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Abstract: This review summarizes the state of high-entropy alloys and their combinatorial approaches,
mainly considering their magnetic applications. Several earlier studies on high-entropy alloy
properties, such as magnetic, wear, and corrosion behavior; different forms, such as thin films,
nanowires, thermal spray coatings; specific treatments, such as plasma spraying and inclusion effects;
and unique applications, such as welding, are summarized. High-entropy alloy systems that were
reported for both their mechanical and magnetic properties are compared through the combination
of their Young’s modulus, yield strength, remanent induction, and coercive force. Several potential
applications requiring both mechanical and magnetic properties are reported.

Keywords: high-entropy alloys; complex concentrated alloys; mechanical behavior;
magnetic properties

1. Introduction

In 2004, Professor Jien-Wei Yeh reported the concept of high-entropy alloys, which are beyond
traditional principal-element alloys, with multiple principal elements [1], and Professor Brian Cantor
presented the development of equiatomic multicomponent alloys [2]. The results of both investigators
created a new direction for the exploration in metallurgy, which is not conventionally categorized
by principal elements. For the past fifteen years, high-entropy alloys with potential use for various
applications in different groups of metal elements have been developed. In 2016, Miracle and
Senkov categorized high-entropy alloys, multi-principal-element alloys (MPEAs), and equiatomic
multicomponent alloys in terms of complex, concentrated alloys (CCAs) [3]. Diao et al. also call them
metal buffets [4].

The mechanical properties of different families of high-entropy alloys extend the limits of
possible operating-environment temperatures of metallic systems to cryogenic [5] and elevated
temperatures [6,7]. These large groups of high-entropy alloys possess several fundamental properties,
such as those for the cocktail effects. Moreover, the mechanical metallurgy characteristics of these
high-entropy alloys are needed for their systematic development. Starting from basic metallurgical
principles, Jones and Ashby have summarized the microstructure-insensitive properties of high-entropy
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alloys, such as their densities, moduli, coefficients of thermal expansion, and specific heats [8].
Microstructure-sensitive properties include yield and tensile strengths, ductility, fracture toughness,
and creep and fatigue strength [8]. These properties depend on the heat treatment, mechanical
metallurgy, and the specific alloy compositions. For steels, these investigators have concluded that
even when the composition is nearly identical, these microstructure-sensitive properties may yet vary,
subject to the history of the heat and mechanical treatments of the metallic system [8]. For high-entropy
alloys, microstructure-sensitive behavior can be much more complicated. Moreover, Ding et al. showed
that the element-dependent local arrangement of the high-entropy alloys, such as staggered positive
and negative strain fields at nanoscale, can change the mechanical properties significantly [9]. The
composition–structure–property relationships seem infinite for the design of high-entropy alloys [3,10].

With innovations in manufacturing [11,12], characterization [13–16], high-throughput
examinations [17,18], and computation technology [19–22], the aforementioned complexity seems to
become solvable puzzles for materials scientists [23,24]. Systematic investigations into the high-entropy
enhancement and interplay with microstructure-sensitive and -insensitive properties are expected
to yield combinatorial approaches for functional applications, such as for superconductivity [25],
catalysts [26], and magnetics [27,28]. As shown in Borkar et al.’s work [29], it is important to consider
the combinatorial approaches, especially for mechanical and magnetic properties. This article reviews
the history and advances of high-entropy alloys for future high-throughput combinatorial approaches,
with a focus on the mechanical and magnetic behavior.

2. History of High-Entropy Alloys for Combinatorial Approaches

High-entropy alloys are well-known as structural materials for their excellent mechanical
properties [3]. Exceptional mechanical properties have been reported for the Cantor alloys [5],
dual-phase high-entropy alloys [30], and intermetallics-strengthened high-entropy alloys [31]. For
comparison of the mechanical properties of high-entropy alloys relative to the conventional alloys,
Figure 1 presents the yield strength and Young’s moduli of a few selected representative metals and
several high-entropy alloys.
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titanium, and nickel-based alloys and high-entropy alloys. (Data taken from [5,32–44]). The data is
from the CES EduPack 2009, Granta Design, Limited, Cambridge, UK, 2009.

