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Abstract: This work presented a series of three-dimensional unsteady numerical simulations on
the characteristics of the mixed oscillation flows of binary mixture in a Czochralski crystal growth
model. The silicon-germanium melt is investigated and the capillary ratio is minus one. The
simulation results showed that, for the special capillary ratio, the thermal and solutocapillary forces
are imposed in opposite directions and counteract each other. With the effect of buoyancy, the balance
between the capillary forces is disturbed. Mixed with the forced convection driven by rotation, the
capillary-buoyancy convection is complex. The basic mixed flow streamlines are presented as various
rolling cells. The directions of the rolls are dependent on the combinations of surface and body forces.
With the increase of temperature gradient, the basic flow stability is broken, and the oscillations occur.
The crucible rotation has an effective influence on the stability enhancement. However, affected by the
crystal rotation, the critical condition experiences an increase to a turning point, and then undergoes
a sharp reduction to zero. Once the instability is incubated, the surface oscillations are analyzed. For
the three-dimensional steady flow, only spatial oscillations are observed circumferentially, and the
surface patterns of spokes, rosebud, and pulsating ring are obtained. For the unsteady oscillation
flow, the spiral hydrosoultal waves, rotating waves, and superimposition of spirals and spokes are
observed, and the oscillation behaviors are also discussed.

Keywords: mixed convection; stability; oscillations; Czochralski crystal growth; binary fluid

1. Introduction

With the rapid development of information technology, the electronics and optoelectronic materials
have attracted much attention in various research fields. As important representatives of photoelectric
functional materials, the supplement of synthetic crystals increases continuously, and the improvement
on the functions and qualities of the crystals are required [1,2]. Among the crystal growth methods, the
Czochralski (Cz) technique is one of the most important methods employed for crystal production [3,4].
In the process of crystal growth by the Czochralski method, the temperature and concentration
gradients induce the heat and mass transfer, and drive the diffusion and natural convections (including
the thermo-solutal-capillary convection and capillary-buoyancy convections). Meanwhile, for the
uniformity, the rotations of crystal and crucible are applied [5,6]. As a result, the forced convection is
formed and simultaneously mixed with the natural convections. The mixed flow is very complex as
the surface capillary forces and body forces interact on different scales, making it difficult for the flow
stability to be well recognized and controlled [7,8]. However, the stability of the mixed convection
plays a key role in the growth of high-quality crystals. When the flow instabilities occur, the oscillations
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in the flow field will lead directly to the crystallographic defects. Therefore, the characteristics of the
complex convections during the Czochralski process are required to be investigated [9–11].

McTaggart [12] firstly studied the flow instabilities with vertical temperature and solute
concentration gradients in an infinitely extended layer, through the linear stability analysis. It
was found that the occurrence of instabilities is associated with the directions of the capillary forces.
For the positive solutal Marangoni number, the convective flow cell is static. When the solutal effect
is negative, the flow is oscillated after losing the stability. Ho and Chang [13] extended MaTaggart’s
research to the nonlinear instabilities induced by the thermo-solutocapillary effect. It was reported
that the steady rolls with nonlinear finite amplitude has a depression influence on the oscillations.
Castillo [14,15] studied the Marangoni–Bénard flow in a mixture layer. The linear stability diagram was
obtained. Bergeon [16,17] conducted two-dimensional (2D) and three-dimensional (3D) simulations
to investigate the mixed thermo-solutal convections in a rectangular cavity. The Soret effect was
considered and the results showed that solute concentration gradient drives the fluid flow. Afterwards,
a great deal of studies have been performed to investigate the thermo-solutocapillary flows [18–23].

For the convections induced by horizontal concentration and temperature gradients, Bergman [24]
defined the capillary ratio to express the relative magnitude of the solutal and thermo-capillary
forces, which is analogous to the buoyancy ratio in the double diffusion system. Chen [25] and
Li [26] performed linear stability analysis on the double-diffusive convections. They found that, with
the variation of the Marangoni number, the flow transitions in the liquid pool belong to the Hopf
bifurcation. Zhou and Huai [27,28] conducted numerical simulations on the thermo-solutocapillary
flow in an opened cavity. The results showed that the deformation of the surface is closely linked with
the capillary ratio. For the minus capillary ratio, an S-shaped surface is observed.

