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Abstract: In this review, we provide a consistent description of noncovalent interactions, covering most
groups of the Periodic Table. Different types of bonds are discussed using their trivial names. Moreover,
the new name “Spodium bonds” is proposed for group 12 since noncovalent interactions involving
this group of elements as electron acceptors have not yet been named. Excluding hydrogen bonds,
the following noncovalent interactions will be discussed: alkali, alkaline earth, regium, spodium,
triel, tetrel, pnictogen, chalcogen, halogen, and aerogen, which almost covers the Periodic Table
entirely. Other interactions, such as orthogonal interactions and π-π stacking, will also be considered.
Research and applications of σ-hole and π-hole interactions involving the p-block element is growing
exponentially. The important applications include supramolecular chemistry, crystal engineering,
catalysis, enzymatic chemistry molecular machines, membrane ion transport, etc. Despite the
fact that this review is not intended to be comprehensive, a number of representative works for
each type of interaction is provided. The possibility of modeling the dissociation energies of the
complexes using different models (HSAB, ECW, Alkorta-Legon) was analyzed. Finally, the extension
of Cahn-Ingold-Prelog priority rules to noncovalent is proposed.
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1. Introduction

The aim of this review is to present an original, systematic and prospective view of all noncovalent
interactions (NCI). There are several books treating different aspects of NCIs [1–4] but none offers a
unified view of the subject, for instance the term Lewis acid/Lewis base does only appear in the most
recent one [3]. See on this topic a recent conference paper entitled “Some interesting features of the
rich chemistry around electron-deficient systems” [5].

We excluded hydrogen bonds from this survey on NCIs because they are well known and because
the bibliography covering HBs is more extensive than the sum of the references on the other NCIs [6–11].
We also excluded anions and cations limiting this review to neutral molecules.

In the modified IUPAC periodic table of the elements reported in Figure 1, we noted in black all
the NCIs reported up to now and in blue these not yet discussed. A similar representation was used by
Caminati et al. for the front page of their publication [12]. They called the bonds of the groups MB (2),
IB (13), TB (14), NB (15), CB (16), and XB (17) following previous authors.
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mini review. 

Concerning the rows, we should indicate that Li, Be, B, and C derivatives as Lewis acids have 

been more studied than Na, Mg, Al, and Si. On the other hand, P, S, and Cl are better representatives 

of their kind of NCIs than N, O, and F. This observation is related to size and to the softness of the 

Lewis acid atom that interacts with the Lewis base [14]  
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him any species with a reactive vacant orbital or available lowest unoccupied molecular orbital is 

classified as a “Lewis acid” [14,16]. 

A Lewis base (LB) is associated with a region of the space where there is an excess of negative 

charge (electron density) in the proximity of an atom or several atoms of a molecule. This happens in 
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of a molecule. This happens in cations, σ- and π-holes, metals (frequent),... The concepts of σ-hole 

and π-hole were introduced by Politzer et al. [17–19] to describe regions of positive potential along 

the vector of a covalent bond (σ-hole) or perpendicular to an atom of molecular framework (π-hole). 

Some atoms have simultaneously (but in different parts of the space) LB and LA zones due to 

their anisotropic distribution of electron density. The same happens for molecules, but in this case, 

they correspond to different parts of the molecule. Note that some Lewis acids when interacting with 
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Figure 1. The different noncovalent bonds formed by elements of the Periodic Table. In black are
accepted names, and in blue are the proposed new names. Groups 3 to 9 (in grey) are not included in
this review.

Usually, the bond is associated with the Lewis acidity of a group, this is the case with groups 11,
13, 14, 15, 16, 17, and 18. For groups 1 and 2, besides HBs, the bond is associated to an element, lithium,
sodium and beryllium. We propose to call these bonds Alkali Bonds and Alkaline Earth Bonds (we
used this name very recently) [13]. Although Regium Bonds were used for group 11, we propose to
use it for both 10 and 11 groups. In grey are the atoms corresponding to groups 3 to 9 that we will not
discuss, not that they were unable to form NCIs, but in order not to stretch too much this mini review.

Concerning the rows, we should indicate that Li, Be, B, and C derivatives as Lewis acids have
been more studied than Na, Mg, Al, and Si. On the other hand, P, S, and Cl are better representatives
of their kind of NCIs than N, O, and F. This observation is related to size and to the softness of the
Lewis acid atom that interacts with the Lewis base [14]

Gilbert N. Lewis published his interpretation of acid/base behavior in 1923 [15]; according to him
any species with a reactive vacant orbital or available lowest unoccupied molecular orbital is classified
as a “Lewis acid” [14,16].

A Lewis base (LB) is associated with a region of the space where there is an excess of negative
charge (electron density) in the proximity of an atom or several atoms of a molecule. This happens in
anions and in some neutral molecules, such as lone pairs (LP: carbenes, amines, phosphines, N-oxides,
. . . ), multiple bonds (olefins, acetylenes, benzenes, and other aromatic molecules, . . . ), single bonds
(alkanes, dihydrogen, . . . ), radicals, metals (rare), . . .

A Lewis acid (LA) is associated with a region of the space where there is an excess of positive
charge (a deficit of negative charge, electron deficiency) in the proximity of an atom or several atoms of
a molecule. This happens in cations, σ- and π-holes, metals (frequent), . . . The concepts of σ-hole and
π-hole were introduced by Politzer et al. [17–19] to describe regions of positive potential along the
vector of a covalent bond (σ-hole) or perpendicular to an atom of molecular framework (π-hole).

