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Abstract: Owing to their superior biocompatibility, titanium and its alloys are often the first
choice for implant materials in biomedical applications, especially for dental and bone repairs
(orthodontics and prosthodontics). Titanium has low density and shows good mechanical and
chemical properties. Although Ti-6Al-4V alloy exhibits excellent corrosion resistance properties, the
metal ions released during corrosion are likely to induce aseptic loosening in long-term implantations.
In the present study, Ti-6Al-4V alloy was subjected to two specific heat treatments, namely, air
cooling and water quenching. The potentiodynamic polarization and electrochemical impedance
spectroscopy measurements revealed remarkable improvement in the corrosion resistance properties
of the heat-treated specimens. The presence of the β phase is a plausible reason for the improvement.
Scanning electron microscopy, X-ray diffraction phase composition analysis, and microstructural
characterization were performed to confirm the presence of the β phase.

Keywords: titanium alloy; heat treatment; microstructure; potentiodynamic polarization; EIS

1. Introduction

Titanium alloys are used in orthopedic applications owing to their good biocompatibility,
appropriate mechanical properties, and excellent corrosion resistance [1]. Although pure titanium is a
strong material, its mechanical and chemical properties can be further enhanced by the addition of
alloying elements. Extensive research into titanium alloy systems in the early 1950s resulted in the
discovery of several alloys, the most important of which is Ti-6Al-4V [2]. The presence of nonreactive
passive films on the surface of these alloys is an important factor for their corrosion resistance. The
corrosion resistance of titanium alloys is superior to that of other implant materials such as stainless
steel and alloys based on cobalt–chromium [3,4]. Ti-6Al-4V alloy possesses an exceptional strength to
weight ratio and good mechanical properties. The main drawback of metallic biomaterials is their
degradation upon interaction with body fluids [5]. Materials for conventional metallic implants are
hence selected based on their corrosion resistance, i.e., their ability to generate protective passive films.
Ti-6Al-4V alloy shows excellent corrosion resistance due to the thermodynamic stability of TiO2. The
formation of various other oxides on the surface of Ti-6Al-4V has also been reported [6]. Although
Ti-6Al-4V has several advantages, it suffers from high reactivity. Its surface properties can be improved
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by various surface treatments. Ti-6Al-4V alloy responds to a variety of heat treatments. In some
previous studies [7,8], it was observed that the corrosion resistance properties of Ti-6Al-4V improved
with heat treatment, in both the Ringer’s and simulated body fluid (SBF) solutions.

Heat treatment affects the properties of titanium and titanium alloys differently, depending on
the composition of the alloying elements and the effects of heat on α–β crystal transformation. There
are various types of titanium alloys designed for different purposes, each of which has its own heat
treatment cycle and scheme, depending on the composition [9]. Some previously reported works have
shown that hot tensile strength increased in water-quenched (WQ) samples relative to the air-cooled
(AC) and furnace-cooled samples. However, the differences in wear resistance among all the samples
were not significant [10].

Other researchers have reported that the mechanical properties of Ti-6Al-4V alloy, including its
impact toughness and microstructure, can be affected by the type of heat treatment and the aging period.
They achieved significant improvement in both ultimate tensile and yield strengths through heat
treatment at 960 ◦C for 1 h, followed by water quenching and heat treatment at 500 ◦C for 4 h and further
air cooling. After solution and aging treatments, the obtained microstructure consisted of β-phase
matrix and α-phase precipitation. These α- and β-phase alloys had a lamellar structure consisting of
fine plexiform needles that improved the chemical and mechanical properties [11]. When the grain
size was increased by adjusting the heat treatment conditions, the needle-shaped α′-martensite phase
disappeared completely, while both plate-shaped α′-martensite phase and lamellar α + β mixture
formed continuously [12]. The corrosion resistance was also influenced by the change in grain size. It
was reported in many works that by rapidly cooling Ti-6Al-4V after the solution treatment, it is possible
to retain the β phase in the alloy by mitigating the diffusional process. It is also possible to make the
β phase undergo martensitic transformation during cooling via thermal transformation. Therefore,
it is expected that the mechanical properties of the alloy can be considerably modified by solution
treatment at high temperatures in the α + β region followed by rapid cooling [13–15]. The corrosion
resistance of Ti-6Al-4V can hence be improved by heat treatment. In the present study, Ti-6Al-4V alloy
was subjected to two specific heat treatments, namely, air cooling and water quenching, to obtain
the β phase. X-ray diffraction (XRD) and scanning electron microscopy (SEM) characterization were
performed to identify the phases formed after heat treatment. The electrochemical corrosion behavior
of the heat-treated alloys was characterized in Ringer’s solution via potentiodynamic polarization
measurements and electrochemical impedance spectroscopy (EIS).

