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Abstract: Boron-doped polycrystalline silicon film was synthesized using hot wire chemical vapor
deposition technique for possible application in photonics devices. To investigate the effect of
substrate, we considered Si/SiO2, glass/ITO/TiO2, Al2O3, and nickel tungsten alloy strip for the
growth of polycrystalline silicon films. Scanning electron microscopy, optical reflectance, optical
transmittance, X-ray diffraction, and I-V measurements were used to characterize the silicon films.
The resistivity of the film was 1.3 × 10−2 Ω-cm for the polycrystalline silicon film, which was suitable
for using as a window layer in a solar cell. These films have potential uses in making photodiode and
photosensing devices.
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1. Introduction

Hydrogenated intrinsic polysilicon film can reduce the cost of optoelectronics device significantly.
The prospects of intrinsic polysilicon films for thin-film solar cell and other optoelectronic device
fabrication using hot wire chemical vapor deposition (HWCVD) were well evaluated [1]. The intrinsic
silicon film requires controlled doping to make the films suitable for optoelectronic device application.
Boron-doped highly conducting 0.08 (Ωcm)−1 polycrystalline silicon films were optimized using
HWCVD for solar cell application [2–4]. Thin-film solar cell fabricated on plastic substrate at 150 ◦C
also showed the prospect of these films as a cost-effective solution [5]. In this article, we described the
growth, optimization, and characterization of boron-doped polycrystalline silicon films synthesized
using HWCVD. To investigate the effect of nature of substrate on crystallinity of grown boron-doped
silicon film, we considered four different substrates, silicon dioxide on silicon wafer (Si/SiO2), titanium
dioxide on glass (glass/ITO/TiO2), sapphire (Al2O3), and nickel–5%tungsten alloy textured metal
strip (Ni-W) with dominant (002) orientation. Basic motivation for carrying out growth on different
types of substrates came from the works of Green et al. [6], Teplin et al. [7], and Findikoglu et al. [8],
who showed growth of textured silicon films on amorphous substrates. SiO2 on Si is an amorphous
substrate. Sapphire is chosen as a robust substrate and Ni-W is chosen as a flexible substrate. A range
of experiments were conducted by varying the growth conditions to optimize the crystalline quality of
silicon film with an intention to use the film in a solar cell [9,10]. Thin-film solar cells of p-i-n structure
have i-layer as the light absorber and p-type layer as a window. At the initial stage, we conducted
experiments for the synthesis of p-type polycrystalline silicon layers on a variety of substrates.
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2. Experimental Section

2.1. HWCVD System Used for Synthesis and Other Apparatus

The HWCVD system used in this work [11] was custom made of stainless steel with provision of
a window for monitoring the tungsten filament temperature. Single filament of tungsten wire, 65 cm
long and 0.5 mm in diameter, wound in a zigzag shape was resistively heated to 1900 ◦C using a DC
power supply. The filament was placed at about 5 cm height above the substrate. The area covered by
the filament was about 9 cm × 9 cm. The hot filament radiatively heated the substrate to 200 ◦C as
measured with a thermocouple in contact with the substrate surface in a temperature calibration run.
Higher substrate temperature was achieved by a resistive heater placed in contact with the substrate
holder from below. A moveable shutter between the wire and the substrate allowed several growth
steps to be performed with definite starting and ending point for each step during the growth of the
film. The gas flow shower was located above the filament. The vacuum system had base pressure of
1 × 10−6 mbar, and it was equipped with a load lock to avoid exposing the system to room ambient
while loading and unloading the samples. A mixture of pure SiH4 and pure H2 was used as a process
gas for the intrinsic silicon film. Diborane (5% diborane and 95% hydrogen) gas was introduced as a
source of boron for p-type silicon film. For film thickness measurement, a DektakXT stylus profiler,
from Bruker, Billerica, MA, USA, was used.

Si/SiO2 substrates were prepared by oxidizing 500 nm of silicon dioxide on 2-inch (100) silicon
wafers using a wet oxidation process. We used one-fourth of the 2-inch diameter silicon wafer for
the growth process. Sapphire (Al2O3) substrates were 1 cm × 2 cm and were cut from 0.5 mm thick,
c-axis oriented, both sides polished, two inch diameter wafer, and were obtained from Semiconductor
Wafer Inc. Titanium dioxide (TiO2) substrates (1 cm × 2 cm) were (112) oriented anatase, prepared by
atmospheric chemical vapor deposition (ACVD) techniques, on indium tin oxide (ITO)-coated glass,
and were synthesized at the Washington University [12]. The interest in this substrate was not for
optoelectronics, but for its application as electrode for energy storage. We used nickel–5% tungsten
(Ni-W) metal tape (1 cm × 2 cm) [13] of about 80-micron thickness, biaxially textured Ni-W substrates
with dominant (002) orientation, obtained from EVICO GmbH, as metal substrate.

2.2. Growth of Boron-Doped Polycrystalline Silicon Film

The growth began with a nucleation step at 400 ◦C. This was based on the experiments of
Vallat-Sauvain et al. [14] who showed that the silicon grains synthesized by Plasma Enhanced Chemical
Vapor Deposition (PECVD), using a dilute mixture of silane with hydrogen, developed preferential
(220) orientation for a certain ratio of SiH4/H2 precursors. In our experiments, we used H2:SiH4 in the
ratio of 20:1 for duration of 100 s.