With regard to applications of high-entropy alloys, Zhang et al. commented that the combination
of functional properties, such as magnetic and electric, as well as mechanical performance, such as
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yield strength and elongation, makes high-entropy alloys excellent soft magnetic materials (SMM) [27].
High-entropy alloy (HEA)-based functional materials are thus advantageous for their excellent
mechanical properties for endurance [10].

Even before the first two high-entropy alloys published in 2004 [1,2], Professor Yeh and
several other teams had already focused on combinatorial approaches for the high-entropy-alloy
research and development, as listed in Table 1, which chronically summarizes the early research into
high-entropy-alloy combinatorial approaches through 2004. These results are mainly archived from
different groups’ dissertations and theses. Several potential applications and research areas have been
explored. These applications range from thin films [45–48], magnetic behavior [47], nanowires [49],
thermal spray coatings [50,51], plasma spraying [52], corrosion behavior [53,54], welding [55], inclusion
effects [56], and wear properties [57,58]. The latest magnetic applications of high-entropy alloys are
summarized in the later sections of this manuscript.

Table 1. Summary of research into high-entropy alloy (HEA) combinatorial approaches from 1996
to 2004.

Title Year HEA System Reference Thesis
Type

A study on the Multicomponent Alloy Systems
Containing Equal-Mole Elements 1996 Al-Ti-V-Cr-Fe-Co-Ni-Cu-

Zr-Mo-Pd [59] Master

Properties of the Multicomponent Alloy
System with Equal-Mole Elements 1998 [60] Master

A Study on the Multicomponent Alloy Systems
with Equal-Mole Face-Centered Cubic (FCC) or

Body-Centered Cubic (BCC) Elements
2000 Ni-Co-Fe-Cu-V-Cr-Mo-

Au-Ag-Ti-Al-Zr-Y-Nd [61] Master

A Study on the Cu-Ni-Al-Co-Cr-Fe-Si-Ti
Multicomponent Alloy System 2001 Cu-Ni-Al-Co-Cr-Fe-Si-Ti [62] Master

Development of Multicomponent
High-Entropy Alloys for Thermal Spray

Coating
2002 Fe-Ni-Co-Cr-Si [50] Master

NiAlFeCuCoCr-6-Component Alloy Metal
Films Structure 2002 Ni-Al-Fe-Cu-Co-Cr [45] Master

Study on the Corrosion Behavior and Thin Film
Properties of Cr-Fe-Co-Ni-Cu-Alx

High-Entropy Alloys
2003 Cr-Fe-Co-Ni-Cu-Alx [53] Master

Research of Multi-component High-Entropy
Alloys for Thermal Spray Coating 2003

Mo0.5(Al-Si-Ti-Cr-Fe-Co-
Ni-Mo)0.5 and

Mo0.5(Al-Si-
Ti-Cr-Fe-Ni-Mo)0.5

Zrx(Al-Si-Ti-Cr-Fe-Ni-Zr)1-x

[51] Master

The Effect of V, Si, Ti Addition on the
Microstructure and Wear Properties of

Al(0.5)CrCuFeCoNi High-Entropy Alloys
2003 Al0.5Cr-Cu-Fe-Co-Ni [57] Master

Study on the Microstructure and Electrical
Properties Evolution of High-Entropy Alloy

Thin Films
2003 Cu0.5Ni-Al-Co-Cr-Fe-Ti [46] Master

Development on the High Frequency
Soft-Magnetic Thin Films from High-Entropy

Alloys
2003 Fe42Co37Ni10Al5B6 and

Fe40Co35Al5Ni5Cr5Si10
[47] Master

Research on the Bulks and Thin Film Properties
of CrMoNbTiZr High-entropy alloys 2004 Cr-Mo-Nb-Ti-Zr [48] Master

Corrosion Behavior of FeCoNiCrCux
High-Entropy Alloys in Various Aqueous

Solutions
2004 Fe-Co-Ni-Cr-Cux [54] Master

The Study of Different Welding with
High-Entropy and SUS304 Stainless Steels 2004 [55] Master
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Table 1. Cont.