2. Materials and Methods

2.1. Sample Preparation

Commercially available Ti-6Al-4V alloy was obtained from Tata Steel Ltd., Jamshedpur, India.
The chemical composition of the as-received alloy is presented in Table 1. The as-received samples
were machined as per the requirements of the tests, and properly polished using 120, 180, 1/0, and 2/0
grade emery paper, followed by cleaning with acetone in a sonication bath. The samples were then
subjected to further treatment.

Table 1. Chemical composition of as-received Ti-6Al-4V sample.

Element Al V N C H Fe O Ti

Wt.% 6 4 ≤0.03 ≤0.08 ≤0.013 ≤0.20 ≤0.15 Bal.

2.2. Heat Treatment of Ti-6Al-4V Alloy

Ti-6Al-4V alloy is an α–β mixed phase alloy that responds to various heat treatment processes.
In the present study, two heat treatment techniques were used. The samples were heated to 1050 ◦C in
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a muffle furnace and put aside for 30 min. After that, the samples were either WQ in the first heat
treatment technique or AC in the second.

2.3. Microstructure

Heat-treated (WQ and AC) samples were mirror polished using different grades of emery papers
and a cloth polisher using alumina solution. The samples were then etched with Keller’s reagent
solution (3 mL hydrochloric acid, 2 mL hydrofluoric acid, 190 mL distilled water, and 5 mL nitric
acid) [16]. After etching, the microstructures were observed with an optical microscope (Olympus
BX51M, Tokyo, Japan) under 20×magnification. The obtained micrographs for both the WQ and AC
samples are shown in Figure 1.
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Figure 1. Microstructure of Ti-6Al-4V alloy. (a), (b) water quenched, and (c), (d) air cooled. Figure 1. Microstructure of Ti-6Al-4V alloy. (a,b) water quenched, and (c,d) air cooled.

2.4. XRD Analysis

X-ray diffractometer (D8, BRUKER, Karlsruhe, Germany) was used to identify the different
phases in the deposits. The phase analysis, peaks identification and crystallinity determination were
performed at a wavelength of 0.154059 nm using Kβ filtered CuKα monochromatic X-ray radiation
and a tube current of 15 mA and voltage of 30 kV. The XRD patterns were recorded in the 2θ range
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from 30◦ to 80◦ at a scan speed of 1◦/min. The XRD spectra of the heat-treated samples are shown in
Figure 2, and the XRD analysis in Table 2.Crystals 2020, 10, x FOR PEER REVIEW 5 of 12 
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Figure 2. XRD spectra of WQ and AC samples.

Table 2. XRD analysis.

WQ AC

2θ d Spacing % I/I0 2θ d Spacing % I/I0

52.82 1.7318 100 70.46 1.3353 100
62.84 1.4776 67 52.90 1.7294 35
70.36 1.3376 53 40.02 2.2511 30
39.92 2.2595 52 35.04 2.5588 23
34.98 2.5631 33 55.36 1.6582 7
37.94 2.3696 27 38.38 2.3435 10

2.5. Corrosion Rate Measurement

Electrochemical polarization measurements were performed using a standard corrosion cell
on a standard specimen surface (flat metal). The polarization experiments were performed using
an Autolab potentiostat (PGSTAT302N, Metrohm, Amsterdam, The Netherlands) with a standard
three-electrode system. The three-electrode cell consisted of a graphite counter electrode, reference
electrode, and working electrode (specimen). The icorr and Ecorr measurements were performed
using Tafel extrapolation technique at a potentiodynamic scan rate of 1 mV/s. All the polarization
measurements were performed in Ringer’s solution comprising 8.6 g NaCl, 0.3 g KCl, and 0.33 g CaCl2
in distilled water (these figures represent a 1000 mL, pH 7.0 solution). The polarization curve is given
in Figure 3, and the corrosion data in Table 3.
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Figure 3. Potentiodynamic polarization curves of heat-treated Ti-6Al-4V alloys in Ringer’s solution.