Meanwhile, rotation driven flow is a traditional and hot topic in the research field of fluid
mechanics [29–31]. Zebib [32] pointed out the rotation effect is not ignorable in the investigation of
thermal instabilities during the crystal growth process. Tian et al. [33] considered the coupled rotation
and thermal flow in an annular pool through linear stability analysis. Energy balance analysis was
explored to capture the flow instabilities, and a stability diagram was presented. It was shown that
the counteraction of the rotation and thermocapillary effect induces three Hopf bifurcation points
for the flow transition. Meanwhile, we have previously conducted several experiments [34] and
simulations [35–37] to investigate the effect of rotation on the surface tension driven flow in pure liquid.
The results showed that the combinations of the rotation and thermocapillary forces drive several
kinds of unstable flow. The mechanisms of flow instabilities were revealed.

For the compound semiconductor crystal growth, the coupling thermal and solutocapillary-
buoyancy effects in the mixture are rather more complex than that of pure fluid. Cröll et al. [38]
conducted an experiment during the parabolic flight campaign to separate the buoyancy effect
from the capillary convection. The solutocapillary convection was conclusively observed during
the solidification of silicon-germanium. Also, Campbell et al. [39] reported that, during the crystal
growth, the convection in a mixture is different from that of pure liquid melt. Especially for the
silicon-germanium mixture, the large surface tension and density differences between silicon and
germanium induce strong solutal and buoyancy convections. These convections are coupled with a
thermal effect, which directly leads to the sharp change of the crystal interface. After that, a series
of experiments and simulations were conducted to qualify the coupling effect of the thermal and
solutal-capillary effect in the silicon-germanium mixture [40,41]. Abbasoglu et al. [42] pointed out
that the concentration profiles is closely related with the temperature through the radial segregation.
For the Czochralski growth of silicon-germanium crystal, the capillary ratio changes from −2.44 to
0.2. However, in their work, the effect of rotation was not considered. Once the rotation is taken into
account, the centrifugal force is introduced and interacted with the capillary forces. For the mixture
with small capillary ratio of −0.2 [41], the thermocapillary effect is dominant, and it was proved that
rotation has similar a influence as that in pure fluid. However, for the mixture with minus one capillary
ratio, the thermal and solutocapillary forces are counterbalanced. Once any disturbance, such as
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buoyancy or rotation, is introduced, the balance will be broken. The stability of such a mixed flow is
still unclear. This work is devoted to the understanding of the mixed flow of binary fluid with minus
one capillary ratio in a Czochralski crystal growth model. As the GeSi material [43] has many unique
physical properties (such as high mobility), it has important application value in optoelectronics.
Therefore, the GeSi melt is adopted as the test fluid in this work.

2. Model Formulation and Numerical Methodology

2.1. Physical Model and Basic Assumption

The sketch of the physical model investigated in this work is provided in Figure 1. For a
comparison with the pure fluid, the same geometry is adopted [34,35]. The crucible with radius rc

is filled with GeSi melt, and the height of the melt is noted as h. The radius of the growth crystal is
marked as rs. The radius ratio (η = rs/rc) is 0.3. The temperature and concentration at the sidewall (Tc,
Cc) are higher than that along the crystal/fluid interface (Ts, Cs). The bottom is thermally adiabatic,
and no-slip and impermeable boundary conditions are applied. The flat surface is not deformable. The
flow is assumed to be laminar and the test fluid is incompressible. The linear variations of surface
tension σ and density ρ satisfy the following conditions:

σ(T, C) = σr − γT(T − Tr) − γC(C−Cr) (1)

ρ(T, C) = ρr[1− βT(T − Tr) − βC(C−Cr)] (2)

where βT = −(∂ρ/∂T)C/ρr, βC = −(∂ρ/∂C)T/ρr are the thermal and solutal expansion coefficients. γT = −

(∂σ/∂T)C and γC = −(∂σ/∂C)T are the temperature and concentration coefficients of surface tension,
respectively. The subscript r represents the reference value.

Figure 1. Physical model.

