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Abstract: The compound being investigated is an organic charge-transfer complex of the
unsymmetrical donor STF with I3 [STF = bis(ethylenedithio)diselenadithiafulvalene], which is
isostructural with α-ET2I3 and α-BETS2I3 [ET = bis(ethylenedithio)tetrathiafulvalene, BETS =

bis(ethylenedithio)tetraselenafulvalene]. According to recent studies, the calculated band structure
should represent a zero-gap semiconductor at 1 bar that is similar to α-ET2I3 under high pressure
(>15 kbar). Such materials have attracted extensive interest because the electrons at the Fermi level
can be massless Dirac fermions (MDFs), with relativistic behaviors like those seen in graphene. In fact,
α-STF2I3 exhibited nearly temperature-independent resistivity, ρ, (~100–300 K), a phenomenon that
is widely observed in zero-gap semiconductors. The non-Arrhenius-type increase in ρ (<~100 K) was
consistent with the characteristics of interacting MDFs. The paramagnetic susceptibility, χ, (2–300
K)—as well as the reflectivity, R and optical conductivity, σ, (25–300 K; 400–25,000 cm−1)—were also
almost temperature independent. Furthermore, σ was practically independent of wavenumber at
~6000–15,000 cm−1. There was no structural transition based on X-ray studies (90–300 K). Considering
all the electrical, magnetic, optical and structural properties of α-STF2I3 at 1 bar, it was concluded
that the salt possesses a band structure characterized with Dirac cones, which was consistent with
the calculation.

Keywords: organic conductors; charge-transfer complexes; Dirac cones; zero-gap semiconductors;
electrons with relativistic behavior; disorder

1. Introduction

Recently, topological materials have attracted increased research interest in the field of solid-state
chemistry and physics [1–3]. Various descriptors are used to refer to these materials, such as topological
insulators, Dirac fermions (Dirac electrons), Weyl semimetals, Berry phases, time reversal symmetry,
non-Abelian anyons and Majorana particles. These materials are considered to contain or connect
fundamental problems in nature concerning the states of matter, nuclear physics and mathematics. The
traditional topological materials are diverse, such as graphene [4], quasicrystals [5] and the surfaces
of particular materials [1], all of which should be of high-quality with well-defined structures and
chemical formulae. Among them, bulk samples, crystalline materials in particular, are valuable and
advantageous because they facilitate various types of physical measurements, which enable a detailed
study of their properties and structures. An advantage is that the materials are readily prepared
for most experimental purposes by standard methods of chemical synthesis as single crystals of
sufficient dimensions, qualities and quantities that are stable enough to be handled under normal
atmospheric conditions. Examples include α-ET2I3 (ET = bis(ethylenedithio)tetrathiafulvalene, also
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abbreviated as BEDT-TTF (Scheme 1); “α-” denotes one of the polymorphs reported on ET2I3) [6–16],
which is an organic charge-transfer complex with two-dimensional conduction sheets consisting of a
self-aggregated donor molecule (D) sublattice (Figure 1a). The α-ET2I3 is now known as a zero-gap
semiconductor with Dirac cones under high pressure (>15 kbar) [17–32]. However, many of the
experiments are very challenging or impossible to perform under such high pressures. Therefore, the
observation and characterization of Dirac electrons require a sample with Dirac Cones at ambient
pressure. In this sense, α-STF2I3 (STF = bis(ethylenedithio)diselenadithiafulvelene, also abbreviated as
BEDT-STF [33–38]) is the sample of choice, which is an isostructural complex with α-ET2I3 and has been
recently suggested to be a zero-gap semiconductor at 1 bar by a band calculation (Figure 2) [37]. The
STF, together with BETS (BETS = bis(ethylenedithio)tetraselenafulvelene) [38–43], is an electron donor,
which is obtained by the partial replacement of sulfur atoms with selenium atoms in ET (Scheme 1). The
substitution of chalcogen atoms generally results in two major effects in the physical properties of the
STF complexes. First, in addition to the single crystals of STF itself, all of the STF complexes currently
known contain disorder at all of the STF sites (Figure 1b). The unit cell parameters of α-STF2I3 are
almost identical to those of α-ET2I3. Hence, the α-STF2I3 contains disorder at every STF site due to the
asymmetric molecular structure about the central C=C bond, which could influence its electrical and
magnetic properties. Second, the intermolecular interactions in the STF sublattice are enhanced based
on the closer interatomic overlaps involving Se atoms, which are often termed chemical pressure effects.
This effect makes the salt correspond to an approximately higher-pressure state of the isostructural ET
salts. Accordingly, α-STF2I3 exhibits qualitatively different physical properties from those of α-ET2I3