Some atoms have simultaneously (but in different parts of the space) LB and LA zones due to
their anisotropic distribution of electron density. The same happens for molecules, but in this case,
they correspond to different parts of the molecule. Note that some Lewis acids when interacting with
stronger Lewis acids can behave as Lewis bases [20].
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When an LB and an LA containing atoms or molecules are free to interact (i.e., non restrained
by some geometrical hindrance), they form complexes being their minima or transition states of
different order.

The information on NCIs is mostly based on from crystal structures, microwave (MW) spectroscopy
and theoretical calculations; consequently, they are related to gas-phase and solid state. Since chemistry
is mainly done in solution there is a consistency problem.

Another aspect that is common to all NCIs is cooperativity. The natural evolution of theoretical
studies has been moving from dimer complexes to trimers and longer complexes in search of
cooperativity, both augmentative and diminutive, present in crystal structures.

Definition: Noncovalent interactions are complexes formed by two or several LBs and LAs. It is the
LA that gives the name to the interaction. Dative bonds are included in this definition.

Why were the complexes not named according to the LB? Historically, because all NCI derive
from HBs, i.e., where the H-bond donor is the Lewis acid. More fundamentally, it is because it is not
possible to define families of NCIs based on LB. For instance, all anions are LBs, and anions can be
found all over the Periodic Table. A classification of LBs is given in Figure 2.
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Figure 2. Lewis bases involved in noncovalent interactions.

The proposed definition allows naming immediately the famous H3N:BH3 complex [21]; since
BH3 is the LA, this is an example of triel bond. The recent controversy Zhou-Frenking/Landis-Weinhold
on the Ca(CO)8 complex [22–24] leads us to propose the classify them as alkaline earth bonds, the CO
being the Lewis bases.

In a recent paper, it is written: “It is well known that alkynes act as π-acids in the formation of
complexes with metals” [25]. If this were correct, then the bond should be a tetrel one; on the other
hand, if the alkyne was the base and the metal (in this case Au) the Lewis acid [14], the bond would be
a regium bond.

This review does not try to discuss the nature of the bonds [26] we classified as NCIs. This
is still a subject not settled [27]. For instance, Mo et al., using the block-localized wave function
(BLW), analyzed the halogen bond [28], concluding that it is a charge transfer (CT) interaction, i.e., an
intermolecular hyperconjugation consistent with Mulliken proposal [29]. The same authors used
the BLW methodology to analyze hydrogen, halogen, chalcogen, and pnictogen bonds, stressing the
magnitude of covalency, directionality, and σ-hole concept [30]. A review by Jin et al. [31] compared the
σ-hole and π-hole bonds based on halogen bonds. Grabowski et al. [32] discussed halogen, chalcogen,
pnictogen, and tetrel bonds as LA-LB complexes.

2. Alkali Bonds

The oldest of NCIs (not including HBs) are the Halogen Bonds that, although not named like
this, were reported in 1948–1950 by Benasi, Hildebrand, and Mulliken [29,33]. Lithium Bonds were
introduced by three great chemists: Kollman, Liebman, and Allen in 1970 [34]. We contributed with a
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paper [35] to this field, where we studied F–Li· · ·N, H–Li· · ·N and H3C–Li· · ·N lithium bonds. The set
of nitrogen Lewis bases consists of two that are sp hybridized (N2 and HCN); five sp2-hybridized bases,
four of which are aromatic (1,3,5-triazine, 1,2,3-triazine, pyrazine, and pyridine), one nonaromatic
(HN=CH2); and three sp3-hybridized bases (NH3, NH2CH3, and aziridine).

There have been two theoretical papers reporting Sodium bonds [36,37] but, so far, none reporting
Potassium bonds. For consistency reasons, we propose to call all of them Alkali bonds. The paper on
sodium bonds reported cooperativity between halogen and sodium bonds in NCX· · ·NCNa· · ·NCY
complexes, where Y = F, Cl, Br, I, and Y = H, F, OH. 15N chemical shifts were used to quantify the
cooperativity [36].

Although we have excluded cations from this review, we would like to report our studies involving
the lithium cation. One characterizing the F–Li+–F lithium bonds [38]; a number of homo-dimer
and hetero-dimer complexes were studied (H3C–F–Li+· · ·F2, H3C–F–Li+· · ·F–H, Cl–F· · ·Li+· · ·F–Cl,
F2· · ·Li+· · · F2, . . . ) and the spin-spin coupling constants (SSCC) calculated. A different approach was
used to study the 1:1 and 2:1 complexes between hydrogen peroxide and its methyl derivatives with
lithium cation in order to find if a huge static homogeneous electric field perpendicular to the magnetic
field of the NMR spectrometer is able to differentiate enantiomers [39].

3. Alkaline Earth Bonds

Initially, this topic started with Beryllium bonds [40,41] and further extended to magnesium and
calcium bonds along Group 2. Kollman, Liebman, and Allen suggested, in 1970, studying H2Be· · ·OH2,
while they explained that HBeF is isoelectronic to HCN [34]. We contributed to this topic starting
with a paper of 2009 entitled “Beryllium bonds, do they exist?” [42]. There, we noted that inorganic
chemists have described BeX2L2 compounds in which X = F, Cl, Br, and L = NH3 and other Lewis
bases (for more recent papers concerning these complexes, see [43,44], and note that they do not call
them beryllium bonds).

Beryllium bonds can modulate the strength of HBs (cooperativity) [45], transform azoles into
gas-phase superacids [46], create σ-holes in molecules that are devoid of them (like CH3OF) [47],
spontaneous production of radicals [48], beryllium based anion sponges [49], etc.