Table 3. Icorr and Ecorr values of heat-treated Ti-6Al-4V alloy in Ringer’s solution.

Sample Icorr (µA/cm2) Ecorr (V vs. SCE) βa βc Error

icorr (µA) Ecorr (mV)

WQ 0.2 −0.322 0.120 0.168 ±0.05 ±10
AC 2 −0.504 0.198 0.254 ±0.4 ±10

2.6. Electrochemical Impedance Spectroscopy

A three-electrode corrosion cell attached to the previous Autolab was used for the EIS measuremen
ts. An AC voltage of 10 mV root-mean-squared was used to run the impedance experiments, while 1
V DC was used for saturated calomel electrode (SCE) at 10 cycles per decade in the frequency range
from 0.01 Hz to 300 kHz. At each frequency, the phase angles and absolute impedance were recorded,
and the Bode plots and Nyquist diagrams were obtained. An appropriate equivalent electrical circuit
was formed from both the real and imaginary components of the collected impedance data using a
simple fit model [17]. In this study, most of the samples conformed to the Constant Phase Element
(CPE) model [18]. The polarization resistance (Rp), solution resistance (Ru), capacitance (Yo), and α

were obtained from the EIS curves as presented in Figures 4 and 5 and tabulated in Table 4. α is an
exponent that is equal to 1 for a capacitor, and less than 1 for a CPE.
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Figure 5. EIS Nyquist plot of AC and WQ Ti-6Al-4V alloy in Ringer’s solution.

Table 4. EIS data of heat-treated Ti-6Al-4V alloy in Ringer’s solution.

Sample
Name

Model
Name

Rp
(kΩ.cm2)

Ru
(kΩ.cm2) Y0 α

Goodness
of Fit

AC CPE 39.00e3 24.92 9.645 × 10−5 5.209 × 10−5 9.585 × 10−3

WQ CPE 65.93e3 35.52 3.437 × 10−5 8.182 × 10−5 9.234 × 10−3

3. Results and Discussions

Figure 1 shows the optical images of the microstructures in the longitudinal sections of the
heat-treated samples. The β grains are nominally equiaxed and have low-curvature boundaries. An
acicular and fine intergranular α phase exists within most of the grains, as shown clearly in Figure 1b.
There are two type of bands noticed here, the first is made of small equiaxed subgrains (approximately
2 µm), and the other were 20- to 30-µm wide elongated bands. It was hypothesized that the elongated
features parallel to the bar axis formed by the rolling and rapid cooling. The solutionized and quenched
Ti-6Al-4V alloy produced equiaxed β grains of approximately 50 µm width. The grain boundaries
were revealed using aggressive etchant, which formed some corrosion pits on the alloy surface.

The XRD spectra presented in Figure 2 confirm the presence of several α phases and a smaller
number of β phases for both samples. The peaks were relatively weaker in the WQ sample. The XRD
spectrum of the WQ sample showed several high-intensity peaks corresponding to the (1 0 0), (1 0
1), (1 0 3), (1 0 2), and (1 1 0) planes of the α phase of Ti-6Al-4V, with the most prominent peak at
the 2θ angle of approximately 52.82◦, corresponding to the (1 0 2) plane. For the β phase, the XRD
peaks corresponded to the (1 1 0) and (2 1 1) planes, with the most prominent peak at the 2θ angle
of approximately 69.478◦, corresponding to the (2 1 1) plane of the WQ sample. For the AC sample,
the high-intensity α phase peaks corresponded to the (1 0 0), (1 0 1), (1 0 3), (1 0 2), and (1 1 0) planes,
with the most prominent peak at the 2θ angle of approximately 70.46◦, corresponding to the (1 0 3)
plane. The high-intensity β phase peaks corresponded to the (2 0 0) and (1 1 0) planes, with the most
prominent peak at the 2θ angle of approximately 38.388◦, corresponding to the (1 1 0) plane. All
the peaks in the XRD spectra of the heat-treated alloys (Figure 3) were similar to those in the Joint
Committee on Powder Diffraction Standards (JCPDS) card numbers 44-1294 (α Ti) and 44-1288 (β Ti).
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Both samples (AC and WQ) hence consisted of α and β phase Ti, although the intensity (% I/I0) of the
β phase in the AC sample was much lower compared to the WQ sample. The corrosion resistance of
the AC sample was thus lower compared to the WQ sample.