under ambient pressure. For example, α-ET2I3 exhibits a metal-insulator (M-I) transition at TM-I

originating from charge ordering in the ET sublattice at a pressure (P) less than ~12–15 kbar (TM-I =

135 K at 1 bar). However, α-STF2I3 exhibits a gradual increase in resistivity (ρ) at a temperature (T)
lower than Tmin(ρ) ≈ 130 K, without phase transitions [34–37]. Interestingly, in all the known solids
containing STF molecules, the differences in electron densities between S and Se atoms are almost
completely averaged out by disorder. As a result, the STF complexes typically behave as though they
consist of ET-type symmetrical donor molecules containing imaginary atoms between S and Se. In
fact, in α-STF2I3, even diffuse streaks or scatterings have never been observed in the X-ray oscillation
photographs. In this way, α-STF2I3 may uniquely provide an overview of or insight into the Dirac
electrons in disordered lattices by various physical property measurements under ambient pressure.
However, some basic physical properties of α-STF2I3 remain unknown because of limited sample
availability and limited research on the salt as a candidate of the zero-gap semiconductors. In order to
provide a basis for discussion on this salt, it is important to present various aspects of basic physical
properties. In this article, we report electrical, structural, magnetic and optical properties of α-STF2I3.
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Scheme 1. Chemical structures of donor molecule D in α-D2I3: 
(a) bis(ethylenedithio)tetrathiafulvalene (ET or BEDT-TTF); 
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Scheme 1. Chemical structures of donor molecule D in α-D2I3: (a) bis(ethylenedithio)tetrathiafulvalene
(ET or BEDT-TTF); (b) bis(ethylenedithio)diselenadithiafulvalene (STF or BEDT-STF); (c)
bis(ethylenedithio)tetraselenafulvalene (BETS or BEDT-TSeF).
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Figure 1. Crystal and molecular structures of -D2I3 (D = ET, STF and BETS): (a) Crystal structures 
shared by -ET2I3,-STF2I3 and-BETS2I3. The actual figure shown above is that of -STF2I3. The 
structures of the other two complexes may be visualized by the symmetric substitution of the inner 
chalcogen atoms by S or Se; (b) Disordered S and Se atoms in the inner chalcogen atoms in the STF 
molecules (S:Se = 50%:50% at all the STF sites). Yellow, white-and-red, brown, blank and violet 
spheres denote S, Se, C, H and I atoms, respectively. 

  

(a) (b) 

Figure 2. Calculated band structure around the Dirac points of -STF2I3 [37]: (a) Energy dispersion 
(eV) of the two bands closest to the Fermi energy, E1(k) and E2(k), as functions of k = (kx, ky), where (x, 
y) corresponds to (b, a). The energy at the Dirac points is equal to the chemical potential, which is 
defined to be the origin of energy; (b) Enlarged view at one of the Dirac points, which are located at 
kD = (kx/, (ky/− 1) =  and are indicated as broken arrows with naughts (0 eV). k = k  
kD. 