Magnesium bonds were explored later on. Thus, Q. Li et al. studied the H2NLi· · ·HMgX complexes
where X = H, F. Cl, Br, CH3, OH and NH2 that are stabilized though a combination of magnesium
and lithium bonds [50]. Scheiner et al. reported the effect of magnesium bonds on the competition
between hydrogen and halogen bonds [51]. Montero-Campillo et al. discussed the synergy between
tetrel bonds and alkaline earth bonds resulting in weak interactions getting strong [13]. Although
NCI are generally studied in intermolecular complexes, there is a paper describing intramolecular
magnesium bonds in malonaldehyde-like systems [52].

High-level calculations, using the complete basis set (CBS) extrapolation [CCSD(T)/CBS] of
B· · ·BeR2 and B· · ·MgR2 complexes were carried out where B is a LB and R = F, H and CH3 [53]. The
Mg series show smaller electrophilicities than the Be series.

Finally, calcium bonds were studied in comparison with beryllium and magnesium bonds at
producing huge acidity enhancements [54].

Although some authors have started calling them alkaline earth bonds [13,54], its use has still not
become the norm.

4. Regium Bonds

This name (they are also called Metal Coinage Bonds) [55–57] is usually given to Group 11; we
propose to include also group 10 (Ni, Pd, Pt). We cited Pt (group 10), Co, Rh, and Ir (group 9) in a
paper on regium bonds [55], but nobody reports these systems as NCIs.

It is necessary to clearly differentiate clusters (e.g., Au2 or Ag11) (Figure 3) [58] from molecules
(e.g., AuX) [59,60]. Brinck and Stenlid, based on their study of nanoclusters of Cu, Au, Pd, Pt, Rh, . . . ),
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proposed a division of σ-holes, depending on the molecular electrostatic potential, into σs, σp, and
σd-holes [61,62].Crystals 2020, 10, 180 5 of 28 
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Figure 3. Coinage metal clusters [55].

The higher the oxidation degree (for instance, Au(III) vs. Au(I)) the more acidic the Lewis acid;
see, for instance, the complex (CF3)3Au· · ·pyridine [63]. We cited Legon in a 2014 paper [64] but did
not define the Cl–Ag· · ·C2H2 complex as a regium bond (Figure 4):
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Figure 4. Experimental microwave (MW) structure of complex C2H4· · ·Ag–Cl.

In 2019, several papers were published on regium bonds, from which we have selected the
following four Reference works [65–68].

A comparative study of the regium and hydrogen bonds in Au2:HX complexes was carried out at
CCSD(T) level. In all cases, the regium bond complexes are more stable than HB ones. The binding
energies for regium bonds complexes range between –24 and –180 kJ·mol−1, whereas those of the HB
complexes are between –6 and –19 kJ·mol−1 [65]. Similarly, triel and regium bonds were compared, in
particular they augmentative and diminutive interactions; the calculations were carried out at second
order Møller-Plesset (MP2) perturbation theory [66]. For Cu, Ag, and Au atoms, the aug-cc-pVDZ-PP
pseudopotential was used to account for relativistic effects.

A recent investigation described in detail the synthesis, X-ray characterization, and regium
bonding interactions in a trichlorido-(1-hexylcytosine)gold(III) complex [67]. Moreover, this study
also included an interesting search in the CSD, revealing that this type of noncovalent interaction is
recurrent in X-ray structures and has remained essentially unobserved because of the underestimated
van der Waals radius value tabulated for gold. Figure 5 shows the self-assembled dimer that is formed



Crystals 2020, 10, 180 6 of 29

in the solid state of trichlorido-(1-hexylcytosine)gold(III) where two symmetrically equivalent Au· · ·Cl
regium bonds are established.Crystals 2020, 10, 180 6 of 28 
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Finally, regium bonds formed by MX (M = Cu, Ag, Au; X = F, Cl, Br) with phosphine-oxide and
phosphinous acid were studied comparing oxygen-shared and phosphine-shared complexes. These
complexes were investigated by means of ab initio MP2/aug-cc-pVTZ method [68].

A comparative study of the Lewis acidities of gold(I) and gold (III), specifically ClAu and Cl3Au,
towards different ligands (H, C, N, O, P, S) was carried out at the CCSD(T)/CBS level (an example
of N base is given in Figure 6) [69]. The dissociation energies of the complexes are consistent with
Yamamoto model. This author, in three fundamental papers [70–72], signaled that AuCl3 behaves
preferably as a σ-electrophilic Lewis acid with a η1 hapticity typically towards heteroatom lone pairs,
while AuCl behaves a π-electrophilic Lewis acid with a η2 hapticity typically towards CC double and
triple bonds. Amongst the unexpected findings is that both chlorides open the cyclopropane ring to
afford a four-membered metallacycle and that the benzene complexes can show metallotropic shifts.
Theoretical [73] and experimental [74] papers related to gold-arene structures have been published.
Clearly, this field is one of higher growth in recent times.
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Figure 6. Electron localization function (ELF) analysis of the Cl3Au· · ·NCH complex.

The nature of the Au–N bond in Au(III) complexes with aromatic heterocycles led Radenkovic et
al. to the conclusion that they have higher electrostatic than covalent character [75]. AIM analysis
shows that the charge density of the Au–N bond is depleted along the bond path.
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5. Spodium Bonds

As aforementioned, for elements of group 11 acting as electron acceptors, the name of regium
bonds was proposed to define their interaction with Lewis bases. However, for the adjacent Group 12,
the trivial name has not been yet defined. We propose herein to name these bonds “spodium bonds”
because a derivative of the first element of the group (ZnO) is called spodium in Latin. It is important
to emphasize that the interesting and remarkable work of Joy and Jemmis [76] anticipated that metals
of the twelfth group might also participate in noncovalent interactions as Lewis acids. Moreover,
these authors also showed that for groups 3–10, this type of interaction (denoted generically as metal
bonding) is very scarce. In fact, they searched the Cambridge Structural Database (CSD) [77] and could
not find any standard 18-electron transition-metal complexes where the metal participates in a weak
interaction of type X−M· · · :A (A = Lewis Base).