Title Year HEA System Reference Thesis
Type

Investigation of the Machinability of Five
Kinds of High-Entropy Alloys and the Effects

of Al, Cu, Co Elements Inclusion
2004 Fe1Co1Ni1Cr1Cu0.2Al1 [56] Master

Fabrication of Nanowires via High-Entropy
Powders 2004 Al-Cr-Fe-Ni-Si-Ti-Zr [49] Master

Research for the Adhesive Wear Properties of
AlxCoCuFeNiTiy High-Entropy Alloys 2004 AlxCo-Cu-Fe-Ni-Tiy [58] Master

Particle Erosion Characteristics of a
Plasma-Sprayed Zr-Based High-Entropy Alloy 2004 Zr-Based High-Entropy

Alloy [52] Master

3. Mechanical Properties of High-Entropy Alloys

High-entropy alloys have been found to have great mechanical properties [3], especially at
cryogenic [5] and elevated temperatures [6]. It has been reported that the temperature-dependent
mechanical properties can be influenced by both entropy and element effects [42]. The identification of
the high-entropy effects is an emerging research area.

For soft materials, the temperature-associated entropy effects for thermoelastic behavior can be
found as follows:

f = fU + fS =

(
∂U
∂l

)
V,T
− T

(
∂S
∂l

)
V,T

=

(
∂U
∂l

)
V,T

+ T
(
∂ f
∂l

)
V,T

(1)

where f is the total elastic force, fU is the component of the internal energy, f S is the component of
the entropic energy, U is the internal energy, S is the entropy of the system, and T is the temperature.
The force at a fixed strain increases with temperature, with the force being nearly proportional to the
absolute temperature.

For the deoxyribonucleic acids [63], there could be conformational entropy effects, as presented in
Equation (2):

FA
kT

=
1

4
(
1− x

L

)2 −
1
4
+

x
L

, (2)

where F is the force as a function of the extension, x, A is the length of the deoxyribonucleic acid, k is the
Boltzmann’s constant, T is the temperature, and L is the molecular contour length. The elastic behavior
of Actin networks is an example of such a concurrent effect from the entropy-driven and energy-driven
elasticities [64,65]. It is interesting to re-think if these entropy effects act on the high-entropy alloys
as well.

For general metallic systems, the deformation mechanisms are functions of their strength and
ductility; they are categorized in some classic models, as listed below. For example, a homogeneous
plastic response with the irreversible flow of strain hardening indicates the dislocation movement,
which can be shown as the Hollomon relationship:

σtrue = Kεn
true, (3)

where σtrue is the true stress, K is a material constant, and n is the strain-hardening coefficient. For a
heterogeneous plastic response, the phenomenon could be from twinning and/or a vacancy interaction
with dislocations. For a heterogeneous plastic and homogeneous plastic response, there could be
dislocation–solute atom interactions showing upper and lower yield strengths as a Lüder band.
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Specifically, yield strength (σy) is a combination of the frictional stress (σ f r), the effects of solid
solutions (σss), dislocation density (σρ), precipitate hardening (σprecipitate), and grain boundaries (σgb),
as summarized in the following equation:

σy = σ f r + σss + σρ + σprecipitate + σgb. (4)

As mentioned above, the yield and tensile strength, ductility, fracture toughness, and creep and
fatigue strengths are microstructure-sensitive mechanical properties [8].