2. Materials and Methods 

2.1. Sample Preparation 

Neutral STF molecules were synthesized by following the reported procedure [34,36]. Single 
crystals of -STF2I3 were prepared by a galvanostatic (1.4 A) electrocrystallization of STF (6 mg, 
1.25  10−2 mmol) and (n-C4H9)4N·I3 (50.5 mg, 8.10  10−2 mmol) in distilled C6H5Cl (10 mL) at 43 ºC 
under an N2 atmosphere for 2–3 weeks in the dark [34,36]. Prior to the physical measurements, all 
the single crystals were examined using X-ray oscillation photographs (R-AXIS RAPID-R, Rigaku, 
Tokyo, Japan) for identifying the lattice parameters and the conduction sheets (the crystallographic 
ab-planes) in addition to investigating the crystal quality. 

Figure 1. Crystal and molecular structures of α-D2I3 (D = ET, STF and BETS): (a) Crystal structures
shared by α-ET2I3, α-STF2I3 and α-BETS2I3. The actual figure shown above is that of α-STF2I3. The
structures of the other two complexes may be visualized by the symmetric substitution of the inner
chalcogen atoms by S or Se; (b) Disordered S and Se atoms in the inner chalcogen atoms in the STF
molecules (S:Se = 50%:50% at all the STF sites). Yellow, white-and-red, brown, blank and violet spheres
denote S, Se, C, H and I atoms, respectively.
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Figure 2. Calculated band structure around the Dirac points of α-STF2I3 [37]: (a) Energy dispersion
(eV) of the two bands closest to the Fermi energy, E1(k) and E2(k), as functions of k = (kx, ky), where
(x, y) corresponds to (b, a). The energy at the Dirac points is equal to the chemical potential, which is
defined to be the origin of energy; (b) Enlarged view at one of the Dirac points, which are located at kD

= (kx/π, (ky/π) − 1) = ±(0.61, −0.18) and are indicated as broken arrows with naughts (0 eV). δk = k − kD.

2. Materials and Methods

2.1. Sample Preparation

Neutral STF molecules were synthesized by following the reported procedure [34,36]. Single
crystals of α-STF2I3 were prepared by a galvanostatic (1.4 µA) electrocrystallization of STF (6 mg, 1.25
× 10−2 mmol) and (n-C4H9)4N·I3 (50.5 mg, 8.10 × 10−2 mmol) in distilled C6H5Cl (10 mL) at 43 ◦C
under an N2 atmosphere for 2–3 weeks in the dark [34,36]. Prior to the physical measurements, all the
single crystals were examined using X-ray oscillation photographs (R-AXIS RAPID-R, Rigaku, Tokyo,
Japan) for identifying the lattice parameters and the conduction sheets (the crystallographic ab-planes)
in addition to investigating the crystal quality.

2.2. Electrical Resistivity Measurements

Electrical resistivity was measured by a standard four-probe method using gold wires attached
with carbon paste to the ab-planes of the single crystals. The morphology varied from crystal to crystal
(from thick needles to irregular-shaped plates) and there was no particular relationship between the
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direction of the a- or b-axes and that of the most developed dimension in the ab-plane (L-axis). The
L-axis made an angle of ~0 to ~90◦ with the a-axis, depending on the crystal. The four gold wires were
always aligned along the L-axis. Owing to the highly isotropic nature in the conduction sheets and the
error in the estimation of the crystal dimensions, the observed absolute values of resistivity and the
temperature dependence agreed with each other semiquantitatively between different measurements.
For the estimation of the anisotropy in the conduction plane (the ab-plane), the resistivity was measured
along the a- and b-axes independently. The resistivity at 2–300 K was measured using a Physical
Property Measurement System PPMS-9 with an EverCool II (Quantum Design Japan, Inc., Tokyo,
Japan). Below 10 K, the resistance was too high to measure. Thus, only the data at 10–300 K were
shown in the results below. The magnetic field (1 T) was applied below 18 K in zero-field-cooling (ZFC)
processes, but no hysteresis or significant magnetoresistance was observed.