The lack of σ-hole bonding (or metal bonding) in groups 3–10 is due to the fact that the possible
σ-hole on the metal center is screened by the core electrons and diminished charge polarization. This is
explained by the minimal orbital coefficient on the LUMO in the R–M bond (M belonging to groups
3–10). However, for metal complexes of elements of groups 11 and 12 (fully filled d orbitals), highly
diffused valence s and p orbitals can sustain the σ-hole and they are capable to form M–bonds just like
the main-group compounds. One of the first manuscripts describing spodium bonds was published
by Chieh in 1977 [78]. It corresponds to a dichloro-bis(thiosemicarbazide)-mercury(II) complex that
establishes highly directional spodium bonds. It can be clearly observed in Figure 7 that this compound
forms in the solid state infinite 1D supramolecular chains where the electron donor (chlorido ligand) is
located opposite to the polarized Hg–Cl bond at a distance of 3.25 Å that is slightly shorter than the
sum of van der Waals radii (3.30 Å) and significantly longer than the sum of covalent radii (2.39 Å),
thus evidencing the noncovalent nature of the interaction.
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The nature of the metal· · ·CO bonds in Group 12 metal carbonyl cations was analyzed by Frenking
et al. [79] by studying the geometric and energetic features of their carbonyl complexes, which were
also characterized using several computational tools like NBO and distribution of electron density.
They showed that in Group 12 the M–CO bond strength in [M(CO)n]2+ complexes exhibits the trend
Zn2+ > Hg2 + > Cd2+ and, interestingly, the bond energies are strong for n = 1, 2, moderate for n = 3, 4,
and weak for n = 5, 6. Moreover, they showed that Group 12 carbonyls [M(CO)n]2+ exhibit mainly
coulombic attraction with quite small covalent contributions apart from [Hg(CO)]2+ and [Hg(CO)2]2+

complexes. In contrast, covalent contributions were shown to be significant in the metal carbonyls of
Group 11.

It is worthy to highlight the investigation by Vargas et al. where the synthesis and X-ray
characterization of unprecedented monomeric 16-electron π-diborene complexes of Zn(II) and Cd(II)
are reported, which are good examples of noncovalent spodium bonds [80]. As a matter of fact, stable
π-complexes of d10 transition metals like copper(I) and nickel(0) with olefins are known. However,
such complexes involving d10 Zn(II) are not known because the bond is too weak to generate isolable
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compounds. This fact was explained taking into consideration the limited capacity of elements of
Group-12 for π-back-donation. Vargas et al. overcame this drawback by using neutral diborenes
because this type of compounds exhibits a high-lying π(B=B) HOMO orbital. In fact, they were
able to synthesize in good yields M(II)-diborene (M = Zn, Cd) π-complexes. In addition to their
X-ray characterization in the solid state, they were also detected in solution by NMR and UV-visible
absorption spectroscopy. The M(II) centers are located over the center of the B=B bond and adopt a
trigonal planar geometry almost equidistant to both boron atoms.

6. Triel Bonds

The name of triel bonding was proposed by Grabowski [81] in 2014 to describe the noncovalent
interactions between elements of group 13 and electron rich atoms. However, the LA ability of triel
atoms has been known for a long time [82–87]. In fact, trivalent triel compounds, such as trihydrides
and trihalides, present a strong π-hole due to the empty p orbital, which is perpendicular to the plane
of the molecule. This empty p-orbital determines the high directionality of the triel bonding. Since
2014, a number of experimental and theoretical studies have been published devoted to the study of
the triel bond and its relation to reactivity [88–93]. As an example, in Figure 8, we show the X-ray
structure of the hydrochloride of 4-pyridinylboronic acid, where the anion is located precisely over the
B-atom in line with the location of the π-hole, as shown in the MEP surface (see Figure 8).
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Figure 8. (a) Molecular electrostatic (MEP) surfaces of 4-pyridinylboronic acid with indication of the
MEP value at the π-hole in kcal·mol−1. (b) X-ray structure of the hydrochloride of 4-pyridinylboronic
acid. The anion is located over the π hole at the boron atom. Distances in Å.

Energetically, the triel bond is very strong and presents highly covalent character. Actually,
Leopold et al. [94] have named these type of complexes as “partially bonded complexes” after
performing a systematic investigation on the geometric features of triel bonding complexes. The
equilibrium distances are intermediate between van der Waals contacts and covalent bonds. It is
interesting to highlight the behavior of triel bonds depending on the state. For instance, the triel
bonding complex between F3B and acetonitrile exhibits a B· · ·N distances that is 2.01 Å in the gas
phase and 1.63 A in the solid state due to cooperativity effects [95].

As a matter of fact, a significant attention has been paid to synergetic effects between triel
bonds and a great deal of interactions, including hydrogen bonding [96], and other σ-hole based
interactions in elements of group 17 [97], group 16 [98], group 15 [99], group 14 [100], and even regium
bonding [66]. In these type of complexes, where two or more interactions coexist, the triel bond is
usually the most favored one. Upon formation of the complex, the trivalent triel atom usually suffers
a large deformation, changing its planar structure to a pseudo-tetrahedral one thus changing to an
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sp3-hybridization. Recently, ‘like-like’ In(III)· · · In(III) interactions was studied by Echeverría [101,102]
in the crystal of trimethyltriphenyl-phosphine-indium. These unprecedented metallophilic interactions
have not been described for the lighter elements of group 13.

