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Abstract: The crystal structure of the newly synthesized 4-methoxyphenyl(phenyl)iodonium thiocyanate,
[PhI(4-C6H4OMe)](SCN), represents the first example of 16-membered cyclic heterooctamer formed
by halogen bonding between the iodonium cation and SCN−. Results of density functional theory
(DFT) calculations followed by the topological analysis of the electron density distribution within the
framework of the quantum theory of atoms in molecules (QTAIM) method at theωB97XD/DZP-DKH
level of theory reveal that energies of attractive intermolecular noncovalent interactions I···S and I···N
(responsible for the formation of heterooctameric supramolecular clusters {PhI(4-C6H4OMe)}4·{SCN}4

in the solid state structure of [PhI(4-C6H4OMe)](SCN)) vary from 0.9 to 8.5 kcal/mol.

Keywords: halogen bonding; noncovalent interactions; DFT; QTAIM; hypervalent iodine;
diaryliodonium salts; thiocyanate

1. Introduction

Halogen bonding (XB) has drawn increased attention in the past decade as a powerful tool for
crystal engineering and supramolecular chemistry [1–5], drug design [6–8], organic synthesis [9–11],
and as a route for facile tuning of physicochemical properties [12,13]. The geometry of XB interaction is
conventionally studied by single-crystal X-ray diffraction (XRD) and, in accord with the International
Union of Pure and Applied Chemistry (IUPAC) requirements [14], XB is confirmed when the R–X···Y
contact value is less than the sum of their van der Waals radii and, in addition, ∠(R–X···Y) is close to
180◦; the theoretical analysis of the electron density topology usually shows a bond path connecting X
and Y and a bond critical point between X and Y.

The overwhelming majority of XB studies employing anionic species as XB acceptors explore
halides (Cl−, Br−, I−) [15–17], while XB-accepting properties of pseudohalides are ill studied.
In particular, our inspection of the Cambridge Structural Database (CSD) indicates a greater number of
examples of R–X···S–C≡N–M XB in complexes featuring metal-bound SCN− and less than 20 structures
including R–X···N≡C–S− or R–X···−S–C≡N XBs with uncomplexed SCN−. Bock and Hall [18–20] have
identified XB between SCN− and iodine centers in tetraiodoethylene or tetraiodothiophene; SCN− in
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these systems forms several XBs either via the thiocyanate N or S atoms to form the polymeric chains.
Similar polymeric chains are formed between SCN− and iodinated perfluoroarenes C6InF6–n [21,22],
CBr4 [23,24], and other organic halides [25]. Organic monohalides also form XB in simple adducts that
do not exhibit the polymeric motifs [26,27].

In general, the systems involving XB with SCN− exhibit the following common features: ∠(X···SCN)
are close to 90◦ and ∠(X···NCS) vary in the range from 115 to 170◦. The XB-based polymeric structure
incorporating SCN− has also been observed in the hypervalent iodine(III) salt such as dibenziodolium
thiocyanate [28]. Yet another example of XB between an iodonium cation and SCN− featuring
a heterotetrameric arrangement [29]. Geometrical parameters of XBs for hypervalent iodine(III)
compounds agree with those described above (∠(X···SCN) and ∠(X···NCS)) for XB between monovalent
organic halides and SCN−.

Herein, we report on the hitherto unknown 16-membered heterooctameric cluster formed by
XB between [PhI(4-C6H4OMe)]+ and SCN− in iodonium salt 1 (Figure 1). Density functional theory
(DFT) calculations approved the crucial contribution of C–I···N and C–I···S XBs in the formation of the
heterooctamer cluster and also verified additional weak interactions as C2–I···S XB and H···S hydrogen
bonding (HB) (Figure 2). Our processing of the CCDC database allowed the identification of three
relative heterooctamer clusters containing iodonium cation or SCN− (Figure 3).
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 Figure 1. The (···I···SCN···)4 16-membered halogen bonding (XB)-involving moiety in 1.