2.2. Mathematical Formulation

With the scale quantities of rc, ν/rc, rc
2/ν, and ρν2/rc

2, the control equations are transformed to the
non-dimensional form:

∇ ·V = 0 (3)

∂V
∂τ

+ V · ∇V = −∇P +∇2V + GrT
(
Θ+ RρΦ

)
eZ (4)

∂Θ
∂τ

+ V · ∇Θ =
1
Pr
∇

2Θ (5)

∂Φ
∂τ

+ V · ∇Φ =
1

Le · Pr
∇

2Φ (6)

The non-dimensional velocity vector is expressed as V , the temperature is in the form of Θ =

(T−Ts)/(Tc−Ts), and the concentration isΦ = (C−Cs)/(Cc−Cs). In addition, GrT = gβT(Tc–Ts)rc
3/ν2 is the

thermal Grashof number, and Rρ is the buoyancy ratio, which is defined as Rρ = βC(Cc–Cs)/[βT(Tc–Ts)].
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Pr = ν/a denotes the Prandtl number and Le = α/D is the Lewis number, where ν is kinematic viscosity,
α is thermal diffusivity, and D is mass diffusivity of the working fluid.

The initial conditions are as follows:

Vθ = VR = VZ = 0 (7)

Θ = Φ = 0, R < Rs (8)

Θ = Φ = −
ln(R/Rs)

ln(Rc/Rs)
, R ≥ Rs (9)

The following are the established boundary conditions:
at the crystal/fluid interface:

Vθ = VZ = 0, (10)

VR = Res
R
Rs

(11)

Θ = Φ =0 (12)

along the free surface:
∂VR

∂Z
= −ReT

∂Θ
∂R
−ReCON

∂Φ
∂R

(13)

∂Vθ
∂Z

= −ReT
∂Θ

R∂R
−ReCON

∂Φ
R∂R

(14)

VZ = 0 (15)

∂Θ
∂Z

=
∂Φ
∂Z

= 0 (16)

at the bottom:
VR = VZ = 0 (17)

Vθ = RecR (18)

∂Θ
∂Z

=
∂Φ
∂Z

= 0 (19)

along the crucible’s sidewall:
VR = VZ = 0 (20)

Vθ = Rec (21)

Θ = Φ =1 (22)

To describe the effect of thermal and solutal capillary effects, the corresponding Reynolds numbers
are introduced:

ReT =
γT(Tc − Ts)rc

µv
(23)

ReCON =
γT(Cc −Cs)rc

µv
(24)

The rotation Reynolds numbers are defined as

Res =
2πrsnsrc

60v
(25)

Rec =
2πncr2

c

60v
(26)
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The relative strength of the soluto and thermocapillary forces is expressed by the capillary ratio:

Rσ =
ReCON

ReT
=
γC(Cc −Cs)

γT(Tc − Ts)
(27)

The physical properties of the test fluid are listed in Table 1 [42].

Table 1. Physical properties of silicon-germanium mixture.

Property Symbol Unit Value

Kinematic viscosity ν m2/s 1.4 × 10−7

Thermal diffusivity α m2/s 2.2 × 10−5

Mass diffusivity D m2/s 1.0 × 10−8

Temperature coefficient of surface tension γT N/(m·k) 8.1 × 10−5

Concentration coefficient of surface tension γC N/m −0.54
Prandtl number Pr - 6.4 × 10−3

Lewis number Le - 2197.8

2.3. Numerical Procedure and Method Validation

The control equations and boundary conditions are handled with the finite volume method
with non-uniform grids. The mesh refinement is considered near the wall and free surface. The
modified central-difference method is utilized for solving the diffusion term, and the convection term is
approximated by QUICK format. Simultaneously, the coupling numeration of pressure and velocity is
solved using the SIMPLE algorithm. The non-dimensional time step is between 2 × 10−6 and 2 × 10−5.
The criteria for convergence is defined as follows:

∣∣∣Ri
∣∣∣
max ≤ 10−12 and

∣∣∣∣∣∣ξi+1
− ξi

ξi+1

∣∣∣∣∣∣
max
≤ 10−4

where
∣∣∣Ri

∣∣∣
max represents the maximum absolute residual in the iteration and ξ represents the velocity,

temperature, and concentration. Mesh dependence is tested and typical results at four levels of
grids with different densities are listed in Table 2. It is shown that the four different grids produce
almost the same surface patterns, the wave numbers are the same, and maximum deviations of the
non-dimensional oscillation frequency at a monitoring point are less than 2%. Therefore, the moderate
mesh of 100R

× 35Z
× 160θ used in this work is appropriate for accurate simulations.

