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Abstract: Optical performance in terms of light efficiency, color crosstalk and ambient contrast ratio
were analyzed for blue GaN-based micro-light emitting diodes (micro-LEDs) combined with red/green
quantum dots (QDs)-polymethyl methacrylate (PMMA) films. The thickness and mass ratio of QDs
films are two critical factors in affecting the performance of micro-LEDs. Firstly, the precise optical
modeling of QDs-PMMA films is established based on the double integrating sphere (DIS) testing
system and inverse adding doubling algorithm (IADA) theory. Red and green QDs-PMMA films
are composed of ZnCdSe/ZnS QDs and green ZnCdSeS/ZnS QDs, respectively. The fundamental
optical parameters of QDs-PMMA films, including scattering, absorption and anisotropy coefficients,
are obtained successfully. Secondly, based on these optical parameters, the Monte Carlo ray tracing
method is applied to analyze the effect of a QDs-PMMA film’s thickness and mass ratio on the optical
performance of micro-LEDs. Results reveal that the light efficiency first increases and then decreases
with the increase of a QDs film’s thickness or mass ratio, owing to the scattering characteristics of
QDs. Different from the variation tendencies of light efficiency, the crosstalk between adjacent pixels
increases as the QDs-PMMA film’s thickness or mass ratio increases, and the ambient contrast ratio is
kept stable when the thickness increases. The mass ratio variation of QDs film can change the optical
performance of micro-LEDs more effectively than thickness, which demonstrates that mass ratio is a
more important factor affecting the optical performance of micro-LEDs.

Keywords: micro-LED; quantum dot; light efficiency; optical modeling

1. Introduction

Owing to their advantages of low power consumption, long life, high brightness and excellent
reliability, light-emitting diodes (LEDs) have been developed rapidly for many years [1–3]. As a
novel technology applied in the display field, micro-light emitting diodes (micro-LEDs) have attracted
lots of attention in recent years. Compared with traditional LEDs, the micro-LED is reduced to
micrometer-scale size (< 50 µm) [4–6]. For realizing the full color display of micro-LEDs, different
technologies have been presented, such as combining the three colorized red, green and blue (RGB)
micro-LED chip and color conversion material methods [7–11]. The combining RGB micro-LED chips
method arrays red, green and blue micro-LED chips on the panel, which has the disadvantage of
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a complex driving circuit. Moreover, as the color attenuation of RGB micro-LED chips is different,
the color stability of the RGB method will deteriorate after a long working time. Therefore, the blue
micro-LED chip is used to excite light conversion material to generate full color, which is a preferable
method. Liu et al. presented the method of an ultraviolet micro-LED coated with RGB phosphor [7].
However, the phosphor cannot be uniformly coated on a micro-LED due to its large size (>10 µm),
leading to an uneven color distribution and a low light conversion efficiency. It has recently been
discovered that colloidal quantum dots (QDs) as a novel light conversion material can solve the above
issue [8], and the micro-LED display combined with a QD has the properties of high resolution, a wide
color gamut and a superior color rendering index. Kuo et al. sprayed QDs on ultraviolet micro-LEDs
to generate an RGB trichromatic light, and then realized the full color display [9,10]. Furthermore, blue
micro-LEDs were also used to stimulate the red and green QDs, and the distributed Bragg reflector
(DBR) was introduced to improve light utilization efficiency [11].

However, previous studies mostly focused on the fabrication process of QDs-based micro-LEDs,
whereas the influence of QDs’ parameters on the optical performance of micro-LEDs has rarely been
investigated. Therefore, the optical performance analysis for red/green QDs-based blue GaN-based
micro-LEDs should be conducted for guiding the design of colorful micro-LEDs. In this paper, the
precise optical modeling of red/green QDs is first established. Red ZnCdSe/ZnS QDs and green
ZnCdSeS/ZnS QDs are both colloidal QDs in terms of core-shell alloy structures, which are easy to
synthesize and have better stability due to their larger size. Based on the optical measurement of
QDs-polymethyl methacrylate (PMMA) films through the double integrating sphere (DIS) testing
system and the inverse adding doubling algorithm (IADA), the fundamental optical properties of
a QDs-PMMA film are obtained. Then, based on the Monte Carlo ray tracing method, the optical
performance for different mass ratios (MR) of QDs to PMMA and the thickness of QDs films are
simulated. Optical performance, including light efficiency, color crosstalk and ambient contrast ratio
for GaN-based micro-LEDs combined with a QDs film are obtained through this simulation. The
simulation result is analyzed, and the optimal parameters of the QDs film will then be obtained.

