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Abstract: The commonly-employed methylammonium-based perovskites are environmentally
unstable, which limits their commercialization. To resolve this problem, a stable hybrid perovskite,
pyrrolidinium lead iodide (PyPbI3), was synthesized successfully via a simple drop casting method.
The formed PyPbI3 exhibited a hexagonal structure. It presented not only excellent phase stability, but
also low trap-state density, as confirmed via the X-ray diffraction and space-charge-limited currents
measurements. This novel perovskite may be applicable to perovskite photovoltaics to improve their
environmental stability.

Keywords: pyrrolidinium lead iodide; organic–inorganic hybrid perovskite; environmental stability;
low trap-state density; phase stability; perovskite solar cell

1. Introduction

With the growing demands for renewable energy, photovoltaics (PV) becomes a popular research
area [1,2]. Among all PV materials, organic–inorganic hybrid perovskite (OIHP) has attracted much
interest in recent years. In general, OIHP has a formula of ABX3, where A represents monovalent
cations, B for metals (e.g., Pb) and X for halides. Methylammonium lead iodide, with a chemical
formula of MAPbI3, has been considered one of the most important OIHP materials [3]. It has been
studied and reported that MAPbI3 has many superior properties including long diffusion length [4,5],
tunable bandgap [6,7] and high defect tolerance [8], which results in the rapid development of its
power conversion efficiency (PCE) from 3.8% to 25.2% [9] within only ten years, making OIHP one of
the most promising PV materials.

Despite their excellent performance in terms of energy efficiency, the lifetime of the fabricated
perovskite solar cell (PSC) is far from ideal [10]. For example, an unencapsulated PSC device would
lose 10%−30% of its initial PCE within only several days in ambient conditions [11]. Comparing that
with other already commercialized PV materials such as silicon, which has a lifetime of more than
25 years [12], the much shorter lifetime of PSCs confines them as a lab-scale product.

In order to fight against the MAPbI3 instability problems, numerous methods have been attempted.
Although strategies such as interface engineering [13–15] and doping [7,16,17] were shown to improve
the environmental stability of MAPbI3 effectively, they did not enhance the lifetime to any appreciable
level, as MAPbI3 is intrinsically unstable [10,18].

In this regard, replacing the unstable MA cations seems inevitable. In 2014, formamidinium
lead iodide (FAPbI3) [19] was introduced to improve the stability of PSC, but despite the enhanced
thermal stability, they suffered severe moisture and phase instability issues [20]. Incorporating small
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inorganic cations such as cesium (Cs) to form the perovskite structure was also reported in 2015 [21],
and the formed CsPbI3 exhibited improved moisture and thermal stabilities, yet its phase was not
stable at room temperature [22]. Most recently, ring-based molecules with a strong hydrophobic nature
were considered as an alternative in replacing the conventional unstable MA molecule. In 2017 [23],
a four-membered ring-based azetidine (Az) molecule was introduced into the perovskite crystal
structure to form AzPbI3. According to the results, the AzPbI3 exhibited excellent moisture stability.
However, the structure of AzPbI3 was highly distorted, and its bandgap was not ideal (~2.15 eV). Chao
et al. (2018) [24] simulated a three-membered ring-based perovskite, namely aziridinium lead iodide
(AzPbI3). Their results indicated that such perovskite exhibited a low bandgap of 1.49 eV, as well as
enhanced structural stability compared with MAPbI3 and FAPbI3 in terms of the formation enthalpy.
A major issue for AzrPbI3 was that the aziridine molecule was highly toxic, which made it not practical
for application. We thus reported in our previous work [25] a five-membered ring-based pyrrolidine
(Py) molecule could be used to form a new perovskite pyrrolidinium lead iodide (PyPbI3). The
PyPbI3 not only exhibited a lower bandgap (~1.80 eV) than AzPbI3, but also showed good water- and
high-temperature-resistance [9], providing a possible answer to the long-term PSC instability problem.
However, the phase stability of PyPbI3, equally important to the moisture and thermal stability, remains
unknown. Moreover, other properties such as defect states, which affect the perovskite PV performance
significantly, also need further investigation.