Table 2. Mesh dependence of oscillatory flow at ReT = 9938 and Rec = 936 (a).

Mesh m F1 F2

60R
× 20Z

× 80θ 8 650 1165
80R
× 35Z

× 120θ 8 665 1177
100R

× 35Z
× 160θ 8 657 1171

120R
× 55Z

× 200θ 8 659 1167

To validate the numerical method, the rotation driven flow experimentally investigated by
Kanda [44] was numerically simulated, and the same surface pattern was reproduced. Further, 3D
simulations on the double-diffusive flow in a rectangular enclosure were conducted under the same
conditions as in the report by Zhan et al. [45]. It was found that the oscillation frequency and Nusselt
number agree well with the results by Zhan et al. These sufficiently indicate the effectiveness of the
simulation method.
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3. Results and Discussions

3.1. Basic Two-Dimensional Flow and Stability

In this work, the capillary ratio is minus one and the thermal and soluto-capillary forces are
counterbalanced. However, under a normal gravity environment, the appearance of buoyancy
force will inevitably lead to the disturbance of the balance along the free surface, generating the
thermo-solutal-buoyancy convection. When the system rotations are considered, the centrifugal and
Coriolis forces are induced, and the rotating driven flow is coupled with thermo-solutal-buoyancy
convection. When the driving force is small, the basic mixed flow is in two-dimensional (2D) steady and
axisymmetric state. Owing to the good fluidity and thermal uniformity, this steady state is preferable
for the crystal growth. The non-dimensional stream function ψ is introduced to present the velocity
distribution:

VR = −
1
R
∂ψ

∂Z
, VZ =

1
R
∂ψ

∂R
(28)

As the thermo-solutocapillary Reynolds numbers are related by the introduction of capillary ratio,
the values of thermal Grashof number and thermocapillary Reynolds number are also dependent on
the temperature difference; thus, for a given value of ReT, both ReCON and GrT can be determined. For
brevity, only the values of ReT are given in Figure 2, which shows the typical flow structures for the
basic two-dimensional steady flow. The marked positive or negative sign indicates the clockwise or
counter-clockwise circulation directions. For the case of a mixture with minus one capillary ratio, the
soluto and thermal-capillary forces are equal, but act in contrary directions, and the overall capillary
effect is zero. However, even without rotation, the existence of buoyancy breaks the equilibrium
between the capillary forces. The fluid always moves from the crucible sidewall to the crystal,
producing a counterclockwise vortex, as shown in Figure 2a. Because of the large Lewis number of
the melt, the heat diffusion speed is faster than that of mass, and the isotherms are almost kept as
conductive state. For the small thermocapillary Reynolds number of ReT = 394, the iso-concentration
lines bent slightly, and the flow rate is small on the free surface, as illustrated in Figure 3.

Figure 2. Flow structures (upper) and iso-concentration lines (down) when ReT = 394. (a) Res = 0, Rec

= 0, Ψmax(−) = 0.012; (b) Res = −561, Rec = 0, Ψmax(+) = 0.120; (c) Res = −1400, Rec = 0, Ψmax(+) = 0.80;
(d) Res = 0, Rec = 1871, Ψmax(−) = 0.015; (e) Res = −561, Rec = 936, Ψmax(+) = 0.083.

When the crystal starts to rotate at Res = −561, as shown in Figure 2b, a clockwise cell forms under
the crystal and dominates the flow field. Compared with the natural convection displayed in Figure 2a,
the mixed natural and forced flow is stronger. When rotation rate is increased to −1400, as shown in
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Figure 2c, the clockwise cell becomes stronger and the maximum stream function increases from 0.12
to 0.80. The enhanced crystal rotation induces a uniform concentration distribution underneath the
crystal–fluid interface. When the crucible rotation is introduced, as illustrated Figure 2d, a primary
counterclockwise rolling cell appears. The surface flow rate near the crystal is greatly increased. For
the case of counter rotation of crucible and crystal, two counter-circulations are formed and rival
each other. The competition of the vortex creates the zigzag profile of radial velocity. Away from the
crystal/fluid interface, thermal and soluto-capillary forces are imposed oppositely and counterbalance
each other, causing the surface fluid flows to be rather sluggish.