Boron-doped silicon films were grown on various substrates using HWCVD, starting with a thin
silicon nucleation layer at 400 ◦C substrate temperature. The substrate temperature was ramped from
400 ◦C to 600 ◦C for higher surface mobility of silicon atoms to continue the growth. Table 1 shows the
growth conditions for the thin and thick film, respectively.

The growth of boron-doped polysilicon layer was done by two schemes. In the first scheme, the
gas mixture remained the same as used for the nucleation stage. In the second scheme, the growth of
silicon layer proceeded in five stages after the nucleation stage, with gradual increasing concentration
of SiH4 as listed in Table 1. The silane flow rate was increased in steps while simultaneously decreasing
the H2 flow rate in order to keep the chamber pressure constant. To facilitate the measurement of
thickness, we placed a piece of silicon, covering one end of the Si/SiO2 substrate, as mask. This allowed
us to measure the step height using surface profiler. The thickness, as shown in the Table 1, is for the
boron-doped silicon film on Si/SiO2 substrate.
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Table 1. Growth parameter of boron-doped p-type polycrystalline silicon films on Si/SiO2, sapphire
(Al2O3), glass/ITO/TiO2, and Ni-W substrates.

Exp. No. Sample Name
Process

Pressure in
mbar

Substrate
Temp. in ◦C

Gas Flow in Sccm
H2:SiH4:5%B2H6

Growth
Duration in

Sec

Film
Thickness

in nm

Two-stage growth (thin film)

1
18_Si/SiO2
24_Al2O3

25_Glass/ITO/TiO2
26_Ni-W

2.4 × 10−1 400 15:1:5 110
218

2.5 × 10−1 600 15:1:5 1000

Six-stage growth (thick film)

2

2_Si/SiO2
27_Glass/ITO/TiO2

29_Ni-W
30_ Al2O3

2.3 × 10−1 400 15:1:5 100

1085
2.1 × 10−1

to
2.3 × 10−1 600

15:1:5 100

15:1.5:5 100

13:2:5 100

12:3:5 100

10:5:5 1000

3. Results and Discussion

3.1. SEM Image Analysis

We took scanning electron microscope (Zeiss Ultra 55 SEM with Oxford EDX) images to observe
the grain size and shape in p-type polycrystalline silicon films.

Figure 1 shows morphology of silicon thin films grown on different substrates following the recipe
given in Table 1, Experiment Number 1. Films on Si/SiO2 and Al2O3 substrate had similar shaped
circular grains with average grain size of 30 nm. Grains on glass/ITO/TiO2 substrate were not circular
in shape and average grain size was larger, about 100 nm. The shape of crystalline grains on nickel
substrate was rather different from the shapes observed in all other substrates. Grains were randomly
oriented, merged together to form larger grains of 400 nm, and in some portion, a columnar growth
was also observed.

Figure 2 shows morphology of thick polycrystalline silicon film grown on different substrates
following the recipe given in Table 1, Experiment Number 2. Films grown on Si/SiO2, glass/ITO/TiO2

and Al2O3 substrates had grain size of 100 nm, and the shapes were similar to those observed in the case
of intrinsic silicon film [15]. Grains on nickel substrate looked different. Grains were merged and two to
three microns in size. Sharp, pointed four-micron features were observed due to the contribution from
the Ni-W substrate effect. We looked at the TEM of undoped silicon films grown on Si/SiO2 substrate
using the same gas mixture, except for diborane, and same growth procedure [16]. The nucleation
layer was about 10 nm thick. The layer immediately above the nucleation layer, about 0.2 micron
thick, was of very high crystalline quality as seen from selective area diffraction (spotty pattern).
The top layer, however, had more polycrystalline nature (rings diffraction pattern). This aspect requires
further investigation.
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Figure 1. SEM image of boron-doped p-type polycrystalline silicon thin film (Exp. 1) on (a) Si/SiO2, (b)
Al2O3, (c) glass/ITO/TiO2, and (d) Ni-W.
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3.2. Crystal Orientation

Structural characterization of silicon films was performed using CuKα radiation from
high-resolution X-ray diffraction (XRD) instrument, SmartLab 3 kW, from Rigaku Corporation, Japan,
operated at 40 keV, 40 mA, and CuKα in θ–2θ geometry. XRD measurements for thick boron-doped
polycrystalline silicon film grown on Si/SiO2, glass/ITO/TiO2, Al2O3, and Ni-W substrates are shown
in Figure 3. All the data were taken at 2θ in the range of 20◦–60◦. XRD patterns contained peaks
corresponding to the silicon film as well as the substrates. Broad hump in XRD of the Si/SiO2 substrate
at 2θ less than 36◦ was due to the scattering from amorphous SiO2. Some of the substrate peaks
were marked in Figure 3. Strong peaks corresponding to the sapphire and (002) textured Ni-W
substrates appeared at 2θ equal to 42◦ and 51◦, respectively, which were removed to facilitate the
presentation. For analysis purpose, we considered the three peaks at 2θ values of 28.5◦, 47.5◦, and
56◦ for the boron-doped polycrystalline silicon planes (111), (220), and (311), respectively. The peaks
corresponding to (220) increased significantly for silicon film on Si/SiO2, glass/ITO/TiO2, and Al2O3