2. Models, Analysis and Discussion

2.1. Establishing the Precise Optical Modeling for QDs

Firstly, the fundamental optical properties of QDs need to be obtained. The double integrating
sphere (DIS) testing system and inverse adding doubling algorithm (IADA) theory are used to generate
the above optical properties [12–14]. The DIS testing system is used for measuring the primary optical
parameters in terms of the reflectance ratio Vr, transmittance ratio Vt and collimated transmittance
ratio Vc, whose structure diagram is shown in Figure 1. The QDs sample to be measured is clamped in
the middle between the reflectance integrating sphere and the transmission integrating sphere. The
collimated blue lights emitting from the laser source irradiate on the sample. Reflection, transmission
and collimated transmission integrating spheres collect the reflected light energy, transmitted light
energy and collimated transmission light energy, respectively. According to photoelectric detectors,
the received light signal is converted to an electric signal, and transmitted to the spectrometer for
processing and analysis. The reflectance ratio Vr, transmittance ratio Vt and collimated transmittance
ratio Vc are calculated by the following equations:

Vr=
Pr

PTotal
(1)

Vt=
Pt

PTotal
(2)

Vc=
Pc

PTotal
(3)
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Figure 1. Schematic of the double integrating sphere testing system.

After the QDs sample is placed between two integrating spheres, Pr, Pt and Pc are the light
power measured by the reflectance integrating sphere, transmittance integrating sphere and collimated
transmittance integrating sphere, respectively. Ptotal is total light power of incident light without the
sample measured by the integrating sphere. Finally, the reflectivity, transmission and collimated
transmission ratio of the sample for the incident light are obtained.

The QDs samples used in the above measurement need be synthesized by a series of
chemical methods. Firstly, the colloidal alloyed ZnxCd11-xSeyS1-y QDs are synthesized as the
following [15–17]. For a typical synthesis of green Zn0.83Cd0.17Se0.64S0.36 QDs (x = 0.83, y = 0.64), the
TOP (trioctylphosphine) -S-Se solution is prepared, first by mixing 2.7 mmol Se powder, 1.5 mmol
S powder and 2.5 mL TOP into a 5 mL vial, and then stirring to obtain a clear solution at room
temperature. Next, the Cd-(oleate)2 and Zn-(oleate)2 solution is prepared by adding 0.98 mmol CdO,
3.22 mmol Zn-(Ac)2 (zinc acetate), 6 mL OA (oleic acid) and 15 mL ODE (octadecene) into a 100 mL
three-neck round bottom flask. The solution is dried under a vacuum at 130 ◦C for 30 min to remove
the oxygen and water, and the solution is then heated to 300 ◦C under a high-purity N2 atmosphere.
At this elevated temperature, as-prepared TOP-S-Se solution (2.5 mL) is swiftly injected. The reaction
temperature is maintained at 300 ◦C for 10 min, and then cooled to 260 ◦C, and 2 mmol Zn-(oleate)2

solution and 2 mmol TOP-S are injected to grow a ZnS shell. Finally, the product is purified several
times by repeating the precipitation/redispersion processes using methanol and toluene. A similar
process is used to synthesize red Zn0.67Cd0.33Se QDs; 2.7 mmol Se powder and 1.5 mmol S powder are
replaced by 4.2 mmol Se powder to dissolve into the TOP, and the 0.98 mmol CdO and 3.22 mmol
Zn-(Ac)2 are replaced with 1.4 mmol CdO and 2.8 mmol Zn-(Ac)2.