Figure 3. Distributions of surface radial velocity at ReT = 394.

Once the values of ReT or rotation rate exceed threshold values, the basic flow rapidly loses the
stability and transforms into 3D oscillatory state. For the crystal growth, the oscillations should be
avoided as much as possible. The amplitudes of oscillations are calculated and the dichotomy method
is utilized to obtain the critical values of thermocapillary Reynolds numbers ReT,cri. Figure 4 gives the
variations of critical thermocapillary Reynolds numbers at different rotation rates. Without rotation,
ReT,cri approximately equals 1010; this value is larger than that of fluid mixture with a capillary ratio of
−0.2, but still smaller than that of pure silicon melt [35]. This indicates that the introduction of the
solutocapillary effect makes it easier for the flow to lose stability.

Figure 4. Critical conditions for flow transitions at different rotation rates.

With the crystal rotation, the directions of the thermocapillary and centrifugal forces are opposite,
which reduces the intensity of natural convection flow. Thus, with the rising Res, the value of ReT,cri

increases. However, when the value of Res reaches 1123, the forced convection driven by crystal
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rotation is predominant and the enhanced disturbance stimulates flow instability. As a result, ReT,cri

undergoes a sharp drop. Particularly, when Res is increased to 1680, no stable state is observed. This
indicates the pure rotating flow is unstable. On the other hand, when the crucible starts to rotate, the
large contact area allows the melt to rotate with the crucible synchronically, inducing a stabilization
effect on the mixed convection. Therefore, ReT,cri experiences a monotonic increase with the increase of
Rec.

3.2. Three-Dimensional Steady Flow

The spatial fluctuation δξ is extracted to characterize the 3D flow:

δξ(R,θ, Z, τ) = ξ(R,θ, Z, τ) −
1

2π

∫ 2π

0
ξ(R,θ, Z, τ)dθ (29)

where ξ represents Θ, Φ, or velocity V.
Figure 5 shows the concentration fluctuations and the corresponding spatial-temporal diagram

(STD) for the case of ReT = 3943 without rotation. It is observed that the surface fluctuations are
presented as straight spokes, and the STD is composed of four vertical strips. These surface patterns
indicate the fluctuations are stationary in time, but oscillate in space. For the further understanding of
the fluctuations, the streamlines are plotted in cross sections of θ = 0 and θ = π/4 (which correspond to
the dark and bright strips, respectively, shown in Figure 5). As illustrated in Figure 6a, influenced by the
thermocapillary effect, the fluid near the sidewall is pushed inward, forming a counterclockwise rolling
cell. This convective vortex stirs the melt, inducing a local uniform concentration distribution near the
crystal. Meanwhile, it can be seen that, away from the crystal, the deformation of iso-concentration
lines reflects the existence of a reversed vertical concentration gradient. Therefore, the solutal buoyancy
force is generated and the lighter fluid in the lower part is brought to the surface, forming a clockwise
cell. At the cross section of θ = π/4, the rolling cell generated by the thermocapillary effect is squeezed
by the small vortex near the crystal.

Figure 5. Concentration oscillations (left) and spatial-temporal diagram (STD) R = 0.65 (right) when
ReT = 3943 without rotation.

Figure 6. Streamlines and concentration distribution at θ = 0 (a) and θ = π/4 (b) when ReT = 3943.

The surface fluctuations of the mixed flow with crystal rotation are shown in Figure 7. When
ReT = 3943 and Res = −561, the surface pattern is still shown as a spoke pattern, as seen in Figure 7a.
However, an annular band is observed around the crystal. The concentration fluctuations in the annular
band are almost zero. Compared with Figure 5, the amplitude of the surface fluctuations is decreased
from 0.24 to 0.038, but the wave number increases greatly. The natural convection still dominates
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the flow field. The corresponding local capillary ratio Ri
σ on the free surface and the flow structures

in the cross section are plotted in Figures 8 and 9a, respectively. Near the crystal, the combination
of rotation and solutocapillary effects drives the mixture with a low concentration to move outside,
leading to a uniform concentration gradient in the range of 0.3 < R < 0.6. When 0.6 < R < 0.82, the
sparse iso-concentration lines are observed, indicating the small concentration gradient. Meanwhile,
the absolute value of Ri