2. Materials and Methods

2.1. Materials and Instrumentation

All reagents and solvents were obtained from commercial sources and used without further
purification from freshly opened containers. Potassium thiocyanate was supplied by Reakhim (Moscow,
Russia); methanol and acetone was supplied by Vekton (Saint Petersburg, Russia). [PhI(4-C6H4OMe)]
(CF3CO2) was prepared by the previously reported procedure [30]. The melting point was measured
on a Stuart SMP30 apparatus (Cole-Parmer, Stone, Staffordshire, UK) in a capillary and is not corrected.
High-resolution electrospray ionization (HRESI) mass-spectra were obtained on a Bruker maXis
spectrometer (Bruker, Billerica, MA, USA) equipped with an ESI (Electrospray ionization) source.
The instrument was operated in positive ion mode using an m/z range 50−1200. The nebulizer gas
flow was 1.0 bar and the drying gas flow was 4.0 L/min. The NMR spectra were recorded on a Bruker
Avance 400 (Bruker, Billerica, MA, USA) at ambient temperature; the residual solvent signal was used
as the internal standard.

2.2. Computational Details

The single point calculations based on the experimental X-ray geometry of 1 were carried out at the
DFT level of theory using the dispersion-corrected hybrid functional ωB97XD [31] with the help of the
Gaussian-09 [32] program package (Gaussian, Inc., Wallingford, CT, USA). The Douglas–Kroll–Hess 2nd
order scalar relativistic calculations requested relativistic core Hamiltonian were carried out using the
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DZP-DKH basis sets [33–36] for all atoms. The topological analysis of the electron density distribution
with the help of the atoms in molecules (QTAIM) method developed by Bader [37] has been performed
by using the Multiwfn program (version 3.6) (Beijing Kein Research Center for Natural Sciences,
Beijing, China) [38]. The Wiberg bond indices were computed by using the Natural Bond Orbital
(NBO) partitioning scheme [39]. The Cartesian atomic coordinates for the model heterooctameric
cluster {PhI(4-C6H4OMe)}4·{SCN}4 are presented in Table S1 (Supporting Information). The Hirshfeld
molecular surfaces were generated by CrystalExplorer program (version 17.5) (The University of
Western Australia, Perth, Australia) [40,41]. The normalized contact distances, dnorm [42], based
on Bondi van der Waals radii [43], were mapped into the Hirshfeld surface. In the color scale,
negative values of dnorm are visualized by the red color indicating contacts shorter than the sum of
van der Waals radii. The white areas denote intermolecular distances close to van der Waals contacts
with dnorm equal to zero. In turn, contacts longer than the sum of van der Waals radii with positive
dnorm values are colored in blue.

2.3. Synthesis of [PhI(4-C6H4OMe)](SCN) (1)

A solution of [PhI(4-C6H4OMe)](CF3CO2) (1 mmol, 424 mg) in methanol (1 mL) was added
dropwise to a solution of KSCN (5 mmol, 485 mg) in water (1 mL) at RT, whereupon the reaction
mixture was stirred for 30 min, the precipitate formed was filtered off and washed with water (three
5-mL portions) at RT. The obtained 4-methoxyphenyl(phenyl)iodonium thiocyanate (1; 79%) was dried
in air at RT. Compound 1 is a colorless crystalline solid; mp 132–134 ◦. 1H NMR (400 MHz, DMSO-d6),
δ: 8.18 (m, 4H), 7.64 (t, J = 7.6 Hz, 1H), 7.51 (t, J = 7.6 Hz, 2H), 7.07 (d, J = 8.8 Hz, 2H), 3.79 (s, 3H).
13C{1H} NMR (100 MHz, DMSO-d6), δ: 161.9, 137.2, 134.8, 131.8, 131.6, 129.5, 117.4, 117.3, 105.7, 55.7.
HRESI+-MS: m/z calcd. for C13H12IO+: 310.9927, found 310.9933.

2.4. Crystal Growth

Crystals of diaryliodonium thiocyanate 1 were grown by cocrystallization of the equimolar
amounts of 4-methoxyphenyl(phenyl)iodonium trifluoroacetate [30] and potassium thiocyanate KSCN
in acetone upon slow evaporation at 20–25 ◦C.

2.5. X-Ray Structure Determination

Suitable single-crystal of 1 was fixed on a micro mount, placed on an Xcalibur Eos diffractometer
(Agilent Technologies, Yarnton, Oxfordshire, UK), and measured at 100(2) using monochromated
Mo Kα (λ = 0.71073) radiation. Using Olex2 (OlexSys Ltd, Durham, UK) [44], the structure was
solved with the ShelXT (Shelx, Göttingen, Germany) [45] structure solution program using Intrinsic
Phasing and refined with the ShelXL (Shelx, Göttingen, Germany) [45] refinement package using Least
Squares minimization.

