that the
trend of the lattice parameter, a, was in contrary to the behavior of the c/a ratio (Figure 9c) for the
samples aged at 150, 200, and 250 ◦C. On the other hand, their values were approximately constant with
the variation of the aging time at 100 and 300 ◦C. It is observed from Figure 9a, the crystalline lattice
parameter, a, increased continuously with aging time at 150 ◦C. The values of a varied from 3.179 Å to
3.229 Å at the maximum aging time of 192 h. This variation equaled about 1.57% from its initial value
at the minimum aging time of 4 h. At the aging temperature of 200 ◦C, the a values increased with
increasing aging time up to 24 h, and then they decreased and remained constant. A similar trend was
observed for the lattice parameter, a, at 250 ◦C but the reduction occurred after the lower aging time of
12 h. Figure 9b clarifies the variations of the lattice parameter, c, with aging time at different aging
temperatures. From this figure, it is obviously seen that the parameter c had a value of about 5.211 Å,
and still remained constant at 100 ◦C. Moreover, it had a value of about 5.204 Å at 300 ◦C. The lattice
parameter, c, showed the same behavior of c/a ratio with aging time and temperature. These calculated
values of a and c are matched with recorded values in JCPDS card no. 65-3365 for Mg matrix, and they
agreed well with the values reported in the literature [39,41]. The separation of aluminum to form
β-Mg17Al12 phase may be held responsible for the alteration in the lattice parameter values. Moreover,
the precipitation mechanism was improved at 200 ◦C, which strongly affected the hardness values of
the investigated alloy.
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The ANN model was used to simulate and predict the Vickers hardness of AZ91 magnesium alloy.
Two inputs parameters, aging time (ta) and aging temperature (Ta), were taken into account to simulate
the Vickers hardness as an output parameter. The data were taken from the experimental results. The
transfer function was selected as a logsig and pureline for hidden layers and output layer, respectively.
Experimental data were used for training the model. The ANN was trained with measured datasets at
100, 150, 200, and 250 ◦C. The training was carried out for 541 iterations (epochs). The artificial neural
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network was endeavoring to get a better mean square error (MSE) and best execution for the network.
The goal of the training was 10−5 (MSE = 10−5) and we reached the nearest value (best) to this goal.

The result of training is shown in Figure 10. It is clearly seen that the mean squared error of
the network decreased from a large value to a smaller value. Moreover, the network was learning.
After the network memorized the training set, training was completed. The obtained equation (which
represents the hardness, Hv) for network is represented in Appendix A. The best ANN model training
was obtained according to the value of MSE (9.8256 × 10−6) which represented the difference between
simulation results and experimental data. The performance of the ANN model was validated by
comparing the prediction values at 300 ◦C with the measured experimental data. The predicted
values were in good agreement with the measured dataset at 300 ◦C. Results of simulation, prediction,
and experimental values are shown in Figure 11. The age-hardening response was simulated at
temperatures of 100, 150, 200, and 250 ◦C and predicted at temperature of 300 ◦C. Figure 11 depicts
that the simulation and prediction results of the ANN were in good agreement with experimental data
of the age-hardening response of the investigated alloy. Comparison between the ANN results and
experimental data is depicted in Table 3. In summary, the present study showed that the ANN model
can effectively simulate and predict the age-hardening response of AZ91 magnesium alloy.
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Table 3. Comparison between the ANN results and experimental data.

Aging Temperature (◦C)

Aging
Time (h)

100 150 200 250 300
Exp. Sim. Exp. Sim. Exp. Sim. Exp. Sim. Exp. Pred.

4 52.50 52.48 54.40 54.40 58.00 58.00 56.90 56.88 56.00 55.70
8 52.70 52.74 55.21 55.19 61.21 61.30 64.30 64.25 56.80 56.40
12 53.20 53.18 55.40 55.40 70.00 70.00 75.12 75.10 57.00 57.15
24 53.89 53.89 56.50 56.50 82.00 81.95 72.00 72.00 57.20 56.86
48 54.30 54.29 68.11 68.00 78.90 78.89 71.80 71.80 57.90 56.93
96 54.60 54.60 73.00 73.00 77.23 77.20 71.25 71.21 57.90 57.50

144 55.60 55.59 77.00 76.90 75.58 75.60 69.80 69.80 57.90 58.01
192 56.00 56.00 83.00 82.90 75.33 75.30 69.30 69.30 57.90 57.56

5. Conclusions

In this article, the artificial neural network (ANN) model was adopted to simulate and predict the
hardness profiles of AZ91 magnesium alloy. The results of ANN were compared with the experimental
data and the following conclusions could be drawn from this study:

(1) The microstructure evolutions revealed that the mode of precipitation in AZ91 alloy was strongly
affected by aging temperature and time of aging. The discontinuous precipitation was favored at
low temperatures of aging (100 and 150 ◦C), while at high aging temperature (300 ◦C), continuous
precipitation (CP) invaded all the samples. Both discontinuous and continuous precipitation
reactions occurred at the intermediate aging temperature range (200−250 ◦C).

(2) The variations in the age-hardening response of AZ91 alloy at various aging temperatures was
clarified in view of the size, morphology, and distribution of the β-Mg17Al12 precipitates.

(3) Based on the artificial neural network (ANN) model, simulated analysis showed a high
correspondence with very low mean square error (MSE). The simulation results indicated
higher precision of the operating model to the experimental data.

(4) The prediction results of the ANN model were found to be in good agreement with the
measured dataset.

(5) The ANN model effectively simulated and predicted the age-hardening response of AZ91
magnesium alloy.

Author Contributions: Conceptualization, A.F.A.E.-R., H.Y.Z., and D.M.H.; investigation, A.F.A.E.-R., H.Y.Z.,
and H.M.A.-M.; methodology, A.F.A.E.-R., H.Y.Z., D.M.H., and H.M.A.-M.; writing—original draft, D.M.H. and
H.M.A.-M.; writing—review and editing, A.F.A.E.-R. and H.Y.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by King Khalid University through General Research Project under grant
number G.R.P/259/40.

Acknowledgments: The authors extend their appreciation to the Deanship of Scientific Research at King Khalid
University for funding this work through General Research Project under grant number G.R.P/259/40.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The equation which describes hardness is given by:
H = pure line [net.LW{4, 3} logsig (net.LW{3, 2} logsig (net.LW{2, 1} logsig (net.IW{1, 1}T +

net.b{1})+ net.b{2}) + net.b{3} + net.b{4}]
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