7. Tetrel Bonds

A tetrel bond [103] was defined as a noncovalent bond between any electron donating moiety and a
LA atom belonging to Group 14 of elements. The initial investigations were basically theoretical; [104–110]
however, experimental research on TrB has rapidly grown in the last decade. Actually, there are plenty
of examples in the literature reporting experimental [111,112] investigations on tetrel bonding, which
was named as such in 2013 [113–116]. A differential feature of tetrel bonding compared to halogen,
chalcogen and pnictogen bonding interactions is that the charge density distribution on the tetrel atom
is not anisotropic (absence of lone pairs). Moreover, it should be emphasized that the accessibility of
the σ-holes is reduced in tetrels because they are located in the middle of three sp3-hybridized bonds.
The behavior of carbon (also named carbon bonding in some studies) [111] is usually different because
the rest of tetrels has a strong tendency to expand their valence. Indeed, the heavier tetrels tin and
lead, which are commonly seen as metals, have rich coordination chemistry [117–120]. Furthermore,
hypervalent species of silicon and germanium are very common [121–131]. Nevertheless, the heavier
tetrel atoms (Ge–Pb) participate in noncovalent tetrel bonding interactions when they are in a chemical
context avoiding hypervalency, see for instance the SiO12(OH)8 cage in Figure 9 [132,133]. In fact,
since the atomic polarizability increases in a given group of the periodic table on going from lighter to
heavier elements, the stronger interactions in this group are expected for tin and lead [134–136].
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Figure 9. Left: Molecular electrostatic potential open surface of SiO12(OH)8 cage. Right: A F− ion
encapsulated inside a Tr8O12R8 cage reported by Bauzá et al. [104].

For carbon, tetrel complex can also be understood as the start, [A:· · ·CR3A’] or outcome,
[ATrR3· · · :A’], of an SN2 nucleophilic attack [105] being the transition state an hypervalent specie. Most
of the works on tetrel bonding focus on the heavier atoms leaving “carbon bonding” mostly unstudied.
In an sp3 hybridized electron deficient C atom, such as CF4, there is only a limited space available for
the LB to interact with C due to its small size. In addition, LB gets very close to negative electrostatic
potential of F in CF4. Frontera et al. [107] showed both theoretically and experimentally searching the
CSD [77] that a convenient way to expose theσ-hole is to use cyclic X2C–CX2 structures (X = F, CN) where
the accessibility of the σ-hole increases as the size of the cycle decreases. In fact, the (CN)2C–C(CN)2

motif was found to be highly directional in 1,1’,2,2’-tetracyanocyclopropane/cyclobutane structures.
When sp2-hybridized electron deficient C-atoms are considered (π-hole instead of σ-hole), the

accessibility is not a problem. In this sense, pioneering π-hole interactions were described in 1973
by Bürgi and Dunitz [137,138] in a series of X-ray structural analyses disclosing the trajectory along
a LB or nucleophile predominantly attacks the π-hole of a C=O. More than 20 years later, Egli and
co-workers described the ability of guanosine to interact with the LBs (O-atom of de-oxiribose) and its
importance in the stabilization of Z-DNA form [139].
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8. Pnictogen Bonds

These bonds were first described in 2011 in three papers, one experimental [140] and two
theoretical [141,142]. An authoritative review was published in a book by some of us (Chapter 8:
J. E. Del Bene, I. Alkorta, J. Elguero, The Pnicogen Bond in Review: Structures, Binding Energies,
Bonding Properties, and Spin-Spin Coupling Constants of Complexes Stabilized by Pnicogen Bonds,
191-264) [3,143], and another by Scheiner [144]. Although pnictogen bonds are, after halogen bonds,
the most studied weak interaction, these bonds have been treated in a reduced number of books and
reviews [103,143]. Grabowski classified them as tetrahedral Lewis acid centers [103]. Legon discussed
these bonds in an article called “ Tetrel, pnictogen and chalcogen bonds identified in the gas phase
before they had names: a systematic look at noncovalent interactions” [57].

They are also called “pnicogen bonds” but the pnictogen name should prevail. Similar to halogen
bond, pnictogen bond is also a noncovalent interaction. In pnictogen-bond complex, pnictogen atoms
(Group VA elements) act as Lewis acid, which can accept electrons from electron donor groups.

Legon pointed out that tetrel, pnictogen, and chalcogen bonds were known in the gas phase
(mainly by this author, using rotational spectroscopy) before they had names [56]. Recently, the
gas-phase structure of a pnictogen-bonded compound was determined (Figure 10) [145].
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One of our main contributions to pnictogen bonds are the EOM/CCSD calculations, made by J. E.
Del Bene, of 31P coupling constants through the pnictogen bond, we called npJ(X-31P) [142]. Of our
papers concerning pnictogen bonds, we have selected the following eight ones [146–153]. Most of
these papers were calculated at the MP2/aug’-cc-pVTZ basis set. We and others have found that FPH2

and related YPH2 (Y = H, OH, OCH3, CH3, NH2) and FH2X (X = P, As) are strong and directional
Lewis acid especially suited for theoretical studies [154–156]. Highly acidic heteroboranes yield strong
pnictogen bonds [157].

Li, McDowell et al. have shown that upon protonation, the binding distance of the
pyridine-(4)-PH2· · ·NH3 & PH3 complexes becomes shorter and the interaction energy is more
negative. This shows that the pnictogen bond is strengthened by the protonation of the N atom of
pyridine [158]. P· · ·π and π-hole pnictogen bonds have been studied [159,160] and the Cl3P· · ·C6H6

complex studied experimentally by FTIR spectroscopy (Figure 11) [159]. Two important papers have
been published, one on the catalysis by pnictogen bonds where there is a distinction between PH2F
σ-hole vs. PO2F π-hole [161], and the other of supramolecular structures using triple pnictogen
bonds [162].
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Figure 11. The Cl3P· · · benzene complex [159].