3. Results & Discussion

3.1. Crystal Structural Descriptions

Iodonium salt 1 displays geometrical parameters that are typical for other diaryliodonium species,
namely ∠(C1–I1–C7) 92.10(8)◦ is close to 90◦ and the I1–C1 and I1–C7 bonds are ~2.1 Å [46,47].
Upon our processing of CCDC, we found two more structures of diaryliodonium thiocyanates such
as [(C6H4)2I](SCN) [28] (2) and [(C6F5)2I](SCN) [29] (3). If 2 exhibits a polymeric motif, 3 is a
heterotetramer. The XB angles of 1 are similar to heterotetramer 3 and to those in other examples of
XB involving monovalent halogen compounds: ∠(C1–I1···S1A) 169.92(6)◦; ∠(C1–I1···N1A) 164.97(8)◦;
∠(I1···N1A≡C1A) 157.2(2)◦; ∠(I1···S1A–C1A) 89.66(8)◦ (Table 1). The noncovalent I1···S1A and I1···N1A
distances are closer to the relevant values observed in polymeric 2, rather than those in 3; we assume
that this is probably because of the electron withdrawing effect of C6F5 in 3.
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Table 1. Parameters of halogen bonding (XB) in 1.

C–I···X d(I···X), Å RIX ∠(C–I···X), ◦ ∠(I···X~C), ◦ Eint
a Eint

b

C7–I1···N1A 2.850(2) 0.81 164.97(8) 157.2(2) 8.5 8.4
C1–I1···S1A 3.1833(7) 0.84 169.92(6) 89.66(8) 6.0 5.9

C2I1···S1A c 4.1531(7) 1.10 98.21(6)
86.33(6) 71.68(8) 0.9 1.3

a Eint = 0.68 (−V(r)), in kcal/mol (correlation developed exclusively for noncovalent interactions involving iodine
atoms) [48]. b Eint = 0.67 G(r), in kcal/mol (correlation developed exclusively for noncovalent interactions involving
iodine atoms) [48]. c Theoretical calculations that are based on the experimentally determined atomic coordinates
allow the determination of the bond critical point between these two atoms, see Section 3.4.

According to our theoretical calculations (Section 3.4), the [PhI(4-C6H4OMe)]+ cation noncovalently
interacts with three thiocyanate anions (Figure 2) to form typical C1–I1···S1A and C7–I1···N1A XBs
with two SCN− and two weak I1···S1A and H12···S1A contacts with the third SCN−.
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Figure 2. Noncovalent interactions around [PhI(4-C6H4OMe)]+.

The H12···S1A interaction is hydrogen bonding [49] in view of the observed geometrical parameters,
viz. d(H12···S1A) 2.976 Å is slightly less than the vdW sum (3.00 Å), ∠(C12–H12···S1A) 163.6◦,
d(C12···S1A) 3.897(2) Å). The C2I1···S1A interaction (Table 1) may be an XB according to the IUPAC
definition [14], despite the unusual geometric parameters (d(C2I···S1A) 4.1531(7) Å is larger than the
sum of Bondi vdW radii [50] (RvdW(S) + RvdW(I) = 3.78 Å); ∠(C1–I1···S1A) and ∠(C7–I1···S1A) are close
to 90◦). Resnati et al. [51] have performed electrostatic surface potential calculations for [Ph2I]+ and
found four local potential maxima. Two out of four are opposite to the C–I covalent bonds and they
were identified as σ-holes. The remaining two are under and above the C–I–C plane; these maxima
were not attributed, however they can probably be treated as π-holes. One of these π-holes could be
involved in weak I1···S1A interaction, which is perpendicular to the same C–I–C plane in the similar
[PhI(4-C6H4OMe)]+ cation studied in this work.

3.2. Relevant Structures with Heterooctameric Motif

Only one example, [(4-MeC6H4)2I]Br [52] (Figure 3, CSD code: FASMUH), of the heterooctameric
clusters stabilized by eight XBs between four iodonium cations and their counterions has been reported
before our experiments. In this structure, similar to 1, each diaryliodonium cation forms two XBs with
counterions, which, however, are Br−. In addition, {(4-MeC6H4)2I}4·{Br}4 is in another conformation
comparing with {PhI(4-C6H4OMe)}4·{SCN}4 in 1.
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Figure 3. Relevant reported heterooctameric clusters (CSD codes: FASMUH, TPTETC10) and another
one found upon our processing of the Cambridge Structural Database (CSD) (CSD code: FAKPIT).

The thiocyanate-based heterooctameric arrangement has been identified for [TeIVPh3](SCN)
(Figure 3; CSD code: TPTETC10). Its XRD structure displays three annulated cycles [53] and the
conformation of {TeIVPh3}4·{SCN}4 is the same as for {(4-MeC6H4)2I}4·{Br}4 in the structure of FASMUH.