σ is smaller than unity, which means the thermocapillary effect is stronger than
the solutocapillary influence, thus the counterclockwise cell is dominant in this area. Near the sidewall,
the combination of solutocapillary and buoyancy forces generates a weak clockwise circulation in the
top right corner of the crucible. With the increase of Res, as shown in Figure 7b, the occupied area of
the annular band is expanded and the surface fluctuations near the sidewall are presented as a rosebud
pattern. The centrifugal force further pushes the fluid forward and squeezes the rolling cell driven
by the thermocapillary effect, as described in Figure 9b. For the case of ReT = 3943, Res = −1123, the
surface fluctuations are shown as a pulsating ring, the oscillation amplitude is greatly deduced, and
the wave number is lowered to 4, as illustrated in Figure 7c. From the variation of the local capillary
ratio (Figure 8), it is shown that the region where

∣∣∣Ri
σ

∣∣∣ is smaller than unity coincides with the position
of the surface circular ring. This confirms that the thermocapillary force is dominant in the pulsating
ring area.

Figure 7. Evolution of surface oscillation patterns (top) and the corresponding STD (bottom). (a) ReT =

3943, Res = −561; (b) ReT = 3154, Res = −1123; (c) ReT = 3943, Res = −1123.

Figure 8. Local capillary ratio distribution along the free surface for the cases shown in Figure 7.
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Figure 9. Flow structures and concentration profiles in the meridian plane. (a) ReT =3943, Res = –561;
(b) ReT = 3154, Res = –1123; (c) ReT = 3943, Res = –1123.

3.3. Three-Dimensional Oscillatory Flow

With the increasing temperature and concentration gradients, the steady flow transits to the 3D
unsteady state. This unsteady flow not only oscillates in space, but also fluctuates with time. When the
crystal rotation rate is kept at Res = −1123, once ReT is greater than 7098, the rotating wave appears
on the free surface. For a typical case of Res = −1123 and ReT = 7887, the surface fluctuations and the
corresponding STD at different radial positions are displayed in Figure 10. It is noted that the surface
pattern can be regarded as a combination of spokes and rotating curved arms. Near the crystal (R =

0.32), the STD is shown as oblique lines leaning to the left. This means that the curved arms move in a
clockwise direction and the rotation rate is less than that of the crystal. At R = 0.75, the corresponding
the STD is displayed as vertical lines. This verifies that the spokes can be considered as standing
waves. Between the rotating and standing waves, the annular band is still observed; the concentration
distribution at a monitoring point (R = 0.52) inside the annular space is exhibited in Figure 11a. Along
the circumference, the concentration is almost uniform and no fluctuation is detected in the annular
band. The characteristics of the time-dependent of concentration and azimuthal velocity are also
analyzed in Figure 11b. It is noted that the concentration oscillation lags behind velocity. The hysteresis
between the oscillations was also observed in the report by Smith and Davis [46], which is one of the
typical characteristics of hydrothermal waves generated by temperature difference. Moreover, the
propagating angle of 17◦ is another feature of the hydrothermal waves. As shown in Figure 10, the
propagating angle of the concentration oscillations is about 16◦. These two values of wave angles
are very close. Therefore, the spiral concentration oscillation wave is considered as hydrosoultal
waves. Meanwhile, the oscillation frequencies are obtained by fast Fourier transform (FFT), as shown
in Figure 12, and the main dimensionless frequency F0 is 1427 with a secondary frequency F1 of
2853, which satisfies F0 = 1/2F1. This frequency relationship was also experimentally reported by
Shen et al. [34].

Figure 10. Snapshot of concentration fluctuations (left) and STD (right) at Res = –1123, ReT = 7887.
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Figure 11. Distributions of surface oscillations when at Res = −1123, ReT = 7887. (a) Azimuthal
distribution of surface concentration fluctuations. (b) Phase lag between the oscillations of concentration
and velocity.

Figure 12. Fourier spectra analysis of the concentration oscillation when Res = –1123, ReT = 7887.