Complexes H2XP· · ·NXH2 (X = H, CH3, NH2, OH, F, Cl) presenting P· · ·N pnictogen bonds show
stabilization energies between 8 and 39 kJ·mol−1 [146]. 31P chemical shieldings and 1pJ(N-P) SSCC
across the pnictogen interaction were calculated. The last ones exhibit a quadratic dependence on the
N–P distance for complexes H2XP· · ·NXH2, similar to the dependence of 2hJ(X–Y) on the X–Y distance
for complexes with X–H· · ·Y hydrogen bonds.

The study the influence of F−H· · · F hydrogen bonds on the P· · ·P pnictogen bond in complexes
nFH· · · (PH2F)2 for n = 1− 3 shows that the formation of F−H· · · F hydrogen bonds leads to a shortening
of the P−P distance, a lengthening of the P−F distance involved in the hydrogen bond, a strengthening
of the P· · ·P interaction, and changes in atomic populations [147]. 31P chemical shieldings, and 1pJ
(P−P) coupling constants were calculated.

Pnictogen-bonded cyclic trimers (PH2X)3 with X = F, Cl, OH, NC, CN, CH3, H, and BH2 have
been computed (Figure 12) [148]. Most of these complexes have C3h symmetry and binding energies
between −17 and −63 kJ·mol−1. The NMR properties of chemical shielding and 31P–31P coupling
constants have also been evaluated.
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Three papers have been reported comparative studies of different NCIs. In the first one [149].
the influence of substituent effects on the formation of P· · ·Cl pnictogen bonds or halogen bonds
was assessed. There, the potential energy surfaces H2FP· · ·ClY for Y = F, NC, Cl, CN, CCH, CH3,
and H were explored finding three different types of halogen-bonded complexes with traditional,
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chlorine-shared, and ion-pair bonds. Two different pnictogen-bonded complexes have also been
found on these surfaces. In the second one [153], ab initio calculations were carried out in search of
equilibrium dimers on (XCP)2 potential energy surfaces, for X = CN, Cl, F, and H. Five equilibrium
dimers with D∞h, C∞v, Cs, C2h, and C2 symmetries exist on the (ClCP)2 potential energy surface, four on
the (FCP)2 and (HCP)2 surfaces, and three on the (NCCP)2 surface. These dimers are stabilized by
traditional halogen, pnictogen, and tetrel bonds, and one of them by a hydrogen bond. Finally, Resnati
et al. reported an example of a cocrystal where a pnictogen bond prevails over halogen and hydrogen
bonds [163].

Another paper reported studies on P(V) complexes [150]. Pnictogen-bonded complexes
HnF5–nP· · ·N-Base, for n = 0–5 were studied (two illustrative examples are given in Figure 13). The
computed distances and Fax−P− Feq angles in complexes F5P:N-base are consistent with experimental
CSD data [77]. All of the complexes with PF5, PHF4, PH4F, and PH5 have C4v symmetry, which is the
same symmetry as that of the Berry transition structures of the monomers which lead to the exchange
of axial and equatorial atoms.
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An ab initio study of the hydration process of metaphosphoric acid shows the importance of the
pnictogen interactions [151]. This work was carried out at the MP2/6-31+G(d,p) and MP2/aug-cc-pVTZ
computational levels. Up to three explicit water molecules have been considered. The inclusion of
more than one water molecule produces important cooperative effects and a shortening of the O· · ·P
pnictogen interaction simultaneously the reaction barrier drops about 50 kJ mol−1.

A general study of several kinds of NCIs was carried at the MP2/aug-cc-pVTZ computational
level. In this paper [152], the dissociation energies De of 250 complexes B· · ·A composed of 11 Lewis
bases B (N2, CO, HC≡CH, CH2=CH2, C3H6, PH3, H2S, HCN, H2O, H2CO, and NH3) and 23 Lewis
acids (HF, HCl, HBr, HC≡CH, HCN, H2O, F2, Cl2, Br2, ClF, BrCl, H3SiF, H3GeF, F2CO, CO2, N2O,
NO2F, PH2F, AsH2F, SO2, SeO2, SF2, and SeF2) can be represented to good approximation by means of
the equation De = c’NBEA, in which NB is a numerical nucleophilicity assigned to B, EA is a numerical
electrophilicity assigned to A, and c’ is a constant, conveniently chosen to have the value 1.00 kJ mol−1.
The 250 complexes were chosen to cover a wide range of noncovalent interaction types, namely: (1)
the hydrogen bond; (2) the halogen bond; (3) the tetrel bond; (4) the pnictogen bond; and (5) the
chalcogen bond.

Diederich orthogonal interactions (N:· · ·O2N) are pnictogen bonds when there is a nitrogen lone
pair acting as the Lewis base and a nitrogen atom of the nitro group acting as the Lewis acid [164–166].
These interactions have been used by us [167–170] and by others to explain some experimental
observations [171]. A theoretical paper entitled “Orthogonal interactions between nitryl derivatives
and electron donors: pnictogen bonds”; in this paper complexes from nitryl derivatives (NO2X,
X = CN, F, Cl, Br, NO2, OH, CCH, and C2H3) and molecules acting as Lewis bases (H2O, H3N,
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CO, HCN, HNC and HCCH) have been obtained at the MP2/aug-cc-pVTZ computational level; a
search in the CSD database [77], was carried out, showing a large number of similar interactions in
crystallographic structures.

