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Abstract: A selection of novel non-symmetric supramolecular liquid crystal dimers and trimers formed
by hydrogen-bonding have been prepared and their phase behaviour characterised by polarised optical
microscopy, X-ray diffraction and temperature-dependent Fourier-transform infrared spectroscopy.
We mix the bent twist-bend nematogen 4-[6-(4’-cyanobiphenyl-4-yl) hexyloxy]-benzoic acid (CB6OBA)
with a series of small stilbazole-based compounds 4-[(E)-2-(n-alkoxyphenyl)ethenyl]pyridines (nOS) of
varying terminal chain length (n) to obtain the CB6OBA:nOS complexes. Complexes with n ≤ 7 exhibit
nematic and twist-bend nematic behaviour, followed on cooling by a smectic C phase for n = 4–7, and finally,
a hexatic-type smectic X phase for n = 3–7. Mixtures with n = 8–10 exhibit a smectic A phase below the
conventional nematic phase, and on further cooling, a biaxial smectic Ab phase and the same hexatic-type
SmX phase. Supramolecular trimers, CB6OBA:CB6OS and CB6OBA:1OB6OS, formed between CB6OBA
and dimeric stilbazoles [(E)-2-(4-{[6-(4’-methoxy[1,1’-biphenyl]-4-yl)hexyl]oxy}phenyl)ethenyl]pyridine
(1OB6OS) or 4-[(E)-4’-(6-{4-[(E)-2-(pyridin-4-yl)ethenyl]phenoxy}hexyl)[1,1’-biphenyl]-4- carbonitrile
(CB6OS), exhibit nematic and twist-bend nematic phases, and are the first hydrogen-bonded trimers
consisting of unlike donor and acceptor fragments to do so.

Keywords: liquid crystals; twist-bend nematic phase; hydrogen-bonding; supramolecular liquid
crystals; supramolecular dimers; supramolecular trimers; spontaneous symmetry breaking

1. Introduction

The experimental identification of a new nematic phase in 2011 is undoubtedly one of the most
significant developments of the past decade in liquid crystal science [1]. The twist-bend nematic phase,
NTB, was first predicted in the mid 1970s by Meyer [2] and later, independently in 2001 by Dozov [3],
who proposed that a nematic phase consisting of bent-shaped molecules would have an anomalously
low bend elastic constant, K33, compared to conventional rod-like nematogens. He considered the
possibility that K33 could become negative giving a spontaneous, uniform bend of the director. However,
such uniform bend is elastically impossible, and so must be accompanied by other deformations of the
local director, either splay or twist, giving rise to either the splay-bend or twist-bend nematic phases [3].
In the twist-bend nematic, NTB, phase, the molecules are arranged in a heliconical superstructure of
nanoscale periodicity while retaining a random distribution of their centres of mass [4]. This chiral
superstructure is formed despite the constituent molecules being chemically achiral, and indeed,
the NTB phase represents the first example of spontaneous chiral symmetry breaking in a fluid system
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with no spatial ordering. As this induction of chirality is spontaneous, there exists an equal probability
of the formation of either handedness of the helix, and hence, the NTB phase consists of doubly
degenerate locally chiral domains of opposite handedness giving a globally achiral phase. However,
the presence of intrinsic molecular chirality removes this degeneracy and the chiral NTB phase is
formed [5]. In his seminal work, Dozov also predicted the formation of heliconical smectic phases [3]
and examples of these have recently been reported [6–8].

The discovery of the NTB phase resulted from a comprehensive study of the liquid crystal dimer
1,7-bis-4-(4-cyanobiphenyl) heptane, CB7CB, using a range of different techniques [1]. Liquid crystal
dimers consist of molecules containing two rigid aromatic mesogenic units connected by a flexible
alkyl spacer, most commonly an alkyl chain [9,10]. In CB7CB, the mesogenic units are cyanobiphenyl
and the spacer is a heptamethylene chain. CB7CB exhibits two nematic phases, at higher temperatures,
a conventional nematic (N) phase and at lower temperatures, the NTB phase [1]. The observation
of the NTB phase for CB7CB was attributed to the bent shape of the molecule arising from the
odd-membered spacer. From a chemist’s perspective, understanding the molecular features influencing
the formation and stabilisation of the NTB phase is of paramount importance, and allows for the
design of new materials that have targeted properties. These studies have involved systematically
varying the molecular structure of twist-bend nematogens and have included varying the spacer
length [11,12], the nature of the link between the spacer and mesogenic groups [13–17], the structure of
the mesogenic units [18,19], and of the terminal substituents [12,20–23]. By far the greatest number
of twist-bend nematogens reported so far may be described as odd-membered liquid crystal dimers
having a similar molecular curvature to CB7CB. However, the NTB phase has also been observed for
rigid bent-core materials [24], a hybrid bent-core-calamitic dimer [25], trimers and tetramers [26–29],
a hexamer [30], and main-chain polymers [31]. The common structural feature shared by all these
molecular architectures is curvature, although this is not always uniform. It is widely believed that
this curvature is a prerequisite to the observation of the NTB phase. This view has been reinforced
by a generalised Maier–Saupe theory developed for rigid V-shaped molecules that has shown the
twist-bend nematic–nematic phase transition temperature to be highly sensitive to the molecular bend
angle [32].