It is, therefore, the purpose of the current report to investigate the phase stability of PyPbI3. The
results of our stability measurements showed that PyPbI3 exhibited only one phase in an ambient
environment, indicating its excellent phase stability. The optical properties and morphology of the PyPbI3

film were also evaluated. By conducting the space-charge-limited currents (SCLC) measurement in a
capacitor-like device, we revealed that PyPbI3 demonstrated a low trap-state density of ~2.3 × 1016 cm−3,
which is comparable to that of MAPbI3. Our results indicated that PyPbI3 is an environmentally stable
OIHP material with great potential to be employed in perovskite PV applications.

2. Materials and Methods

2.1. Materials

N,N-Dimethylformamide (DMF, 99.99%) and PbI2 (99.999%) were purchased from Sigma-Aldrich.
Pyrrolidine hydroiodide (PyI, 98%) was purchased from TCI America.

2.2. Film Formation and Device Fabrication

The film was fabricated via a simple drop casting method. First, the ITO substrate was sequentially
washed with distilled water and ethanol, two times with each. After 20 min of UV–O3 treatments,
80 µL of PyI (80 mg) and PbI2 (60 mg) in a DMF solution were drop cast on the substrate. The fabricated
films were next annealed on a hot plate at 120 ◦C for 30 min in air. In the capacitor-like device, the
metal electrode was further deposited by thermal evaporation of gold under a pressure of 5 × 10−5 Pa.

2.3. Characterizations

Powder XRD measurements were conducted on a Bruker D8 DISCOVER diffractometer (Bruker
Corporation, Billerica, Massachusetts, USA). The steady state photoluminescence (PL) measurement
was taken at room temperature with an excitation wavelength of 514.5 nm. The film morphology
image was taken by a FEI Magellan 400 XHRSEM scanning electron microscope (SEM) (FEI Company
Magellan™ XHR, Midland, ON, Canada). The current density–voltage characteristics of the devices
were obtained using a Keithley 2400 source-measure unit. The light intensity was calibrated using a
KG-5 Si diode.
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3. Results

3.1. Fabrication and Characterizations of the Perovskite Film

The PyPbI3 film was fabricated by employing a simple drop casting method as illustrated in
Figure 1 (Details shown in experimental section), following the methods reported in our previous
work [9]. The thickness of the formed film was measured as 1500 nm by a profilometer. To investigate
the crystal structure of the film, we conducted powder XRD measurements. The results are shown in
Figure 2, and suggest the formation of PyPbI3 in the film [9]. The relatively low intensity of the first
peak could be attributed to the texture in the powder film.
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Figure 2. XRD results of the fabricated PyPbI3 film.

The optical property of the PyPbI3 film was evaluated via steady state photoluminescence (PL)
measurement. The excitation wavelength adopted in this study was 514.5 nm. The PL result is shown
in Figure 3, which shows a peak at around 600 nm, exhibiting a blue shift compared to our previous
results [25]. This could be attributed to the different thickness of the perovskite film (in this work
1500 nm), leading to a change of its absorption property, as reported in the literature [26–28]. The
relatively broad emission characteristic of the peak further indicates that the structure type of PyPbI3

belongs to 1D perovskite [29]. In addition, the PL luminescence of PyPbI3 remained the same after one
hour in ambient conditions, which indicated its good moisture stability.

The morphology of the film was studied via field emission scanning electron microscope (SEM).
As shown in Figure 4, the film consisted of many grains of micrometer sizes and had low grain
boundary coverage area, which is comparable with that of MAPbI3 [30].
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Figure 4. Planar SEM image of PyPbI3.