The potentiodynamic curves of the alloy in Ringer’s solution are presented in Figure 3. Both
samples (AC and WQ) followed a similar anodic polarization trend. The Ecorr and icorr values obtained
from the curves (Figure 3) are tabulated in Table 3. It is evident from the results that the AC sample
was more susceptible to corrosion compared to the WQ sample. A small passive region that appeared
after the active dissolution region within the potential range from −0.35 to −0.10 V vs. SCE was present.
This passive region resulted from the electrochemical dissolution of the alloy surface and the formation
of nonstoichiometric titanium oxides that slowed the dissolution process, i.e.,

Ti3+ + xH2O→ TiOx + 2xH+ + (2x−3)e− (1)

Both the AC and WQ alloys reached their respective stable passive current densities as the
potential increased. The partial stabilization of the passive current densities implies the formation of
protective passive films. Small oscillations of the current density were observed in this region, which
may be related to the consecutive formation and repassivation of microsized pits, commonly called
“metastable pits”. At approximately 1260 mV (SCE), the current density started to increase slowly with
the potential. This can be attributed to the solution oxidation (oxygen evolution) that took place via
electron transfer across the oxide.

The WQ sample exhibited a lower icorr value (2 × 10−7 A/cm2). However, there was not much
improvement in the Ecorr value (–0.322 V) of the heat-treated sample. Furthermore, the icorr value of
the heat-treated Ti-6Al-4V alloy in this work was higher than the values reported in previous studies
using Ringer’s solution [19,20]. In those studies, the icorr value improved after heat treatment, while
the Ecorr values were not affected. This type of behavior was attributed to the sample microstructure
(Figure 1a–d). The microstructure showed a clear lamellar structure, similar to an α–β alloy. This
demonstrated the heat treatment enrichment of the β phase that is responsible for the improved
corrosion resistance. The positive effect of microstructural features such as β phase in improving the
associated electrochemical properties of the alloy was also reported in (Ti-Zr)-1.5Mo-3Sn alloy [21].

The obtained EIS data were modelled on the basis of the CPE circuit shown in the inset of Figure 6.
The equivalent circuit of Ru (Rp Y0α) was used. This equivalent circuit provided the best fitting on
the basis of the least (Chi-Squared) values for both WQ and AC samples. In the equivalent circuit, Ru

and Rp referred to the uncompensated solution resistance of the test electrolyte and the polarization
resistance between metal and electrolyte, respectively.
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Figure 6. Equivalent circuit model (ECM) employed to fit the impedance data.

To examine the surface properties of the two samples, EIS was performed (Figure 4). A close
examination of the EIS data (Table 4) revealed that the WQ sample exhibited both higher Rp
(65.93 kΩ.cm2) and Ru (35.52 kΩ.cm2) values than the AC sample. In both cases, the Nyquist
plots were almost semicircular (Figure 5), which is characteristic of a capacitor [22]. In the WQ sample,
the semicircle reached 20 kΩ in its mid region, whereas in the AC sample, the top of the semicircle was
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near 6 kΩ. Moreover, the end of the semicircle of the WQ sample plot reached 60 kΩ on the x-axis. This
indicated a higher Rp value in the WQ sample, which was also supported by the obtained EIS value.
The Bode magnitude plots of the two samples showed two distinct regions. In the higher frequency
region, the Bode magnitude plots exhibited constant log |Z| values and phase angles near 0◦ with the
variation of log(f). This is due to the solution resistance response, and it indicates the good solution
resistance of all the samples. In the broad low- and middle-frequency range (1 kHz–100 mHz), the
spectra displayed linear slopes of about −1. This is the characteristic response of a capacitive behavior
in the surface film [23,24]. In the Bode phase plot (Figure 4b), the phase angles of the samples dropped
slightly towards lower values in the low-frequency region because of the surface film resistance
contribution to the impedance.