An alternative approach to the design and preparation of twist-bend nematogens is the formation
of supramolecular dimeric and trimeric structures assembled through hydrogen bonding in mixtures
of hydrogen bond donors and acceptors [33,34]. This is a flexible and efficient alternative to the use of
conventional synthetic methods to obtain covalently bonded molecules, and a particularly convenient way
of adding functionality to a molecule in a straightforward and controllable manner. The observation of an
NTB phase in 4-[6-(4’-cyanobiphenyl-4-yl) hexyloxy]benzoic acid (CB6OBA) was attributed to the formation
of hydrogen-bonded complexes between pairs of acids yielding bent supramolecular complexes [33].
In this system, however, there is no element of molecular recognition given that two identical molecules
form the complexes. The aspect of molecular recognition was a critical factor in our design of the first
twist-bend nematogens formed by unlike H-bond donors and acceptors. These were obtained in binary
mixtures of [(E)-2-(4-{[6-(4’-methoxy[1,1’-biphenyl]-4-yl)hexyl]oxy}phenyl) ethenyl]pyridine (1OB6OS)
or 4-[(E)-4’-(6-{4-[(E)-2-(pyridin-4-yl)ethenyl]phenoxy}hexyl) [1,1’-biphenyl]-4-carbonitrile (CB6OS) with
the n-alkoxybenzoic acids (nOBAs) [34]. For short n, the mixtures exhibited NTB and N phases, and on
increasing n, a series of smectic phases appeared below the N phase, extinguishing the NTB phase. These
are the first examples of the formation of spontaneous chirality driven by hydrogen bonding between
unlike and achiral components in a fluid system with no spatial ordering [34].

The 1OB6OS:nOBA [34] and CB6OS:nOBA [35] complexes consist of short, rod-like benzoic acid
fragments and a bent stilbazole-based dimer. Neither component individually exhibits the NTB phase.
Here, we reverse the hydrogen bond and report the properties of the CB6OBA:nOS mixtures (Figure 1).
The H-bonded acceptor, CB6OBA, is now the bent-shaped template and a twist-bend nematogen, and
this is complexed with small rod-like stilbazole-based molecules of varying alkoxy chain length n,
the 4-[(E)-2-(n-alkoxyphenyl)ethenyl]pyridines, nOS. In this case, the hydrogen bond donor is not



Crystals 2020, 10, 175 3 of 16

liquid crystalline. In designing this particular system, we note that the odd-membered hexyloxy spacer
has been shown to impart a sufficiently bent molecular shape to promote the NTB phase in conventional
liquid crystal dimers [36], and that the hydrogen bond between pyridyl-based fragments and benzoic
acids is strong enough to promote liquid crystalline complexes. Increasing the length of the terminal
chain attached to the hydrogen bond donor may reveal heliconical smectic phases as well as the NTB

phase [37].
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Figure 1. Structure of the CB6OBA:nOS hydrogen-bonded supramolecular dimers.

The overwhelming majority of covalently bonded liquid crystals found to exhibit the twist-bend
nematic phase have been low-molar-mass dimers. A current active area of research is the investigation
of NTB phase formation by trimers, higher oligomers and polymers, with an increasing number of
successful studies recently published [28,30,31,38,39]. As described earlier, CB6OBA was the first
example of a supramolecular trimer capable of exhibiting the NTB phase. CB6OBA can be described as
a ‘symmetrical’ supramolecular trimer, but here, we investigate the possibility of NTB phase formation
in non-symmetric hydrogen-bonded trimer complexes made up of unlike hydrogen bond donor and
acceptor molecules: CB6OBA:1OB6OS and CB6OBA:CB6OS (Figure 2).
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Figure 2. Structure of the CB6OBA:mB6OS hydrogen-bonded supramolecular trimers, where m = C
(nitrile), 1O (methoxy).