2.3. Magnetic Susceptibility Measurements

The magnetic susceptibility was measured using the polycrystalline samples and the DC mode of
a SQUID susceptometer (MPMS-XL7minB×R3 with an EverCool, Quantum Design Japan, Inc., Tokyo,
Japan). The sample was contained in a gelatin capsule with ventilation holes, which was set in the
middle of a polystyrene straw (Quantum Design Japan, Inc.). The magnetic field of 1 T was applied,
which was in the linear range between the applied magnetic field and the observed magnetization of
the samples. Both FC and ZFC processes were measured at 2–300 K. The diamagnetic contributions
from the STF and I3

− species were estimated by the same measurements on the neutral STF and
(n-C4H9)4NI3 at 300 K. The obtained diamagnetic susceptibilities, χdia, are −1.55 × 10−4 and −3.61 ×
10−5 emu mol−1G−1 for STF and I3

−, respectively. The scatterings between observed magnetization for
each measurement/compound were less than 10−6 emu (≤50 ppm of the observed signals).

2.4. X-ray Structural Studies

The X-ray single-crystal structural analyses and the measurements of temperature dependence of
the lattice constants of α-STF2I3 were performed using a VariMax RAPID/α diffractometer (Cu-Kα
radiation; λ = 1.54187 Å) (Rigaku, Tokyo, Japan) and a VariMax SaturnCCD724α diffractometer (Mo-Kα
radiation; λ = 0.71075 Å) (Rigaku, Tokyo, Japan), each with a continuous N2-gas-flow type temperature
controller. X-ray structural analyses and magnetic susceptibility measurements were repeated several
times using the samples prepared from independently synthesized neutral STF and (n-C4H9)4NI3.
Sample-dependence was hardly observed in the measurements below.

2.5. Optical Studies

The reflectance spectra were measured on the ab-plane of the single crystal (450–25,000 cm−1,
25–300 K). The optical conductivity spectra were obtained through the Kramers–Kronig transformation
of the reflectance spectra. Details are described in our previous paper [35]. In this paper, only the
reflectance and conductivity spectra of α-BETS2I3 were presented and those of α-STF2I3 were not,
because they were nearly identical to those of α-BETS2I3 and were not required in the discussion then.
However, as the actual spectra are indispensable in the discussion of this paper, they are present here
with permission of the authors then.

2.6. Calculation of the Density of States

The density of states at the Fermi level of α-STF2I3 was estimated using the crystal structures of
α-ET2I3 and α-BETS2I3 by assuming the identical atomic parameters with α-STF2I3, where extended
Hückel tight-binding calculation was performed using Caesar vers.1 and 2 (PrimeColor Software, Inc.,
Raleigh, NC, USA) [44].
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3. Results

3.1. Electrical Behavior

The observed electrical behavior (Figure 3a–c) quantitatively reproduced the previously reported
temperature dependence of electrical resistivity [34–37]. The resistivity (25–40 mΩcm at 300 K) is
higher than the bulk resistivity corresponding to the quantum sheet resistance (4.5 mΩcm in this
case) by nearly an order of magnitude. This is consistent with the interpretation that the observed
low temperature resistivity behavior is suggestive of a strong correlation between Dirac electrons (see
below), as electron correlation deviates the resistivity from the quantum sheet resistance [22–24,28].
The resistivity slightly decreased but was almost temperature independent at 300–Tmin(ρ) ~130 K
and gradually increased at lower temperature (~1000 Ωcm at 10 K). At ~100–300 K the temperature
dependence was continuous and monotonic (Figure A1a,b). In addition, since the temperature
dependence of lattice constants at 90–300 K—a/Å, b/Å, c/Å, α/◦, β/◦, γ/◦ and V/Å3 (Figure 4a,b)—and
that of magnetic susceptibility at 2–300 K (see below) exhibited no sudden change or hysteresis, there
should be no first-order phase transitions inα-STF2I3. The anisotropy of the conductivity in the ab-plane
(the ratio between the conductivities along the respective crystallographic axes) σb/σa is almost constant
(3.3–3.9) at ~80–300 K. This is in agreement with our previous estimation by calculation (σb/σa ≈ 5) [37].
However, below ~80 K, the conductivities along both crystallographic axes decrease rapidly and cannot
be reliably detected. As such, the σb/σa ratio is unreliable for use in quantitative assessment. The
increase in resistivity at low temperature is neither of Arrhenius type (Figure 3c) nor logarithmic form
(Figure 3a). For α-ET2I3, the temperature dependence of resistivity below Tmin(ρ) (~10 K) at 18 kbar
resembles the power-law or logarithmic form [22,24,28] with some sample-dependence [6,24,28,32].
Some of the samples exhibited closely related behavior to that of α-STF2I3. The insulating behavior
toward the ground state originates from strong electron correlation between the Dirac fermions in
α-ET2I3 [22–24,28]. Since such correlation originates from the band structure (Dirac cones), which is
independent of disorder, the low-temperature resistivity upturn in α-STF2I3 can also originate from
strong correlation.
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Figure 3. (a) Temperature dependence of electrical resistivity of α-STF2I3 (10–300 K). Red;
heating-process data, blue; cooling-process data; (b) An enlarged view of the higher temperature range;
(c) Arrhenius plot of electrical resistivity of the same data (cooling process) in Figure 3a. For reference,
the black line shows the best fitting line to the widest linear range (50–80 K), showing an apparent
activation energy of ~0.034 eV. (d) Electrical conductivities along the a- (σa) and the b-axes (σb), and the
anisotropy in the ab-plane σb/σa.
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3.2. Magnetic Behavior