For high-entropy alloys, a major characteristic is its low stacking fault energies (SFE) [21]. Huang et
al. examined the SFE as a function of temperature via ab initio calculations [20]. Their models consider
chemical, magnetic, and strain contributions. The local structural energies, magnetic moments, and
elastic moduli predicted deformation twins and face-centered-cubic to hexagonal-phase transformation
under cryogenic conditions [20]. The twinning results agree with earlier experimental results [5]. Their
predictions for phase transformation have been experimentally validated [15,66–68].

Niu et al.’s experimental and simulation results depict the possible paths for the aforementioned
microstructure-dependent phase-transformation mechanisms [22]. They reveal the interactions
between magnetic and mechanical properties of CrCoNi and other equiatomic ternary derivatives of
CrMnFeCoNi. Niu et al. demonstrated that magnetically frustrated Mn eliminates the Face-Centered
Cubic (FCC)–Hexagonal Closest Packed (HCP) energy difference as an important element effect for
high-entropy alloys [22].

In summary, the element effect can contribute to local heterogeneous atomic sizes,
electronegativity [9], and magnetic properties [20,22] of the high-entropy alloys among the
elements. These differences result in low stacking fault energies [20,21], twinning [5,42], and phase
transformation [3,15,30,43,66–70], which accommodate the deformation and enhance the overall
performance in terms of strength and ductility.

4. Combinatorial Approaches for Magnetic Features

Nowadays, most of the electronics and computational devices facilitate magnetism and magnetic
materials as the smart functional materials [71]. The excellent mechanical properties of high-entropy
alloys can improve the reliability of these modern devices [72–74].

The magnetic materials are classified as either soft or hard from their magnetization
hysteresis characteristics.

Ferromagnetic and ferrimagnetic materials contain specific elements that have large magnetic
moments. The high-entropy alloys containing these elements and their combinatorial properties
focusing on magnetic and mechanical properties are summarized in Table 2.

Here, the magnetic properties of particular concern are the remanent induction (T) and coercive
field (A/m). Figure 4 presents a comparison between several commercial magnets and selected
high-entropy alloys. The commercial soft and hard magnets are shown in the regions marked with
solid lines. The high-entropy alloys are presented in the regions marked with symbols.

The two most important characteristics for applications of soft and hard magnetic materials are
the coercivity and what is termed as the energy product, designated as BHmax. Soft magnets have low
coercive fields and narrow hysteresis loops. Hard magnets have much higher coercive fields. Larger
maximum energy products (BHmax, unit J

m3 ) are desirable for hard magnets. The maximum energy
product depends on the shape of the B–H curve. However, for a given shape, it increases with the
product of BR ×HC (the diagonals on Figure 4). The remanent induction, BR, is the induction that
remains when the field, H, is removed. The coercive field, Hc, is the field required to fully magnetize
and demagnetize the material.
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Table 2. Summary of high-entropy alloys (HEAs) and complex concentrated alloys (CCAs) for
magnetic applications.

HEA System Properties Year Title Reference

AlCoCrFeNiNbx

Yield
Strength 2012

Effect of Nb addition on the
microstructure and properties of
AlCoCrFeNi high-entropy alloy.

[32]

Young’s
Modulus 2012

Effect of Nb addition on the
microstructure and properties of
AlCoCrFeNi high-entropy alloy.

[32]

AlxCoFeNi

Coercive
Force Hc

2014
Effects of Al and Si addition on the
structure and properties of CoFeNi

equal atomic ratio alloy
[43]

Remanent
Induction Br

2014
Effects of Al and Si addition on the
structure and properties of CoFeNi

equal atomic ratio alloy
[43]

Yield
Strength 2014

Effects of Al and Si addition on the
structure and properties of CoFeNi

equal atomic ratio alloy
[43]

Young’s
Modulus 2014

Effects of Al and Si addition on the
structure and properties of CoFeNi

equal atomic ratio alloy
[43]

AlxCoCrFeNi

Coercive
Force Hc

2017

A combinatorial approach for
assessing the magnetic properties of

high entropy alloys: Role of Cr in
AlCoxCr1–xFeNi

[75]