9. Chalcogen Bonds

These bonds have received less attention than the pnictogen bonds, probably due to the fact that
P is in chemistry and in biochemistry more important than S. In addition, note that 31P is a very good
nucleus for NMR (spin 1/2, natural abundance 100%) and 33S a “bad” one (spin 3/2, natural abundance
0.76%). For books and reviews on chalcogen bonds, see [172–175].

The name “chalcogen bond” was introduced in 2009 by Wang, Ji and Zhang [176]. But papers
discussing these NCIs were long known [177–181]. In particular, Gleiter et al. [181] investigated the
intermolecular interactions between two molecules containing group 16 elements. The strength of this
interaction increases steadily when going from O via S to Se and reaches its maximum for Te. Addition
of electron-withdrawing substituents increases the strength of the bond. S· · · S contacts in thioamides
have been studied both experimentally (charge densities) and theoretically [182].

Since most molecules have several kinds of atoms, and since all atoms can be Lewis acids, then,
confronted with a Lewis base, several types of NCIs can be formed. For this reason, many papers
have been devoted to the competition between some combination of hydrogen, alkaline-earth, tetrel,
pnictogen, chalcogen, and halogen bonds [157,183–190]. Curiously, although the nature of the base can
change the nature of the most stable acid, none of these publications reported an inversion of acidity.
Huynh electronic parameter and its correlation with Hammett σ constants were determined for neutral
chalcogen donors [187].

More interesting are the papers reporting cooperative (augmentative) effects where a NCI
is reinforced by another NCI, to the point to reach extraordinary values of gas-phase acidity or
basicity [191,192].

Although most chalcogen bonds are related to intermolecular situations, a few correspond
to intramolecular situations, e.g., to 1,8-disubstituted naphthalenes [193,194]. Other interesting
topics related to chalcogen bonds are their use in chiral recognition [195], chalcogen-bonding
catalysis [196], and the use by Diederich of benzo[c][1,2,5]thiadiazoles and benzo[c][1,2,5]telluradiazoles
to build up capsule dimers [197], followed by a study of “2S-2N” squares formed by
benzo[c][1,2,5]thiadiazoles [198].

10. Halogen Bonds

Halogen bonding is a σ-hole interaction of type R–X· · · :A (X = any element of group 17 including
astatine [199]); that is currently experiencing a significant interest in the field of supramolecular
chemistry [200–204]. It is the most directional interaction [205] of the σ-hole family, and it can be
easily tuned by selecting the type of halogen atom involved (X = I > Br > Cl >> F) [206,207] and nature
of the substituent R. This tunability facilitates the rational design of X-bonded catalysts [208,209]
and supramolecular synthons to be utilized in crystal engineering [210–212]. The distribution of the
electron density in a covalently bonded halogen atom is anisotropic. That is, it shows a region of
positive electrostatic potential [213] along the extension of the covalent bond that confers it the ability
to act as Lewis acid (i.e., halogen bond donor) [214]. Moreover, it also has a region of negative potential
(negative belt) associated to the electron lone pairs conferring it the possibility to act as an electron-rich
halogen bond acceptor (Lewis base) [215]. Recently, the X–Bond interaction was used in the field of
molecular machines [216–218] providing a new dimension to this interaction. In addition, regarding
its counterpart (Lewis base), it was recently demonstrated that transition metal complexes can act as
halogen bond acceptors [219–221]. Clark [222,223] and Hobza [224,225] related the strength of halogen
bonding to the so-called “polar flattening”.

Several excellent reviews [181,201,202,226] and books [33,227] are available in the literature
describing most aspects of halogen bonding; therefore, only some general features are commented
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herein briefly. Halogen bonding is comparable in strength [228] to the ubiquitous hydrogen bond,
however, more sensitive to steric effects because the σ-hole is located in a small region of the van der
Waals surface along the extension of the R–X bond. A differentiating feature is that the H-bond can be
only tuned varying the nature of R and the halogen bond can be tuned varying both R and X. The
nature of the X-bond is still under discussion in the literature [229,230]. Note that most theoretical
studies propose that an important contribution comes from the stabilization due to donor-acceptor
orbital interactions. That is, a filled π or n orbital from the Lewis basic site donates electron density to
the antibonding R–X sigma bond orbital [231–233]. Other important contributions are electrostatic
effects, polarization in heavy halogens, and dispersion forces that depend upon on the nature of both
the Lewis acid and Lewis base [234]. Finally, Kozuch and Martin used halogen bonds as benchmarks
for theoretical analyses of wave methods and DFT methods [235].

11. Aerogen Bonds

A noble gas (or aerogen) [236] bond (NgB) was recently defined as: the interaction between an
electron rich atom or group of atoms and any element of Group-18 acting as electron acceptor [237]. While
reports on π,σ-hole interactions involving atoms of groups 14 to 17 as LA have exponentially grown in
recent years, investigations on experimental aerogen bonding are scarce. One of those was reported
by Schrobilgen’s group [238], where they synthesized and X-ray characterized several xenon salts
[N(C2H5)4]3 [X3(XeO3)3] X = Cl, Br. These salts form three aerogen bonding interactions with the
halides by using the three σ-holes opposite to the O=Xe bonds. Similar behavior was observed by
Goettel et al. [239] in their investigation of a series of XeO3 adducts with nitriles since they also form
three aerogen bonds in the solid state.

In Figure 14, two X-ray structures are represented where the XeO3 establishes three
concurrent aerogen bonds with pyridine N-atoms [232]. These aerogen bonds are shorter for the
p-dimethylaminopyridine Lewis base due to its stronger basicity compared to pyridine.
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Britvin et al. also demonstrated the tendency of xenon(VI) to form oxide structures synthesizing
K4Xe3O12, an unprecedented perovskite based on xenon. Its importance is due to the fact that xenon is
the only p-block element that forms perovskite frameworks by using a single cation (K+). Remarkably,
the authors showed that aerogen bonds are the NCIs that preserve the structural integrity of the
perovskite. It is interesting to highlight that these compounds are explosive and the aerogen bonds
have been proposed to be the trigger bonds responsible for the detonation [240,241].