The temperature dependence of molar magnetic susceptibility of α-STF2I3, χ, at 2–300 K is shown
in Figure 5a,b. Both FC and ZFC processes produced identical results, which is also the case between
independent samples/measurements (Figure A2). The good linearity between χT and T at 2–300 K
indicates that χ is almost temperature independent, like the Pauli paramagnetism of metallic substances.
At a closer examination, χ slightly decreased from 300 K to T0(χ) ~120–130 K, and then more steeply
decreased down to Tmin(χ) ~40–50 K, where it gradually began to increase down to 2 K. The increase
in χ at T ≤ 40 K is proportional to T−0.2. If the increase originates from the lattice defects in the sample
such as impurities and the disorder between Se and S at the STF sites, T−1-dependence, i.e., the Curie
law is expected. On the other hand, there are a number of papers on disordered systems such as
Si:P [45] and FeSi1−xAlx [46] reporting their T−α-dependences (0 < α < 1) of magnetic susceptibilities
near the ground states. In order to clarify whether the increase in χ with the T−α-dependence (0 < α <

1) at T ≤ 40 K originates from disorder, the same measurement on α-BETS2I3 is necessary, which we
are currently investigating.Crystals 2020, 10, x FOR PEER REVIEW 7 of 14 
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Now, we tentatively apply the relationship in the Fermi liquids between the Pauli paramagnetism,
χPauli and the density of states at the Fermi level N(EF),

χPauli = µ2
BN(EF) (1)

where, µB is the Bohr magneton. Our tight-binding calculation, where we assumed that α-ET2I3 and
α-BETS2I3 should have the same atomic parameters with those of α-STF2I3, suggested that N(EF) =

8.06–8.64 (eV−1). Thus, χPauli = (4.67–5.00) × 10−4 emu mol−1G−1, which is significantly smaller than
the observed values at T ≥ Tmin(χ) (~40 K) by a factor of ~3. By considering the low-temperature
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increase in the resistivity, the magnetic susceptibility can be consistently interpreted that the massless
Dirac fermions (MDFs) in α-STF2I3 should have significant interaction with each other [22–24,28].

3.3. Optical Behavior

The reflectance and conductivity spectra of α-STF2I3 are shown in Figures 6a,b and 7a,b,
respectively [35]. General features of the reflectance spectra are closely related to those of usual
two-dimensional molecular metals with Drude dispersions [47]. However, the spectral features can be
explained by the coexistence of massive and massless fermions [19]. Such coexistence is theoretically
predicted [7] and is actually observed in α-ET2I3 under high pressure [27]. The following analysis
corroborates the coexistence of the two kinds of fermions in α-STF2I3. The plasma frequencies of the
Drude dispersions along the a- and b-axes, ωp,a and ωp,b, were determined from the optical conductivity
spectra at 300 K as 0.59 and 0.99 eV, respectively [35]. This gives anisotropy in conductivity as
σb
σa

=
(
ωp,b
ωp,b

)2
� 2.8, which agrees with the directly measured values of 3.3–3.9 shown in Figure 3d.