3.2. Trap-State Density of the PyPbI3 Film

To investigate the defect states in PyPbI3 film, SCLC measurements were taken. We fabricated
capacitor-like devices following steps shown in the experimental section. The structure of the device
is illustrated in Figure 5, and was composed of ITO/PyPbI3/Au. From the current density–voltage
(CV) curve shown in Figure 6, it can be observed that the CV response is ohmic at low voltage. Upon
reaching the intermediate voltage, the defect states are filled by the injected charge carriers (refers
to TFL), resulting in a linear relationship between the voltage (VTFL) and the density of defect states
(NDEF). Following the methods mentioned in previous reports (NDEF = 2 εε0VTFL/eL2) [11], ε0 is the
vacuum permittivity, ε (~4.90, determined by RUFUTO 871) is the dielectric constant of PyPbI3, L
(~1500 nm) is the thickness of the perovskite film, and e is the elementary charge. The defect density
was estimated to be 2.3 × 1016 cm−3, which is comparable to that of MAPbI3 (~1016 cm−3), indicating a
low trap-state density in the polycrystalline film of PyPbI3. The origin of the trap-states in PyPbI3 was
assumed to be located at the grain boundaries, as suggested in the literature [31].
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of 50%.

3.3. Stability Measurements of the PyPbI3 Film

To investigate the phase stability of PyPbI3, a set of stability measurements was conducted.
According to previous reports on MAPbI3 and CsPbI3, the perovskite phase transition was triggered
by either raising humidity [18,32] or temperature [22]. We therefore conducted the phase stability
measurements in two different environments. First, we evaluated the phase stability of PyPbI3 in
moisture with a relative humidity (RH) of ~50%. The formed film was kept in a desiccator for one
week. The results are illustrated in Figure 7. As can be observed, after one week in an ambient
environment, the XRD patterns of PyPbI3 remained unchanged, indicating the moisture and phase
stabilities of PyPbI3.

Next, we raised the temperature of the environment. The fabricated film was placed on a hot plate
at a temperature of 85 ◦C for 6 h. From the XRD results (Figure 8), a tiny peak appeared at around
14.78◦, correspond to the PbI2 peak. The PbI2 peak was assumed to be originated from the surface of
the PyPbI3 film, as suggested in literature [33]. Apart from that, we did not observe any other unknow
diffraction peak. In addition, previous TGA measurements [9] further indicated the thermal stability
of PyPbI3, which is consistent with our XRD results.
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stands for the Py molecule, and structure beneath represents PyPbI3 perovskite.

4. Discussion

The above stability measurement results indicate that PyPbI3 is highly phase-stable. Combining it
with previous results, we can therefore conclude that PyPbI3 exhibits excellent environmental stability
compared to MAPbI3. The results are further summarized in Table 1. We also explored the reasons
for the enhanced environmental stabilities found in PyPbI3. The excellent moisture resistance of the
perovskite can be attributed to the strong hydrophobic nature of its pyrrolidine rings [9], which can
repel the invasion of water molecules, as schemed in Figure 8. The high thermal stability can be
related to the greater molecular weight of the Py molecules (71 g/mol) compared to the MA molecules
(31 g/mol), as the former molecule is less volatile [11].

Table 1. Comparison of five OIHPs comparing moisture, thermal and phase stabilities.

Formula MAPbI3 FAPbI3 CsPbI3 AzPbI3 PyPbI3

Moisture stability Bad [18] Bad [31] Regular [21] Good [23] Good [25]
Thermal stability Bad [34] Regular [19] Regular [35] N/A Good [9]

5. Conclusions

In conclusion, a five-membered ring-based perovskite PyPbI3 was synthesized and its properties
were characterized. The trap-state density of the polycrystalline PyPbI3 film was calculated to be
2.3 × 1016 cm−3. The stability measurements reveal that PyPbI3 is an environmentally stable perovskite,
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which shows great potential for employment in PSCs to resolve their long-term instability problems.
In the future, it will be of great significance to fabricate and investigate the PyPbI3-only solar cell device.
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