Several computational works studied this interaction energetically and geometrically, including
its physical insights [242–253]. Interestingly, the effect of increasing the pressure (up to 50 GPa) on
the aerogen interactions in XeO3 was also analyzed, resulting in O-hopping along the noncovalent
Xe–O· · ·Xe aerogen bonds, resembling H-hopping commonly observed in hydrogen bonds [254].
Moreover, cooperativity effects in aerogen bonding clusters were studied [255] and the interplay with
other interactions, as well [256–259].



Crystals 2020, 10, 180 15 of 29

12. Other Bonds

Cation-π and anion-π (or lone pair-π) [260,261] and even π-π stacking between a π-excessive and
π-deficient aromatic rings (Figure 15) can be classified as LA/LB complexes (the Lewis acids being the
cation and the hexafluorobenzene and the Lewis bases the anion, the lone pair and hexamethylbenzene)
could be classified as tetrel bond since the carbon atoms act like LA (in the case of C+ it depends
on its nature, i.e., C = Na should be an alkaline bond). However, we have decided not to force our
systematization running against practices shared by the scientific community.Crystals 2020, 10, 180 15 of 28 
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13. Modeling

The use of statistical methods to establish extra-thermodynamic relationships [262] for discussing
values obtained by quantum methods presents the problem that they have no error, unlike experimental
values; note that, without error, no statistical methods can be applied. In spite of this flaw, regression
analysis is currently applied to values without error [263].

Two kinds of models are most commonly used: geometrical models like the Hammett, Taft,
Grunwald-Winstein equations and the models subjacent to the HSAB (Hard Soft Acid Base)principle.
Since we are dealing with Lewis acids and bases, it would be interesting to write a quantitative model
that corresponds to hard-hard and soft-soft interactions being strong and hard-soft/soft-hard being
weak. We are aware of Mayr et al. criticism of HSAB [264] but note a paper of 2002 by Chandrakumar
and Pal entitled “A systematic study on the reactivity of Lewis acid-Base complexes through the local
Hard-Soft Acid-Base principle” [265] where they succeed in calculating correctly the interaction energy
of complexes using a HSAB model (not cited by Mayr in 2011). A quantitative version of the HSAB
principle is Drago’s ECW model [266,267].

Alkorta and Legon in two papers, which are (i) “Nucleophilicities of Lewis bases B and
electrophilicities of Lewis acids A determined from the dissociation energies of complexes B· · ·A
involving hydrogen bonds, tetrel bonds, pnictogen bonds, chalcogen bonds and halogen bonds” and (ii)
“Noncovalent interactions involving alkaline-earth atoms and Lewis bases B: An ab initio investigation
of beryllium and magnesium bonds, B· · ·MR2 (M = Be or Mg, and R = H, F or CH3”) use geometrical
models to analyze De (equilibrium dissociation energies) in function of kσ (quadratic force constants)
or NB (nucleophilicity of the Lewis base, B) plus EA (electrophilicity of the Lewis acid): De = a0 +

aijNBEA [53,152].
Steric effects are inexistent for protonation in the gas-phase due to the small size of the proton

and appear in solution due to solvation, for example, by water molecules [268,269]. For HBs, steric
effects have been found, but they are weak or inexistent [270–273]; on the other hand, steric effects are
important in NCIs giving yield to a new concept, that of “Frustrated Lewis Pairs” (FLP) [274–278].
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14. Application Con Cahn-Ingold-Prelog Rules to Complexes Formed by Weak Interactions
(Including Hydrogen Bonds)

For all the situations where the Cahn-Ingold-Prelog priority rules apply for covalent and
coordinative structures (ligancy four, axial, planar, . . . ) [279,280], the priority rules also apply
for noncovalent complexes [281,282]. This is particularly useful for crystal structures.

15. A General Definition for Weak Interactions (Including HBs)

A weak interaction between a Lewis acid and a Lewis base is established if the stabilizing forces
(electrostatic, dipole-dipole, covalent, . . . ) overcome the repulsion forces (steric). It is not necessary
that the complex should be the lowest minimum; it suffices that there is a barrier between the complex
and other minima of lower energy.

16. Summary and Outlook

The number and quality of recent references prove that NCIs are a topic of great and increasing
interest. However, as the analysis of the authors of these references show, they belong to a reduced
number of groups proving that NCIs are still not part of the large community of chemists. We hope
this review will contribute to their diffusion and general acceptance.

A systematic naming resulting from identifying the interaction referring to the Group of the
periodic table is very convenient for the sake of unambiguousness. Basically, all donor-acceptor
noncovalent interactions can be identified by the element acting as the electrophile. This criterion has
been already adopted by the IUPAC for the definition of hydrogen, halogen, and chalcogen bonds.
This can be systematically applied to attractive interactions formed by the elements of Groups 1, 2,
10–18 and also to transition metals in a near future. Other names used in the literature like lithium
bond, bromine bond or carbon bond can be considered sub-classes of alkali metal bond, halogen
bond, and tetrel bond, respectively. Other interactions, like π–π stacking, lp–π, or anion–π interactions
involving heteroaromatics, cannot be included in this systematic nomenclature. In contrast, the
cation–π interaction could be classified using this nomenclature by using the name of the group to
which the cationic element belongs.

It can be predicted that more gas-phase MW structures will be determined in a not so-distant
future. Organometallic chemists will report new structures of the regium and spodium classes. Other
future developments will be attached to the biological importance of the NCIs.
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