Based on ωp,a and ωp,b, the effective mass along the a- and b-axes, (m*opt)a and (m*opt)b, are estimated
as 4.60 m and 1.64 m, respectively, where m designates the electron rest mass. The larger effective
mass generally means stronger correlation in the electronic system and leads to enhanced magnetic
susceptibility. Since the Dirac electrons do not give a Drude dispersion [5], it originates from the
semimetallic (massive) carriers. Accordingly, the effective masses are those of massive carriers and
they are too small to account for the observed magnetic susceptibility. Therefore, the strong correlation
originates from the interacting MDFs instead of the semimetallic carriers.
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Figure 6. Temperature-dependent reflectance spectra ofα-STF2I3. The spectra measured with setting the
polarization, i.e., the alignment of electric field (E-vector) in the incident light along the crystallographic:
(a) a-axis; (b) b-axis. Note that each spectrum at 150, 100 and 25 K is offset by 20%, 40% and 60%,
respectively in Figure 6a,b.
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Figure 7. Temperature-dependent optical conductivity spectra σ(ω) of α-STF2I3. By Kramers–Kronig
transformation, the spectra were obtained from the reflectance spectra with polarization of: (a) and
(c) E // a-axis; (b) E // b-axis. Blue and red horizontal lines are best-fit lines showing the constant
conductivities in the range (~18 and ~30 Scm−1 for E // a- and E // b-axes, respectively). Either of them is
quite different from the corresponding value of the quantum sheet conductance [(4.5 mΩcm)−1

≈ 220
Scm−1 in this case]. Figure 7c is an enlarged view of Figure 7a. Note that each spectrum at 150 K, 100 K
and 25 K is offset by 200, 400 and 600 Scm−1 in Figure 7a, by 400, 800 and 1200 Scm−1 in Figure 7b, and
by 100, 200 and 300 Scm−1 in Figure 7c, respectively.

The overall features of the spectra and the temperature dependence clearly indicate that α-STF2I3

remains a metal-like highly conducting material without band gaps, exhibiting no phase transitions
at 25–300 K. This apparently contradicts with the insulating resistivity behavior at T < ~130 K,
which is, again, consistent with each other by assuming the coexistence of massless and massive
carriers in α-STF2I3. The electrical properties at low temperatures are dominated by the massless
carriers (interacting MDFs) [22–24,28], whereas the Drude dispersion originates from the (semimetallic)
massive carriers as stated above. The most striking feature shared by reflectance and conductivity
spectra is their negligible temperature dependence in a wide temperature range (25–300 K), which is
shared by many Dirac electron systems [7,27,48] and is similar to those of α-BETS2I3 [35]. Although
the reflectance spectra (Figure 6a,b) appear to be common for two-dimensional molecular metals,
the optical conductivity spectra (Figure 7a–c) exhibit constant conductivity versus a wide range of
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wavenumbers (see below). Again, either of the constant values (~18 and ~30 Scm−1 for E // a- and
E // b-axes, respectively) is extremely different from the corresponding value of the quantum sheet
conductance [(4.5 mΩcm)−1

≈ 220 Scm−1 in this case]. The reflectance and conductivity spectra
are almost quantitatively identical with each other between α-STF2I3 and α-BETS2I3 at respective
temperatures. The latter (α-BETS2I3) is also considered to be a zero-gap semiconductor based on NMR
measurements [38], theoretical studies [39], X-ray structural analyses with band calculation [40] and
magnetotransport properties [41]. Similar temperature-independent features of the reflectivity and
optical conductivity are observed in Cd3As2, which belongs to the three-dimensional Dirac electron
systems [49].