The Nyquist and Bode plots of both samples showed an increase in the low frequency impedance
with time. The phase angle in the intermediate frequency region increased with time. This evolution
indicated the formation and growth of protective passive films. Moreover, there was a significant
increase in the low frequency impedance in the WQ sample. Therefore, the WQ sample offered better
conditions for the formation of passive film with better protection. The sample Raman spectra are
shown in Figure 7. The WQ sample showed better passive behavior than the AC sample because of the
presence of a more stable protective oxide film. The film consisted mainly of TiO2 in the rutile phase.
The microstructure of both samples (AC and WQ) consisted mainly of the α and β phases. The XRD
intensity (% I/I0) of the β phase in the AC sample was much lower compared to the WQ sample. It is
hence plausible that the higher volume fraction of α phase in the AC sample led to its poorer corrosion
resistance compared to the WQ sample.
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The surface morphologies of the AC- and WQ-treated Ti alloy after electrochemical measurement
in Ringer’s solution are shown in Figure 8. Many pits were observed over the entire surface of the
AC-treated sample, whereas a few were found on the surface of the WQ-treated Ti alloy. Therefore, the
AC- and WQ-treated Ti alloy can degrade via pitting and uniform corrosion in Ringer’s solution, which
is in good agreement with the polarization data. The pitting corrosion caused defects on the surface, as
shown in Figure 8a,b. In general, pitting corrosion occurs in three stages: passivity breakdown, pit
initiation, and pit propagation. Penetration and passive film breakdown due to pitting in our samples
was observed. As shown in Figure 8, it was observed that in the AC sample, pits are more likely to
occur near pits propagating along a groove. As the pits propagated, a honeycomb-like pit structure
formed on the alloy surface due to the increasing number and size of the pits. Pit combination tends to
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develop along the directions of the grooves, resulting in large active cells and the dissolution of the
oxide layer. For the WQ sample, flake-type corrosion products were formed.
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Figure 8. SEM images of (a) AC and (b) WQ Ti-6Al-4V alloy in Ringer’s solution after
potentiodynamic polarization.

Although the entire surface of the sample remained intact, local corrosion damage including
cracks and voids were observed, as shown in Figure 7. The local corrosion-induced cracks and voids
occurred because of localized passive film deterioration. This destruction of the passive film can cause
corrosive solutions to easily invade the interior of the material, resulting in pitting corrosion. Many
previous studies reported on corrosion pits in metals and alloys attributed to chemical or physical
heterogeneity on the metal surface due to inclusions, second phase particles, flaws, mechanical damage,
and dislocations. For instance, the trends observed in our study for pitting corrosion damage were
also seen in composite materials [25] where the roughness of the Ti phase resulted in the formation of
cracks and pits at the interfacial region.

4. Conclusions

Heat treatment has a positive effect on the corrosion resistance of Ti-6Al-4V alloy. Although
there was no improvement in the Ecorr value, heat treatment resulted in a marked improvement
in the icorr value. The improvement in corrosion resistance is due to the presence of the β phase.
The WQ sample, therefore, has better corrosion resistance compared to the AC sample. The surface
property improvement due to the β phase is also supported by the EIS data. The presence of the β

phase was confirmed by the XRD phase composition analysis results, which are consistent with the
microstructural characterization results.

In addition, the surface morphology of the Ti-6Al-4V alloy after long-term immersion in Ringer’s
solution was also investigated by SEM characterization. It was found that, in general, the passive film
formed on the surface remained intact, providing significant passivation and corrosion resistance to
the substrate.
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