Our CCDC search verified another structure (Figure 3; CSD code: FAKPIT), which also
demonstrates the heterooctameric aggregation of iodonium cations with their counter-ions,
forming {CF3I(2-C6H4CO2H)}4·{Cl}4; in [54], the aggregation of [CF3I(2-C6H4CO2H)]Cl was not
discussed. Notable that the heterooctamer in FAKPIT demonstrates the same conformation as
{PhI(4-C6H4OMe)}4·{SCN}4 in 1.

3.3. Hirshfeld Surface Analysis for the X-Ray Structure of 1

The Hirshfeld surface (visualization of short interatomic contacts using sums of appropriate
vdW radii) represents an area where molecules or atoms come into contact, and its analysis gives
the possibility of additional insight into the nature of intermolecular interactions in the crystal state.
We carried out the Hirshfeld surface analysis for the X-ray structure of 1 to understand what kind
of intermolecular contacts give the largest contributions in the crystal packing. Figure 4 depicts
the Hirshfeld surfaces for the [PhI(4-C6H4OMe)]+ and SCN− ions (mapping of the normalized
contact distance dnorm was used for the visualization). In these surfaces, the regions of shortest
intermolecular contacts are visualized by red circle areas. The main partial contributions of different
intermolecular contacts to the Hirshfeld surfaces for the [PhI(4-C6H4OMe)]+ and SCN− ions are
given in Table 2. The Hirshfeld surface analysis reveals that the crystal packing is determined
primarily by intermolecular contacts involving H atoms. The parameters of morphology proper mean
particles shape and appropriate surfaces and provide the basis for the optimal habit for the crystal.
These parameters are useful for understanding the rheological attributes of the crystalline materials.
The shape index (S) and curvedness (C) topological techniques [41] were employed for Hirshfeld
surfaces of [PhI(4-C6H4OMe)]+ and SCN− ions in the crystal structure of 1. The technique S provides
the local shape of the 3D surface and define local topography (hollows and bumps in the 3D surface).
The technique C represents the total curvature on the 3D surface and its mapping consists of a flat
green region separated by dark blue edges. Figure 5 shows the shape index surfaces and curvedness
index surfaces plotted over the Hirshfeld surfaces of [PhI(4-C6H4OMe)]+ and SCN− ions in the crystal
structure of 1. Taking into account that the Hirshfeld analysis does not allow the determination of
energies of all these contacts, we conducted the appropriate DFT calculations.



Crystals 2020, 10, 230 6 of 12

Crystals 2020, 10, x FOR PEER REVIEW 6 of 12 

 

Moiety 
Contributions of Different Intermolecular Contacts to the Molecular 

Hirshfeld Surface 

{PhI(4-

C6H4OMe)} 

H···H 39.9%, C···H 27.0%, O···H 5.8%, S···H 5.5%, N···H 4.0%, I···N 3.5%, C···C 

2.9%, I···C 2.7%, O···C 2.4%, I···H 2.4%, I···S 2.0%, N···C 1.1%, S···C 0.8% 

{SCN} 
S···H 37.1%, N···H 16.4%, C···H 13.5%, I···N 7.6%, I···C 7.0%, I···S 6.1%, N···N 

5.6%, N···C 3.8%, S···C 2.8% 

 

Figure 4. Hirshfeld surfaces for the [PhI(4-C6H4OMe)]+ (left) and SCN– (right) ions. 

 

Figure 5. Shape index surfaces (top, color code: hollow–red; bumps–blue) and curvedness index 

surfaces (bottom, color code: edges–blue; flat regions–green) plotted over the Hirshfeld surfaces of 

[PhI(4-C6H4OMe)]+ and SCN– ions in the crystal structure of 1. 

3.4. Theoretical Study of XB 

Inspection of the crystallographic data reveals the presence of intermolecular noncovalent 

interactions I···S and I···N. These weak contacts are responsible for the supramolecular aggregation 

to furnish the heterooctameric clusters {PhI(4-C6H4OMe)}4·{SCN}4. To confirm or disprove the 

hypothesis on the existence of these noncovalent interactions and to quantify their energies from a 

theoretical viewpoint, we carried out DFT calculations at the ωB97XD/DZP-DKH level of theory and 

topological analysis of the electron density distribution within the framework of Bader’s theory 

(QTAIM method) [55] for the model system (Tables 3 and S1, Supporting Information). The contour 

line diagrams of the Laplacian of electron density distribution 2(r), bond paths, and selected zero-

flux surfaces for the intermolecular noncovalent interactions I···S and I···N providing the 

heterooctameric supramolecular clusters {PhI(4-C6H4OMe)}4·{SCN}4 are shown in Figures 6–9. The 

Figure 4. Hirshfeld surfaces for the [PhI(4-C6H4OMe)]+ (left) and SCN− (right) ions.