Generally, the interband optical response of d-dimensional Dirac electrons is supposed to be
universal [49–51]: the optical conductivity σ(ω) should follow a power-law frequency (ω) dependence,

σ(ω) ∝ ω
d−2

z , (2)

where, σ(ω) is the real part of the optical conductivity and z is the exponent in the band dispersion
relation,

E(k) ∝ |k|z (3)

In the case of α-STF2I3, d ≈ 2. Accordingly, Equation (2) indicates that σ(ω) should be independent
of ω, irrespective of z. In fact, the obtained values of σ(ω) along both polarization directions are
approximately ω-independent at ω ≈ 6000–15,000 cm−1; σ(ω)/Scm−1

≈ 18 and 30 (independent of
temperature) along the a- and b-axes, respectively (Figure 7b,c). The ω-independent range is possibly
masked in part by the intense peak centered at 22,000–23,000 cm−1 assigned to the local excitation of
the I3 anions, which hides the spectral features originating from the Dirac electrons.

4. Discussion

The optical results conclusively support that α-STF2I3 contains both massless and massive electron
systems. All the rationalization on the resistivity and magnetic susceptibility data are established based
on the conclusions of the optical results. Furthermore, considering the temperature dependencies
of electrical, magnetic and structural properties, it is concluded that the band structure with Dirac
cones remains in the ground state. In fact, including the T−α-temperature dependence (0 < α < 1)
of the resistivity below Tmin, the observed electrical property is consistent with the typical behavior
of interacting MDFs. The T−α-temperature dependence (0 < α < 1) at low temperatures is also
demonstrated by the magnetic behavior. These findings will aid in various successive experimental
results at lower temperatures with smaller energy scales, as well as advancement in related theories.
For the Dirac electron systems, the STF salt reveals similarities with the ET salt in the following points.
(i) Anisotropic Dirac cone dispersion with accidental degeneracy at low symmetry, i.e., general k-points
in the a*b*-plane. (ii) Almost identical lattice parameters with each other. (iii) The Fermi energy is
located exactly on the Dirac point due to the 3/4-filled band. (iv) Electron correlation plays an important
role in the physical properties.

In conclusion, all the experimental results consistently indicate the existence of the Dirac electrons
in α-STF2I3, being consistent with the recent band calculation [37].

Finally, the Dirac electron systems of the α-STF2I3 are qualitatively different from those of α-ET2I3

in the following points. (i) The ET salt possesses substantially tilted the Dirac cones, whereas the STF
salt possesses the almost vertical Dirac cones. The difference in the orientation of the Dirac cones will
manifest influence on the magnetotransport properties and the orbital diamagnetism [31]. (ii) The ET
salt is a clean system based on the well-defined crystal structure, whereas the STF salt is not based on
such a system since it contains heavy disorder in the conduction sheets. The disorder of the STF salt
could not be lowered to the ground state; thus, it would be interesting to investigate how the Dirac
electron system in the salt would respond when cooled to 0 K. Since every perfect crystalline solid
should have zero entropy—and since the STF salt could not be a perfect crystalline solid—it would
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be intriguing to see how the system reconciles itself with the third law of thermodynamics when T
→ 0. (iii) The phase transition is observed in the ET salt under low pressure. Accordingly, the band
structure and the strength of electron correlation vary near the phase boundary [19,24,25]. In α-STF2I3,
the aforementioned parameters are practically constant, without a phase transition. Therefore α-STF2I3

is anticipated to provide different aspects of the Dirac electron systems from those of α-ET2I3 or other
related materials.
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Figure A1. Temperature dependence of electrical resistivity of α-STF2I3. The samples in Figure A1a,b
are different from those in Figure 3a,b: (a) Enlarged view (~80–300 K). Red; heating-process data, blue;
cooling-process data. (Inset) A different plot of the same data for comparison with Figure 3b. Since
there are deviations in the data during the measurement, Tmin(ρ) is determined based on the first
derivative of resistivity by temperature; (b) First derivative of resistivity by temperature; enlarged view
(~80–300 K).
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