Then, the preparation process of QDs-PMMA film is as follows. Firstly, 1.18 g of polymethyl
methacrylate (PMMA) powder and 15 ml of toluene are mixed in a three-neck flask. The mixed
solution is stirred for 2 hours, until the PMMA powder is completely dissolved in toluene to form a
transparent PMMA-toluene solution. Similarly, 59 mg of red/green QDs powder is dissolved into 1ml
of toluene, and then 15 ml of PMMA-toluene solution and 1 ml of QDs-toluene solution are transferred
to a centrifuge tube and stirred for 10 minutes, until QDs are dispersed evenly in the PMMA-toluene
solution. After that, a mixed solution with a certain viscosity is obtained. Finally, the uniform mixed
solution is introduced into a customized mold, which is then placed on a horizontal platform, and the
red/green QDs films are then obtained after toluene volatilizing. Similarly, by changing the mass of the
QDs powder from 11.8 mg to 129.8 mg, a QDs-toluene solution with a different mass ratio (MR) can
be obtained. Repeating the above preparation steps, the film samples with a different MR of QDs to
PMMA can be obtained. The MR of QDs to PMMA will be used as an important factor to evaluate the
effect of QDs on the optical performance of micro-LEDs in later simulations. Thickness—referring to
the thickness of the prepared QDs film as another key factor—will also affect the optical performance
of micro-LED.

Figure 2a shows the absorption and photoluminescence (PL) spectra of the QDs film. The full
width at half maximum (FWHM) of the PL spectra is near 31 nm and 23 nm for red and green QDs,
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respectively, while the samples’ peak wavelengths are 625 nm and 535 nm, respectively. The absorption
and PL spectra overlap at the emission light wavelength band, so a part of self-emission light will
be absorbed by QDs. Figure 2b,c show the high-resolution transmission electron microscope (TEM)
images of the as-prepared green and red QDs, respectively. Figure 2d,e show the photographs of the
green and red QDs-PMMA films with mass ratios of 10mg/g, 60mg/g and 110mg/g, respectively. The
thickness of these QDs films is maintained at less than 0.1 mm. As shown in Figure 3, red QDs and
green QDs are also characterized by X-ray diffraction (XRD) analysis. The Jade as an XRD analysis
software is used for material lattice matching. The XRD spectra and corresponding three strongest
diffraction peaks of green and red QDs are both located between wurtzite CdSe (JCPDF No. 19-0191)
and wurtzite ZnS (JCPDF No. 05-0566), which demonstrates that the structure of green QDs material
is ZnCdSeS/ZnS alloy QDs, and that of red QDs material is ZnCdSe/ZnS alloy QDs. However, the
three strongest diffraction peaks of green QDs are closer to wurtzite ZnS (JCPDF No. 05-0566), which
suggests that green QDs have more ZnS components. Correspondingly, the three strongest diffraction
peaks of red QDs are shifted to wurtzite CdSe (JCPDF No. 19-0191), which indicates that the main
components of red QDs are CdSe.
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After the QDs-PMMA films are fabricated and macroscopic optical parameters are measured, the
fundamental optical parameters—including scattering coefficient µs, absorption coefficient µa and
anisotropy coefficient g—can be obtained based on the IADA [12]. Scattering coefficient µs, absorption
coefficient µa and anisotropy coefficient g are calculated by the following equations:

µs=
1
Is

(4)
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µa=
1
Ia

(5)

g=2π
∫ 1

−1
P(v)vdv (6)

where the scattering coefficient µs and the absorption coefficient µa are defined as the reciprocal of
the average free path between two scattering events (Is) or two absorption events (Ia), respectively.
The anisotropy coefficient g is the integral of the phase function P(v), where P(v) is the distribution
function of light propagation direction. IADA is an effective method for calculating the basic optical
characteristic parameters for a QDs sample. The calculation process of the method is to follow the steps
below. First, assume a set of randomly generated optical parameters (µs’, µa’, g’). Secondly, according
to the radiation transmission equation and assumed parameters (µs’, µa’, g’), the macroscopic optical
parameters (Vr’, Vt’, Vc’) of the QDs sample are calculated. Then, the calculated macroscopic optical
parameters are compared with the actual measurement values (Vr, Vt, Vc) by the integral sphere. If the
deviation of the calculated and the measured values exceeds the set threshold, the primary optical
parameters (µs’, µa’, g’) will be reassigned. Finally, after several iterations until the deviation of the
calculated and measured values up to the allowable range, basic optical parameters (µs, µa, g) are
generated. A series of red and green QDs samples with different mass ratios are fabricated. Based on
above mentioned method, the optical properties of QDs samples can be obtained by measurement and
calculation, and the results are shown in Figure 4. The scattering effect of red/green QDs is obvious
for the excited blue light. Red/green QDs both have strong absorption characteristics for the excited
wavelength of 450 nm, but weak absorption for the converted red/green light. With the mass ratio of
red and green QDs film increasing, the scattering and absorption coefficients also increase, while the
anisotropy coefficient decreases. Under the same mass ratio, the scattering, anisotropy and absorption
coefficients of the excited blue light are more significant than the converted red/green light for red/green
QDs, while the anisotropy coefficient of the converted light for green QDs is more significant than that
of red QDs.
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Figure 3. XRD results of powdered samples of red and green QDs. The XRD PDF standard card of
CdSe (red bars, JCPDF of No. 19-0191) and ZnS (green bars, JCPDF of No. 05-0566) are also exhibited
under XRD results, respectively, as the references.
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Figure 4. Calculated optical properties for red/green QDs samples with different mass ratio (a) the
scattering coefficient µs; (b) the absorption coefficient µa; and (c) the anisotropy coefficient g.