2. Materials and Methods

2.1. Synthesis 4-[6-(4’-Cyanobiphenyl-4-yl)Hexyloxy]Benzoic Acid (CB6OBA)

CB6OBA was prepared by the procedure shown in Scheme 1, a modification to that reported
previously [33]. Thus, a Friedel–Crafts acylation and subsequent ketone reduction gave 2; 3 was
prepared by a Williamson ether synthesis; 4 by a modified Rosenmund-von Braun cyanation reaction,
and removal of the methyl group using base hydrolysis gaveω-(4’-cyanobiphenyl-4-yl)hexyloxybenzoic
acid, CB6OBA 5.
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2.2. Synthesis 4-[(E)-2-(4-Alkoxyphenyl)Ethenyl]Pyridines, nOS

The alcoholic stilbazole 4-[(E)-2-(pyridin-4-yl)ethenyl]phenol (HOS) 6 was prepared through the
base-catalysed condensation of 4-hydroxybenzaldehyde and 4-methylpyridine [40]. This was combined
with the relevant n-bromoalkane in a Williamson ether synthesis to give the alkyl-terminated stilbazole
compounds 7, as shown in Scheme 2.
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Scheme 2. Synthesis of nOS, where R = CnH2n+1 (n = 1–10).

Full synthetic procedures and analytical data for all final products and their intermediates are
given in the ESI.

2.3. Binary Mixtures

Binary mixtures were prepared by co-dissolving pre-weighed amounts of each compound in
dichloromethane or chloroform and allowing the solvent to evaporate slowly at room temperature.
The mixtures were further dried in a vacuum oven at 50 ◦C for ~16 h.

2.4. Characterisation

2.4.1. Polarised Optical Microscopy (POM)

POM measurements were performed using an Olympus BH2 polarising light microscope equipped
with a Linkam TMS 92 hot stage (University of Aberdeen),or a Zeiss Axio Imager A2m polarizing
microscope equipped with a Linkam heating stage (University of Warsaw). Glass cells obtained from
Warsaw Military University of Technology (WAT) with thicknesses of 1.6 or 3 microns, with ITO
transparent electrodes and polymer aligning layers were used.

2.4.2. Differential Scanning Calorimetry (DSC)

The thermal behaviour of the final products and the binary mixtures was investigated using
a Mettler Toledo DSC1 differential scanning calorimeter (University of Aberdeen) equipped with a TSO
801RO sample robot and calibrated using indium and zinc standards. The heating profile in all cases,
unless otherwise stated, was heat, cool and reheat at 10 ◦C min−1 under nitrogen, with a 3-minute
isotherm between heating and cooling segments. Thermal data were extracted from the second heating
trace unless otherwise stated.

2.4.3. X-Ray Diffraction (XRD)

Small-angle X-ray diffraction (SAXS) patterns for powder samples were obtained with a Bruker
Nanostar system using CuKα radiation and patterns were collected with an area detector VANTEC2000
(University of Warsaw). The temperature of the sample was controlled with a precision of ± 0.1 K.
Samples were prepared either in thin-walled glass capillaries or as droplets on a heated surface.
Wide-angle diffractograms (WAXS) were obtained with a Bruker D8 GADDS system (CuKα line,
Goebel mirror, point beam collimator, VANTEC2000 area detector) (University of Warsaw).
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2.4.4. Temperature-dependent Fourier Transform Infrared Spectroscopy

Spectra were recorded on a Thermo Nicolet NEXUS 470 FT-IR spectrometer, equipped with
a Linkam FT-IR 600 heating stage and a TMS 93 control unit. (University of Aberdeen) Resulting
spectra were analysed using OMNIC software (Thermo Scientific). Samples were dispersed in KBr
(~1%, by wt. of compound), ground into a fine powder and compacted at 300 bar for at least 10 min
to yield homogeneous discs of around 1.5 mm thickness. Background FT-IR measurements were
performed immediately prior to experiments by measuring the transmittance through a pristine KBr
disc. For measurement of compounds, the materials were melted into the isotropic phase to remove
any thermal history, and data were collected in transmittance mode on cooling to room temperature in
steps of 5 ◦C. The spectra were collected as the average of 32 scans in the 4000–400 cm−1 frequency
range, with a resolution of 4 cm−1. For complex absorption bands, comprising several overlapping
peaks, a peak fitting is used to determine the positions, widths, heights and areas of the underlying
bands. Peak fitting is based on the original algorithm of non-linear peak fitting described by the
Levenberg-Marquardt method [41].