substrates. Hence for thick boron-doped polycrystalline silicon film (220), a preferred growth direction
was observed. Boron-doped polycrystalline silicon film on Ni-W substrate showed no preferred crystal
orientation. This result was different from the result of Teplin et al. [7], who obtained nearly epitaxial
films using several intermediate oxide layers. It was possible that silicon reacted with nickel, and
prevented growth of silicon nuclei in the initial stages so that the growth turned out to be random.
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Figure 3. Diffraction spectrum of thick boron-doped polycrystalline silicon film on (a) 29_Ni-W-pSi, (b)
27_ Glass/ITO/TiO2-pSi, (c) 30_Sapphire-pSi (Al2O3), and (d) 2_Si/SiO2-pSi substrate.

3.3. Optical Transmission and Reflectance

Transmission and reflectance spectra allowed us to evaluate the optical properties of boron-doped
silicon films in the Ultraviolet-Visible-Near Infrared (UV-VIS-NIR) range of wavelengths. We took
transmittance and reflectance spectra for the silicon film on sapphire (Al2O3) substrates using PVE300
spectrometer from Bentham Inst. Ltd., and these are shown in Figure 4. Interference oscillations were
observed at wavelengths longer than 500 nm for silicon film on sapphire substrates as the film on this
substrate was smooth. No transmission measurement was performed for the silicon films deposited on
Si/SiO2 and nickel substrates, since these substrates absorb light of wavelengths in the range of interest.
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Reflectance spectrum measured on Si/SiO2 substrate was similar to that measured on the sapphire
substrate. The overall reflection was 30% or lower.
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Figure 4. Reflectance spectrum of boron-doped p-type polycrystalline silicon film on sapphire (Al2O3)
substrates. Transmission spectrum of boron-doped p-type polycrystalline silicon film on sapphire
(Al2O3) substrates.

These experiments showed that optical quality of film is suitable for use in a p-i-n solar cell with
the thickness modified as required by the device design.

3.4. Resistivity Analysis

Sheet resistivity and bulk resistivity of the films were measured using collinear four-point probe
apparatus by Lucas-Signatone Corp. The measurements for boron-doped silicon film grown on
Si/SiO2 and on sapphire substrates are shown in Table 2. In comparison, the resistivity of undoped
films was about 2–4 × 105 ohm-cm (these measurements were done with deposited contacts using
electrometer) [15]. Doping with boron lowered the resistivity by several orders of magnitude as
expected. Relatively higher resistivity was observed for thick polycrystalline silicon film on 2_Si/SiO2

and 30_Al2O3 substrate compared to the thin silicon film. This may be due to the change in the
gas composition for thicker growth, with larger silane content and corresponding reduction in the
diborane to silane ratio. As given in Section 3.1, the TEM results showed better crystallinity for the
layer adjacent to the nucleation layer. This may be also contributed to the differences in the resistivity.
From the EDX measurement, the presence of oxygen was noticed though we took it as contamination.
No I-V measurements were done on p-type silicon film on nickel and glass/ITO/TiO2 substrates using
four-probe setup because these substrates had back conducting metal.



Crystals 2020, 10, 237 7 of 8

Table 2. Resistivity of boron-doped silicon film on Si/SiO2 and Al2O3 substrates.

Sample Name Voltage
Volt (V)

Current Amp
(I)

Sheet Resistance =
(V × 4.532)/I
ohm/square

Thickness
cm

Resistivity
Ohm-cm

Polycrystalline silicon thin film

18_Si/SiO2 1.35 1 × 10−2 6.12 × 102 2.18 × 10−5 1.33 × 10−2

24_Al2O3 1.67 1 × 10−2 7.6 × 102 2.18 × 10−5 1.65 × 10−2

Polycrystalline silicon thick film

2_Si/SiO2 0.93 1 × 10−2 4.2 × 102 1.1 × 10−4 4.64 × 10−2

30_Al2O3 1.58 1 × 10−2 7.2 × 102 1.1 × 10−4 7.88 × 10−2

4. Conclusions

Our experiments showed that one-micron thick p-type boron-doped silicon films prepared at
600 ◦C are preferentially oriented along (220) direction. We achieved fairly high average growth
rates (about 7 A◦/s) for the thick films by increasing the silane content in the gas mixture. However,
the average grain size remained small on Si/SiO2 and Al2O3 substrates. The resistivity of the thin
films was in the range of 1.3–1.7 × 10−2 Ω-cm, while in the thicker films, the resistivity was in the
range of 4.64–7.88 × 10−2 Ω-cm. This increase in resistivity was may be due to the reduction in the
ratio of diborane to silane by a factor of 5 in the thicker films compared to that in the thinner films.
By optimizing the thickness and doping concentration, these films can have potential application in
optoelectronics devices.
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