2.2. Optical Simulation for GaN Based Micro-LED with QDs Film

The 2-D and 3-D configuration of GaN-based micro-LEDs with a QDs matrix is shown in
Figure 5a,c, which comprise blue GaN-based micro-LED chips, red/green QDs, a photoresist bank and
a distributed Bragg reflector (DBR). In this paper, the thickness and mass ratio of PMMA-QDs film
are changed to investigate the effects on the optical performance of micro-LEDs, and the properties
of the other elements are assumed to be constant. A monochromic blue GaN-based micro-LED chip
is used as the excitation source, which can be purchased through Xiamen Changelight Co., Ltd. The
structure of the blue GaN-based micro-LED chip is shown in Figure 5b [5]. The wavelength of the blue
micro-LED chip is 450 nm, and the size is set as 30 µm × 30 µm × 100 µm. In this model, the optical
properties of the red/green QDs matrix are applied with the results obtained in Section 2.1. The QDs
first absorb blue light, and then re-emit the red/green light as the excited light. A photoresist bank
is used to restrict the light emergent direction emitted from an individual pixel, and then realize the
reduction of the crosstalk between adjacent pixels. To improve the light utilization rate, the surface
properties of the photoresist bank are set as 90% reflection, 5% scattering and 5% absorption. DBR is
capable of high reflectivity for blue light and high transmission effect for other colors, improving the
blue light utilization efficiency and color contrast. In the paper, the bottom surface of the object is set as
an equivalent DBR, and the surface properties are 100% reflection for blue light and 100% transmission
for red/green light, at a 90◦ angle of incidence. When light strikes obliquely, both DBR’s reflection for
blue light and the transmission for red/green light are reduced [11].
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Figure 5. Schematic configuration of GaN-based micro-LEDs with a QDs matrix (a) 2-dimensional view;
(b) the structure of blue micro-LED chip [5]; (c) 3-dimensional view; and (d) illumination distribution
on the receiving plane for the red/green/blue pixel.

After the optical model of a Micro-LED with QDs matrix has been established, the optical
performance for different mass ratios and thicknesses of a red QDs-PMMA matrix is simulated by
the Monte Carlo ray tracing method [18,19]. The illumination distribution on the receiving plane for
red/green/blue pixels can be obtained, as shown in Figure 5d. For all cases, when the thickness of
the QDs-PMMA matrix is changed, the mass ratio stays the same, and vice versa. Light efficiency as
the critical evaluation criteria is introduced first. In the simulation, light efficiency is the ratio of the
light power on the receiving plane to the light power from the chip. In order to further discover the
mechanism of how the thickness and mass ratio of a QDs-PMMA matrix affect the light efficiency of a
micro-LED, the RGB light absorbed by QDs film is also calculated. The light power ratio is defined as
the ratio of the light power absorbed by the QDs film to the light power from the chip, which is used to
evaluate the absorbed light distribution.