3. Results

CB6OBA exhibits an enantiotropic nematic phase and a monotropic NTB phase, and the transition
temperatures are in excellent agreement with those reported previously (see Table S1 in the ESI) [33,42].
None of the stilbazole-based materials, nOS, are liquid crystalline and all melt directly into the isotropic
phase at temperatures given in the ESI. The transition temperatures for the CB6OBA:nOS complexes,
where n = 1−10, and the associated entropy changes are listed in Table 1. Complexes with terminal chains
of length n = 1–7 exhibit two nematic phases, N and NTB, whereas for longer alkyl chains NTB behaviour
is precluded by a series of smectic phases. The nematic phases were identified primarily based on their
optical textures. For the conventional nematic phase, a schlieren texture with both two- and four-point
brush disclinations was observed, and on reducing the temperature below TNTBN, the schlieren pattern
becomes distorted and somewhat blocky. On further cooling, a rope-like texture with coexisting areas of
parabolic defects develops, characteristic of the NTB phase. Representative textures for CB6OBA:1OS are
shown in Figure 3. In a planar aligned cell, a uniform texture is seen for the higher temperature nematic
phase, which changes to a distinct striped pattern on cooling to the NTB phase, see Figure 4. X-ray
diffraction (XRD) studies confirm these assignments as only very weak diffuse low-angle signals were
seen in the patterns for both nematic phases, indicating short-range positional ordering of the molecules.

Table 1. Transition temperatures and associated entropy changes for the CB6OBA:nOS mixtures.

* Temperature obtained from DSC cooling trace. † Temperature obtained from POM.
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n TCr-/°C TSmX/°C TSmAbSmA/°C TSmCNTB/°C TSmAN/°C TNTBN/°C TNI/°C 

1 130     110† 182 

2 119     115† 190 

3 109 66*    108† 173 

4 108 70*  86*  113† 180 

5 121 68*  92*  107† 165 

6 105 63*  96*  106† 158 

7 100 66*  100*  104† 155 

8 99 68* 96*  103  152 

9 101 67* 95*  109  147 

10 105 72* 100*  119  152 

n ΔSCr-/R ΔSSmX-/R ΔSSmAbSmA/R ΔSSmCNTB/R ΔSSmAN/R ΔSNTBN/R ΔSNI/R 

n TCr-/
◦C TSmX/

◦C TSmAbSmA/
◦C TSmCNTB/

◦C TSmAN/
◦C TNTBN/

◦C TNI/
◦C

1 130 110 † 182
2 119 115 † 190
3 109 66 * 108 † 173
4 108 70 * 86 * 113 † 180
5 121 68 * 92 * 107 † 165
6 105 63 * 96 * 106 † 158
7 100 66 * 100 * 104 † 155
8 99 68 * 96 * 103 152
9 101 67 * 95 * 109 147

10 105 72 * 100 * 119 152
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Table 1. Cont.

n ∆SCr-/R ∆SSmX-/R ∆SSmAbSmA/R ∆SSmCNTB/R ∆SSmAN/R ∆SNTBN/R ∆SNI/R

1 8.95 - 0.67
2 9.64 - 0.94
3 8.19 0.12 - 0.89
4 11.63 0.90 0.23 - 0.70
5 13.51 0.96 0.24 - 0.94
6 13.07 1.00 0.30 - 0.91
7 13.01 1.11 0.48 - 1.02
8 12.46 0.87 0.58
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For complexes with n = 4–7, further cooling results in a transition from the NTB phase to a smectic
phase. The X-ray diffraction pattern of the smectic phase contains a broad, diffuse signal in the wide-angle
region indicating liquid-like ordering within the layers, and a sharp small-angle signal corresponding to
a periodicity of approximately the full length of the complex. Optically, the striped texture of the NTB

phase is retained in the smectic phase, but the stripes become noticeably less mobile and there is a marked
change in birefringence, see Figure 4. Regions of homeotropic alignment which optically appear black
in the nematic phases simultaneously develop a weakly birefringent schlieren texture, see Figure 4.
The observation of a striped texture is thought to indicate a small bend elastic constant in the NTB phase,
and as such, its appearance in this smectic phase strongly suggests that its bend elastic constant is also
small. Such a striped texture has been observed for the SmCTB phase [8]. However, the observation of
a schlieren texture is not consistent with a previously reported heliconical structure of the SmCTB phase
in which directors in consecutive layers rotate according to an ideal clock model; a system in which the
molecular orientations are averaged over the helix and hence a homeotropic texture is expected even
though the phase is tilted [8]. Recently, however, we have observed a variant of the heliconical smectic C
phase which appears to have a distorted clock structure, in which the molecular orientations are not
fully averaged over the helix and hence a schlieren texture can be observed. To distinguish between
a conventional SmCA phase and such a distorted-clock type smectic CTB phase, detailed resonant X-ray
diffraction studies would be required [7]. Unfortunately, in this case, the monotropic nature of the phase
precludes this possibility.