Table 2. Main partial contributions of different intermolecular contacts to the Hirshfeld surfaces for the
[PhI(4-C6H4OMe)]+ and SCN− ions.

Moiety Contributions of Different Intermolecular Contacts
to the Molecular Hirshfeld Surface

{PhI(4-C6H4OMe)}
H···H 39.9%, C···H 27.0%, O···H 5.8%, S···H 5.5%,

N···H 4.0%, I···N 3.5%, C···C 2.9%, I···C 2.7%, O···C
2.4%, I···H 2.4%, I···S 2.0%, N···C 1.1%, S···C 0.8%

{SCN} S···H 37.1%, N···H 16.4%, C···H 13.5%, I···N 7.6%, I···C
7.0%, I···S 6.1%, N···N 5.6%, N···C 3.8%, S···C 2.8%
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Figure 5. Shape index surfaces (top, color code: hollow—red; bumps—blue) and curvedness index
surfaces (bottom, color code: edges—blue; flat regions—green) plotted over the Hirshfeld surfaces of
[PhI(4-C6H4OMe)]+ and SCN− ions in the crystal structure of 1.

3.4. Theoretical Study of XB

Inspection of the crystallographic data reveals the presence of intermolecular noncovalent
interactions I···S and I···N. These weak contacts are responsible for the supramolecular aggregation to
furnish the heterooctameric clusters {PhI(4-C6H4OMe)}4·{SCN}4. To confirm or disprove the hypothesis on
the existence of these noncovalent interactions and to quantify their energies from a theoretical viewpoint,
we carried out DFT calculations at the ωB97XD/DZP-DKH level of theory and topological analysis
of the electron density distribution within the framework of Bader’s theory (QTAIM method) [55] for
the model system (Table 3 and Table S1, Supporting Information). The contour line diagrams of the
Laplacian of electron density distribution ∇2ρ(r), bond paths, and selected zero-flux surfaces for the
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intermolecular noncovalent interactions I···S and I···N providing the heterooctameric supramolecular
clusters {PhI(4-C6H4OMe)}4·{SCN}4 are shown in Figures 6–9. The visualization of these intermolecular
contacts using noncovalent interaction (NCI) analysis based on promolecular electron density [56]
(high quality grid, ~1,728,000 points in total) is shown in Figure 10.

Table 3. Values of the density of all electrons—ρ(r), Laplacian of electron density—∇2ρ(r) and
appropriate λ2 eigenvalues (with promolecular approximation), energy density—Hb, potential energy
density—V(r), and Lagrangian kinetic energy—G(r) (a.u.) at the bond critical points, corresponding
to intermolecular noncovalent interactions I···S, H···S and I···N responsible for the formation of
heterooctameric supramolecular associates {PhI(4-C6H4OMe)}4·{SCN}4, bond lengths—l (Å), Wiberg
bond indices (WI), and estimated energies—Eint (kcal/mol) for these contacts.

Contact * ρ(r) ∇
2ρ(r) λ2 Hb V(r) G(r) l ** WI Eint

a Eint
b

I1···N29 0.025 0.076 −0.028 0.000 −0.020 0.020 2.850 0.04 8.5 8.4
I1···S118 0.023 0.053 −0.022 0.000 −0.014 0.014 3.183 0.07 6.0 5.9
I1···S58 0.004 0.015 −0.005 0.001 −0.002 0.003 4.153 0.00 0.9 1.3
H8···S58 0.007 0.018 −0.009 0.001 −0.003 0.004 2.976 0.00 0.9 1.1