Figure 6 illustrates the light efficiency and light power ratio distribution for different thicknesses
and mass ratios of a red/green QDs-PMMA matrix. The range of the thickness of QDs-PMMA matrix
is from 1 µm to 10 µm, while the range of the mass ratio of QDs to PMMA is from 10 mg/g to 110 mg/g.
Figure 6a reveals that the light efficiency of received blue light is less than 10%, which proves that DBR
plays an important role in reflecting blue light. As the thickness of the QDs-PMMA matrix increases,
the received blue light is reduced, but the variation trend of the received red/green light is not linear;
the received red/green light firstly increases and then decreases. The reason for this phenomenon is
that the absorption of QDs for blue light increases alongside the thickness, so the excited red/green
also increases. However, when the thickness grows over a certain value (>5 µm), the trend of light
conversion from blue light to red/green light will become gradually saturated. Meanwhile, as the
thickness of the QDs-PMMA matrix increases, the scattering effect will be more obvious, and the
emergence angle distribution of excited red/green light will become more uniform. The increasing
thickness will result in the lights obliquely incoming on the DBR increasing, while the DBR only has
the feature of high transmittance for collimating light. So, when the lights obliquely incoming on the
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DBR increase, the transmittance of DBR for red/green light will reduce, and the red/green lights on
the receiving plane will descend. Compared with the light efficiency distribution of red and green
QDs, more green lights are received, due to green QDs’ stronger absorption for blue light. Besides, the
anisotropic coefficients g of red QDs are smaller than those of green QDs. When g = 1, the converted
lights transmit forward after lights go through scattering particles, and when g = 0, the converted
lights are scattered uniformly. Therefore, a smaller anisotropic coefficient represents a stronger light
scattering effect, resulting in a stronger scattering effect and the lower efficiency of red QDs compared
with green QDs. Simulation results verify the above explanation in Figure 6b.
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Moreover, the results show that the mass ratio of QDs to PMMA has a similar influence on the
light efficiency distribution in Figure 6c,d. When the mass ratio increases to a certain value (60 mg/g),
the light efficiency of micro-LEDs is at the peak of distribution. However, with the increase of the
mass ratio of QDs to PMMA, the variation of light efficiency distribution is larger than that of the
thickness; this indicates that the mass ratio could change the color distribution more effectively. The
reason for this can mainly be attributed to mass ratio variation with greater effects on the scattering
and absorption of QDs. Although the thickness of the QDs-PMMA matrix could also greatly affect the
light efficiency distribution, the mass ratio could influence the fundamental characteristics of QDs
more significantly. When the thickness and mass ratio are changed, the total effects of the absorption
and scattering are also changed at the same time. Greater thickness or a higher mass ratio could absorb
and scatter more light rays, but this does not necessarily lead to greater light efficiency for micro-LEDs.
Based on the above analysis, the optimized thickness and mass ratio are 5 µm and 60 mg/g, with the
highest light efficiency.

The color crosstalk is another critical evaluation index for micro-LED displays. In the next section,
the effect of the thickness and mass ratio of a QDs-PMMA matrix on the color crosstalk will be discussed.
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To evaluate the color crosstalk quantitatively, two receivers with different detection areas are placed
above our model. The first receiver is only covered for one subpixel area, and the detected light power
is Ppixel. The second receiver is able to receive light from the whole panel, and the collected light
intensity is Ptotal. The color crosstalk ratio is defined as Rcrosstalk, which can be calculated using the
following Equation (7) [20,21].

Rcrosstalk=
Pleakage

PTotal
=

PTotal−Ppixel

PTotal
(7)

where Pleakage represents the light leakage from the adjacent pixels when only one subpixel is turned on.
Figure 7 plots the simulated color crosstalk ratio as a function of the QDs-PMMA matrix’s thickness

and mass ratio. The blue subpixel without QDs film has low color crosstalk, due to the restriction
effect of the photoresist bank. As the thickness or mass ratio increases, the color crosstalk of subpixels
with a red/green QDs matrix increased. With the increase of a QDs-PMMA matrix’s thickness or mass
ratio, the optical path inside the QDs becomes longer, leading to a more severe light scattering. With
light scattering enhancing, more emergent light with a large angle will be generated, so that more
light will irradiate outside the first receiver. Compared with the crosstalk ratio distribution of red
and green QDs, the crosstalk ratio of red QDs is higher, due to red QDs with a lower anisotropic
coefficient and stronger scattering effect. Differently from the light efficiency distribution with a peak,
the crosstalk ratio increases as the thickness/mass ratio increases. The reason for this is that the received
lights outside the first receiver keep increasing, but the total light power of the whole receiving plane
will reduce when the thickness/mass ratio increases to a certain value. In addition, the Commission
Internationale de l’Eclairage’s (CIE) color coordinate chart for different thicknesses and mass ratios
of a QDs-PMMA matrix is calculated based on the simulation results, as shown in Figure 8. Display
systems with a lower thickness and mass ratio of the QDs-PMMA matrix have a wider color gamut;
the reason for this is that display systems with a lower thickness/mass ratio of the QDs-PMMA matrix
have a lower color crosstalk. The color crosstalk is reduced, so the color purity of each sub-pixel is
improved, insofar that the color gamut is also enhanced.
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Figure 7. Simulated color crosstalk ratio as a function of a QDs film’s (a) thickness; and (b) the mass
ratio of QDs to PMMA.