Remanent
Induction Br

2017

A combinatorial approach for
assessing the magnetic properties of

high entropy alloys: Role of Cr in
AlCoxCr1–xFeNi

[75]

Yield
Strength 2017

Dual-phase high-entropy alloys for
high-temperature structural

applications
[33]

Young’s
Modulus

2015
Plastic deformation of Al0.3CoCrFeNi
and AlCoCrFeNi high-entropy alloys

under nanoindentation
[34]

2009

Microstructure and mechanical
property of as-cast, -homogenized,

and -deformed AlxCoCrFeNi (0 ≤ x ≤
2) high-entropy alloys

[35]

AlCoCrCuFeNi

Yield Strength

2012
Tensile properties of an

AlCrCuNiFeCo high-entropy alloy in
as-cast and wrought conditions

[36]

2013
Phase composition and superplastic

behavior of a wrought
AlCoCrCuFeNi high-entropy alloy

[37]

Young’s
Modulus

2012
Effect of elemental interaction on
microstructure and mechanical

properties of FeCoNiCuAl alloys
[38]

2008
Effects of Mn, Ti and V on the

microstructure and properties of
AlCrFeCoNiCu high entropy alloy

[39]
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Table 2. Cont.

HEA System Properties Year Title Reference

CoCrFeNiMn

Coercive
Force Hc

2017
Tailoring magnetic behavior of

CoFeMnNiX (X = Al, Cr, Ga, and Sn)
high entropy alloys by metal doping

[76]

Remanent
Induction Br

2017
Tailoring magnetic behavior of

CoFeMnNiX (X = Al, Cr, Ga, and Sn)
high entropy alloys by metal doping

[76]

Yield Strength

2014 A fracture-resistant high-entropy
alloy for cryogenic applications [5]

2013

The influences of temperature and
microstructure on the tensile
properties of a CoCrFeMnNi

high-entropy alloy

[44]

Young’s
Modulus 2018

Variations of the elastic properties of
the CoCrFeMnNi high entropy alloy

deformed by groove cold rolling
[40]

CoCrFeNi

Yield
Strength 2013 Tensile properties of high- and

medium-entropy alloys [41]

Young’s
Modulus 2014

Temperature dependence of the
mechanical properties of equiatomic

solid solution alloys with
face-centered cubic crystal structures

[42]

CoCrMnNi

Yield
Strength 2014

Temperature dependence of the
mechanical properties of equiatomic

solid solution alloys with
face-centered cubic crystal structures

[42]

Young’s
Modulus 2014

Temperature dependence of the
mechanical properties of equiatomic

solid solution alloys with
face-centered cubic crystal structures

[42]

CoFeMnNi

Yield
Strength 2014

Temperature dependence of the
mechanical properties of equiatomic

solid solution alloys with
face-centered cubic crystal structures

[42]

Young’s
Modulus 2014

Temperature dependence of the
mechanical properties of equiatomic

solid solution alloys with
face-centered cubic crystal structures

[42]

CoFeNiSix

Coercive
Force Hc

2014
Effects of Al and Si addition on the
structure and properties of CoFeNi

equal atomic ratio alloy
[43]

Remanent
Induction Br

2014
Effects of Al and Si addition on the
structure and properties of CoFeNi

equal atomic ratio alloy
[43]

Yield
Strength 2014

Effects of Al and Si addition on the
structure and properties of CoFeNi

equal atomic ratio alloy
[43]

Young’s
Modulus 2014

Effects of Al and Si addition on the
structure and properties of CoFeNi

equal atomic ratio alloy
[43]
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Table 2. Cont.