When the effect of crucible rotation is considered, the evolutions of surface oscillations are
presented in Figure 13. The standing spokes are replaced by the rotating waves. For these cases, the
counteraction of the centrifugal solutocapillary effect produces an annular space surrounding the
crystal. With the increase of ReT, the natural convection is enhanced, and the oscillation amplitude is
enlarged. The wave number also has a tendency to increase, as presented in Figure 13b, and the waves
with weaker oscillations near the annular band appear. When ReT is increased to 15,773, as shown
in Figure 13a, the grown flow instabilities lead to the increase of the wave number in the azimuthal
direction to dissipate energy. The FFT analysis corresponding to the three typical cases is displayed. It
is noted that a multiple relationship is observed among the frequencies, which is f 1 = 1/2f 2 = 1/3f 3.

Figure 13. Transitions of surface concentration patterns (top) and the corresponding Fourier spectra
analysis (bottom) at Rec = 936, (a) ReT = 9938, (b) ReT = 12,726, and (c) ReT = 15,773.
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For the case of ReT = 5442, Rec = 1871, the forced flow driven by crucible rotation plays a decisive
role in the occurrence of instability. From the STD shown in Figure 14a, it can be observed that
synchronous rotation is achieved between the crucible and oscillation waves. The wave number
is 4. Near the crystal, the absolute value of

∣∣∣Ri
σ

∣∣∣ is less then unity, as displayed in Figure 15, the
thermocapillary and centrifugal forces are superimposed to enhance the rotating forced flow. Thus,
a strong counterclockwise circulation is formed and occupies the left-half part of the crucible, as
illustrated in Figure 16a. When R is greater than 0.6, the local capillary ratio oscillates around its
equilibrium value of −1. Near the crucible sidewall, the solutal-buoyancy effect drives a clockwise
circulation at the corner. When the ReT is increased to 19,717, the solutocapillary effect is enhanced, and∣∣∣Ri
σ

∣∣∣ is greater than one in the region of R < 0.5. As the solutocapillary force counteracts the centrifugal
force, the strength of the rolling cell is weakened near the crystal, and a series of surface spiral waves
appear and extrude the rotating wave outward. Through the comparison between Figure 14a,b, it is
found that, with the increase of ReT, the rotating wave number increases twice, and the oscillation
amplitude is reduced by half. This reveals that the enhanced natural convection has a depression effect
on the mixed 3D oscillation flow.

Figure 14. Snapshots of rotating waves (top) and STD at R = 0.65 (bottom) when Rec = 1871. (a) ReT =

5442; (b) ReT = 19,717.

Figure 15. Distributions of local capillary ratios along the free surface for the cases shown in Figure 14.

Figure 16. Streamlines on the R–Z plane when Rec is kept at 1871. (a) ReT = 5442; (b) ReT = 19,717.

4. Conclusions

A series of 3D numerical simulations were performed to investigate the mixed forced convection
driven by rotation and natural convection generated by concentration and temperature gradients in
the Czochralski crystal growth model. The main conclusions are as follows:
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(a) For the mixture with capillary ratio of minus one, the total thermal and solutocapillary forces
are counterbalanced. The introduction of buoyancy force leads to the disturbance of the balance,
generating the mixed capillary-buoyancy convection. For a small concentration gradient, the
flow is in two-dimensional steady state. Owing to the good fluidity and thermal uniformity, this
state is important for the growth of high quality of crystals. The coupled capillary and buoyancy
flow in the crucible is presented as a large counterclockwise circulation. When the rotations of
the crystal and crucible are considered, the mixed natural and forced flow structures are more
complex, and the directions of the rolling cells are associated with the competitions among the
driving forces.

(b) When the capillary force is greater than a certain value, the basic flow transits to three-dimensional
state. The critical conditions for the mixed flow transitions at different rotation rates are obtained.
Crucible rotation can obviously strengthen the flow stability. Influenced by the crystal rotation,
the critical thermocapillary Reynolds number increases until it reaches a turning point. With the
enhancement of crystal rotation driven flow, a dramatic decrease of the critical value is observed.

(c) Once the instability is incubated, the basic mixed flow firstly bifurcates to the three-dimensional
steady state, which oscillates spatially along the circumferential direction. Driven by the
competition among the capillary-buoyancy forces, centrifugal, and Coriolis forces, the surface
fluctuations are presented as spokes, rosebud, and pulsating ring. With the enhanced flow
instabilities, three-dimensional unsteady oscillation occurs. Prosperous oscillation patterns are
discussed, including the spiral hydrosoultal waves, superimposition of spirals and spokes, as
well as rotating waves.
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