Finally, the visual perception of the human eye is also a critical evaluation index when a micro-LED
display is applied in bright ambient light. If the ambient light is too strong, the display plane is hardly
readable. To evaluate visual perception, the ambient contrast ratio (ACR) is calculated using the
following Equation (8) [22,23]:

ACR=
Lon+Lambient·RL

Loff+Lambient·RL
(8)

In Equation (2), Lon (Loff) represents the on-state (off-state) luminance value of a display, while
Lambient is the ambient luminance and RL is the reflectivity of the display panel. In most cases, the
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ambient light is perpendicular to the display plane, so we specified the incident angle of ambient
light as 90 degrees. Lon is set as constant, Loff is 0, and the surface reflectivity is calculated based on
the established model. As the ambient light gets stronger, the ACR first decreases dramatically, and
then gradually saturates. The calculated ACR for different Lambient and RL are plotted in Figure 9. The
results demonstrate that RL can obviously affect the ACR of the display, and too-strong ambient light
(light flux > 20,000 lux) leads to a too-low ACR (<10), as shown in the inset of Figure 9. By analyzing
Equation (2), ACR and RL have an inverse relationship when the Lambient and Lon are constant. If the
distribution of RL can be calculated, the distribution of ACR can also be obtained.
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Figure 8. The CIE 1931 color coordinates chart for (a) different thickness of QDs-PMMA matrix;
and (b) the different mass ratio of QDs to PMMA.
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Figure 9. Simulated ambient contrast ratio with different ambient light and reflectivity.

The calculation process of RL is as follows. The measuring light source is set to place above the
DBR, and the micro-LED chip is off-state. Other parameters remain unchanged, and the simulation
is run. RL is the ratio of the light power on the receiving plane to the light power emitting from the
ambient light source. The Lambient and Lon are assumed to be 3000 Lux and 600 Lux, respectively. The
result that the thickness and mass ratio of QDs-PMMA matrix affect the ACR is illustrated in Figure 10.
Moreover, the effect of different ambient light in terms of warm white light and cold white light is also
introduced in the simulation. As the mass ratio increases, ACR decreases; the reason for this is that
the enhancement of the mass ratio will improve the scattering effect. More lights are reflected to the
receiving plane, in terms that the reflectivity RL increases and ACR decreases. Because red QDs have
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a stronger scattering efficiency compared with green QDs, the RL of red QDs is higher. In addition,
QDs material has high absorption for blue light. More lights are absorbed for cold white ambient light,
so lights reflected in the receiving plane decrease. With the effect of QDs film, a micro-LED plane
has a lower RL under cold white ambient light. The straightforward method to enhance ACR is to
improve the absorption of the micro-LED display plane, but the trade-off is that light efficiency will
decrease. Besides, when the thickness of a QDs-PMMA matrix increases, RL and ACR almost remain
unchanged. As the mass ratio is kept constant, the scattering effect of film surface is the same for
different thicknesses.Crystals 2019, 9, x FOR PEER REVIEW 11 of 12 
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3. Conclusions

In this paper, the precise optical model of QDs is established to obtain the optical properties of
QDs. The effect of the thickness and mass ratio of a QDs-PMMA film on the optical performances of
micro-LEDs is analyzed. Results reveal that the mass ratio of QDs film is the more critical factor affecting
the light efficiency of micro-LEDs than thickness, and a too-large mass ratio/thickness of a QDs-PMMA
film does not improve light efficiency. Green QDs have a higher light efficiency distribution, due
to QDs’ stronger absorption for blue light and lower scattering for converted light, compared with
red QDs. The variation of color crosstalk between adjacent pixels is mainly affected by the optical
scattering of QDs. A higher thickness/mass ratio will result in more significant color crosstalk. Lower
scattering and higher absorption will be a benefit to improve the ambient contrast ratio, but the light
efficiency will decrease. Based on the above analysis, the influence of the thickness and mass ratio of a
QDs-PMMA film on the optical performance of micro-LEDs is complicated and interactional. Studying
of the influencing mechanism of QDs will be significant for guiding the fabrication process.
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