HEA System Properties Year Title Reference

CoFeNi(MnAl)x

Coercive
Force Hc

2017
Composition dependence of structure,
physical and mechanical properties of
FeCoNi(MnAl) x high entropy alloys

[77]

Remanent
Induction Br

2017
Composition dependence of structure,
physical and mechanical properties of
FeCoNi(MnAl) x high entropy alloys

[77]

Yield
Strength 2017

Composition dependence of structure,
physical and mechanical properties of
FeCoNi(MnAl) x high entropy alloys

[77]

CoFeNi(AlSi)x

Coercive
Force Hc

2013
High-entropy alloys with high

saturation magnetization, electrical
resistivity, and malleability

[27]

Remanent
Induction Br

2013
High-entropy alloys with high

saturation magnetization, electrical
resistivity, and malleability

[27]

Yield
Strength 2019

Compositional design of soft
magnetic high entropy alloys by

minimizing magnetostriction
coefficient in

(Fe0.3Co0.5Ni0.2)100−x(Al1/3Si2/3)x
system

[72]

Young’s
Modulus 2017

Effects of short-range order on the
magnetic and mechanical properties
of FeCoNi(AlSi)x high entropy alloys

[78]

AlxCrCuFeNi2

Coercive
Force Hc

2016

A combinatorial assessment of
AlxCrCuFeNi2 (0 < x < 1.5) complex
concentrated alloys: Microstructure,

microhardness, and magnetic
properties

[29]

Remanent
Induction Br

2016

A combinatorial assessment of
AlxCrCuFeNi2 (0 < x < 1.5) complex
concentrated alloys: Microstructure,

microhardness, and magnetic
properties

[29]

Yield
Strength 2016

Strain rate effects on the dynamic
mechanical properties of the

AlCrCuFeNi2 high-entropy alloy
[79]

Young’s
Modulus 2012

Microstructure and properties of
AlCrFeCuNix (0.6 ≤ x ≤ 1.4)

high-entropy alloys
[80]

AlCoxCr1-xFeNi

Coercive
Force Hc

2017

A combinatorial approach for
assessing the magnetic properties of

high entropy alloys: Role of Cr in
AlCoxCr1–xFeNi

[75]

Remanent
Induction Br

2017
A combinatorial approach for

assessing the magnetic properties of
high entropy

[75]
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Table 2. Cont.

HEA System Properties Year Title Reference

CoFeMnNiGa

Coercive
Force Hc

2017
Tailoring magnetic behavior of

CoFeMnNiX (X = Al, Cr, Ga, and Sn)
high entropy alloys by metal doping

[76]

Remanent
Induction Br

2017
Tailoring magnetic behavior of

CoFeMnNiX (X = Al, Cr, Ga, and Sn)
high entropy alloys by metal doping

[76]

CoFeMnNiAl

Coercive
Force Hc

2017
Tailoring magnetic behavior of

CoFeMnNiX (X = Al, Cr, Ga, and Sn)
high entropy alloys by metal doping

[76]

Remanent
Induction Br

2017
Tailoring magnetic behavior of

CoFeMnNiX (X = Al, Cr, Ga, and Sn)
high entropy alloys by metal doping

[76]

Other HEAs

Coercive
Force Hc

2012
Microstructure and magnetic

properties of FeNiCuMnTiSnx high
entropy alloys

[81]

Remanent
Induction Br

2012
Microstructure and magnetic

properties of FeNiCuMnTiSnx high
entropy alloys

[81]

CCA System Properties Year Title Reference

Commercial Soft
Magnets

Coercive
Force Hc

2003 Metals Handbook, Desk Edition 2nd
Edition I [82]

Remanent
Induction Br

2003 Metals Handbook, Desk Edition 2nd
Edition I [82]

Commercial Hard
Magnets

Coercive
Force Hc

2003 Metals Handbook, Desk Edition 2nd
Edition I [82]

Remanent
Induction Br

2003 Metals Handbook, Desk Edition 2nd
Edition I [82]

5. Mechanical and Magnetic Maps for the Applications of High-Entropy Alloys

Magnetic materials are important in several areas, such as information storage, superconductivity,
electrical-power transmission, high-speed switching, high-speed-signal transmission for computation,
and high-speed magnetically-levitated trains. Many of these applications require excellent mechanical
properties across various operating temperatures, areas where high-entropy alloys show great potential.
For example, there are both active and passive electromagnetic devices for vibration damping and
isolation, and the selection criteria for materials and for these devices include the coercivity, remanence,
relative permeability, and saturation field [83].