* Numeration of atoms in the model structure corresponds to their ordering in Table S1, Supporting Information.
** The shortest van der Waals radii for I, S, N and H atoms are 1.98, 1.80, 1.55 and 1.20 Å, respectively [43]. a Eint = 0.68
(−V(r)) (correlation developed exclusively for noncovalent interactions involving iodine atoms) [48]. b Eint = 0.67
G(r) (correlation developed exclusively for noncovalent interactions involving iodine atoms) [48].
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Figure 6. Contour line diagram of the Laplacian of electron density distribution ∇2ρ(r), bond paths and
selected zero-flux surfaces referring to intermolecular noncovalent interactions I1···N29 in the model
heterooctameric cluster {PhI(4-C6H4OMe)}4·{SCN}4. Bond critical points are shown in blue, nuclear
critical points—in pale brown, length units on X and Y axis are given in Å. Numeration of atoms in the
model structure corresponds to their ordering in Table S1, Supporting Information.
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Figure 7. Contour line diagram of the Laplacian of electron density distribution ∇2ρ(r), bond paths and
selected zero-flux surfaces referring to intermolecular noncovalent interactions I1···S118 in the model
heterooctameric cluster {PhI(4-C6H4OMe)}4·{SCN}4. The remaining figure legend is in Figure 6.
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selected zero-flux surfaces referring to intermolecular noncovalent interactions I1···S58 in the model
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Figure 9. Contour line diagram of the Laplacian of electron density distribution ∇2ρ(r), bond paths and
selected zero-flux surfaces referring to hydrogen bond C7–H8···S58 in model heterooctameric cluster
{PhI(4-C6H4OMe)}4·{SCN}4. The remaining figure legend is in Figure 6.

The quantum theory of atoms in molecules (QTAIM) analysis demonstrates the presence of
appropriate bond critical points (BCPs) for intermolecular noncovalent interactions I···S and I···N
in the heterooctameric clusters {PhI(4-C6H4OMe)}4·{SCN}4 (the Poincare–Hopf relationship was
satisfied during the QTAIM analysis of the model system and all critical points were found). The low
magnitude of the electron density (0.004–0.025 a.u.), positive values of the Laplacian of electron
density (0.015–0.076 a.u.), and zero or very close to zero positive energy density (0.000–0.001 a.u.) in
these BCPs are typical for such weak contacts [57–61]. The estimated energies for these noncovalent
interactions according to the correlations proposed by Tsirelson et al. [48] are 0.9–1.3 kcal/mol (long
I···S contacts), 5.9–6.0 kcal/mol (short I···S contacts), and 8.4–8.5 kcal/mol (I···N contacts). The balance
between the Lagrangian kinetic energy G(r) and potential energy density V(r) at the bond critical
points reveals the nature of these interactions, if the ratio–G(r)/V(r) > 1 is satisfied, then the nature of
appropriate interaction is purely noncovalent, in the case of–G(r)/V(r) < 1 some covalent component
takes place [62]; based on this criterion, one can state that a covalent contribution in I···S and I···N
interactions is negligible; this correlates with the small values of the Wiberg bond indices for these
contacts (0.00–0.07). The Laplacian of electron density in BCPs is typically decomposed into the sum of
contributions along the three principal axes of maximal variation, giving the three eigenvalues of the
Hessian matrix (λ1, λ2, and λ3), and the sign of λ2 can be utilized to distinguish bonding (attractive,
λ2 < 0) weak interactions from nonbonding ones (repulsive, λ2 > 0) [56,63]. Thus, the sign of λ2 in
the appropriate BCPs for the I···S and I···N contacts in {PhI(4-C6H4OMe)}4·{SCN}4 reveals that these
contacts are of an attractive nature.
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Figure 10. Visualization of intermolecular contacts I···S and I···N in {PhI(4-C6H4OMe)}4·{SCN}4 using
noncovalent interaction (NCI) analysis based on promolecular electron density (high quality grid,
~1,728,000 points in total). Numeration of atoms in the model structure corresponds to their ordering
in Table S1, Supporting Information.

4. Conclusions

We found that XBs between the iodonium cations and thiocyanate anions could provide not only
the polymeric or heterotetrameric motifs, but also add complexity to the 16-membered heterooctameric
clusters {PhI(4-C6H4OMe)}4·{SCN}4. DFT calculations verified three XBs between I and SCN−, namely
two conventional contacts with σ-holes of I (C–I···S and C–I···N), and one contact with possible iodine
π-hole (C2–I···S). Three relative heterooctameric structures were found by our processing of CCDC.
Despite the limited number of the relevant heterooctameric clusters, the similar conformation of two
iodonium salt clusters allows the presumption that heterooctamers can be more spread structural motifs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/3/230/s1,
Table S1: Cartesian atomic coordinates for model heterooctameric cluster {PhI(p-(MeO)C6H4}4·{SCN}4., Table S2:
Crystal data and structure refinement for 1; NMR spectra of 1.
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