Here, we compare different combinations of mechanical and magnetic properties, and we select
several potential applications and their featured combinations of properties. Magnets embedded in the
discs for regenerative braking induces a current and allows power to be drawn to the electric motor
that drives the wheels. There are several material requirements for this application, such as the density,
thermal conductivity, thermal expansion, hardness, Poisson’s ratio, and Young’s modulus [84], while
the maximum energy product (BHmax, units J

m3 ) is also important. For these applications, Young’s
modulus–coercive force and Young’s modulus–remanent induction relationships are summarized in
Figure 5; Figure 6, respectively.

For magnetic applications requiring high strength, such as magnetic windings, a higher strength
is needed before mechanical failure. Furthermore, low heat generation during operation while
maximizing the magnetic field is required. For these multiple constraints [85], high-entropy alloys
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also show great potential [86]. Figures 2 and 3 exhibit the yield strength–coercive force and yield
strength–remanent induction relationships, respectively.
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6. Discussion and Future Perspectives

As shown by the blue arrow in Figure 4, all of the hard magnets made from commercial alloys have
products of the remanent induction (BR) and coercive field (Hc) greater than those of the high-entropy
alloys. Similarly, as shown by the red arrow, commercial alloys have better soft-magnet performance,
with small products of BR ×HC, as presented by the diagonals in Figure 4.

However, when applications require a specific function needing more than the optimization of a
single property, high-entropy alloys present combinatorial advantages since the alloys are much more
diverse, as demonstrated in Figure 5, Figure 6, Figure 2, Figure 3, as compared with the narrow regions
shown in Figure 4.

Specific functional applications need different combinatorial advantages. For example, to
improve the thermoelastic-type shape memory, metallic systems require slow diffusion and resistance
to plastic deformation. Moreover, it is important for shape-memory alloys to accumulate more
reversible martensitic deformation. Firstov et al. [87] reported TiZrHfCoNiCu high-entropy alloys
for the shape-memory effect. The mechanisms of the reversible-deformation-induced martensitic
transformation of the Al0.6CoCrFeNi high-entropy alloy were revealed by in situ synchrotron X-ray
measurements [88].

Another example is the development of high-entropy alloys for thermoelectric applications.
Specifically, to satisfy the thermoelectric functions, one criterion for selecting the material is the low
thermal conductivity for improving the Seebeck coefficient. Fan et al. showed that the severe lattice
distortion of high-entropy alloys has strong potential in this regard [89].
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Finally, the developments of the additive manufacturing enable the metals for better
performance [90]. The additive manufacturing brings high degrees of geometrical freedom to
the production of alloy components [91]. The advantages of the additive manufacturing, such as
customized geometry [92], fast cooling for intermediate phase effects [93], mixing of metallics-ceramics
powders [94,95], and anisotropic effects [96], are well known. For additive manufacturing, high-entropy
alloys also show great potentials [97–100].

7. Conclusions

This article explores the state of high-entropy alloys and their combinatorial approaches mainly
for magnetic applications. Several earlier high-entropy-alloy studies in the areas of thin film, magnetic
behavior, nanowires, thermal-spray coating, plasma spraying, corrosion behavior, welding, inclusion
effects, and wear properties are summarized. High-entropy alloy systems that were reported for
both their mechanical and magnetic properties were compared via the combination of their Young’s
modulus, yield strength, remanent induction, and coercive force. Several potential applications
requiring both mechanical and magnetic properties were reported. The objective of this article was to
review the reported mechanical and magnetic properties of high-entropy alloys for more combinatorial
advances. Several advanced measurements using neutron and synchrotron were also included, along
with examples of machine learning used for the design of high-entropy alloys.
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