For complexes with n = 8–10, the phase behaviour is quite different. The N phase cools first into
a liquid-like lamellar phase, which is optically uniaxial, appearing as a uniformly black homeotropic
texture when viewed between crossed polarisers. The sharp small-angle signal seen in the X-ray
diffraction pattern again corresponds to a layer spacing of approximately the full complex length,
while the high-angle signal is broad and diffuse. These observations strongly suggest a SmA phase.
On further cooling, there is an emergence of a grey schlieren texture containing both two- and four-point
brush disclinations, see Figure 5. The X-ray diffraction pattern of this lower temperature phase is similar
to that seen for the SmA phase; however, the appearance of a second sharp signal in the low-angle
region, corresponding to the 2nd harmonic of the molecular length signal, indicates an increase in the
ordering of the molecules, although the high-angle signal remains broad and diffuse, see Figure 5.
Precise measurements of the variation in the layer spacing as a function of temperature are shown in
Figure 6. The layer spacing sharply increases close to the Sm-Sm transition, and such an increase is
indicative of a transition from the conventional SmA to the biaxial smectic A, SmAb, phase.Crystals 2020, 10, x FOR PEER REVIEW 8 of 16 
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Figure 6. Dependence of layer spacing on temperature for CB6OBA:10OS.

The lowest temperature phase is present in homologues n = 3–10 and appears optically as a heavily
detailed, almost braided rope pattern if preceded by the striped textures of the NTB or SmC phases
(n = 1–7), or as a brighter, distorted schlieren texture on cooling from homeotropically aligned areas of
the SmC phase (n = 4–7) or SmAb phase (n = 8–10), see Figures 3 and 4, respectively. The reflection in
the XRD pattern in the high-angle range is narrowed and splits, suggesting a tilted, hexatic smectic
phase. A decrease in the layer spacing was observed on moving from both the SmC and SmAb phases
to this lower temperature hexatic-type phase as a result of the closer packing of the molecules in this
more ordered phase. X-ray diffraction results obtained for all 10 complexes are summarised in Table 2.

Table 2. Layer thickness (smectic phases) or end-to-end separation between molecules (nematic phases)
and lateral spacing obtained from integrated X-ray diffraction signals for the CB6OBA:nOS mixtures.
For some complexes and phases, the observed pattern was too weak to determine the signal position.
† Signals corresponding to full- and half-molecular length were apparent, but too weak and diffuse to
integrate accurately.

n Phase Complex
Length/l

Layer Thickness/Longitudinal
Distance, d/Å

Distance Between
Mesogens/Å d/l

2
N

37.8
12.3 † 4.4 0.3

NTB 44.5, 19.4, 12.3 4.4 1.2, 0.5, 0.3

3 SmX 39.0 45.4, 22.8, 12.6 4.5, 4.1 1.4, 0.6, 0.3

4 NTB 40.1 21.6, 12.8 † 4.9 0.5, 0.3

5

N

41.3

52.9, 23.1, 13.7 4.5 1.3, 0.6, 0.3
NTB 52.6, 22.9, 13.6 4.5 1.3, 0.6, 0.3
SmC 50.6, 23.7, 13.1 4.3 1.2, 0.6, 0.3
SmX 47.2, 23.7, 13.1 4.6, 4.2 1.1, 0.6, 0.3

6 SmC 42.4 52.2, 25.9, 13.5 4.4 1.2, 0.6, 0.3

7
NTB 47.2, 24.7 4.4 1.1, 0.6
SmC 43.6 52.5, 26.0 4.4 1.2, 0.6
SmX 49.6, 25.8 4.6, 4.1 1.1, 0.6

10
SmA

47.1
51.9 4.3 1.1

SmAb 53.5, 27.2 4.3 1.1, 0.6
SmX 52.4, 26.6 4.6, 4.2 1.1, 0.6

The dependence of the transition temperatures on the length of the terminal alkoxy chain is shown
in Figure 7. The nematic-isotropic and twist-bend nematic–nematic transition temperatures decrease
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on increasing n, and the first five homologues exhibit a small odd–even effect with even members
having the higher values. This behaviour has been observed on varying the length of a terminal chain in
conventional, covalently bonded liquid crystal dimers and attributed to the change in shape anisotropy
on varying the parity of n giving rise to the alternation in TNI and the dilution of the interactions between
the mesogenic units, which decreases TNI [6,22]. Figure 7 also shows the progression of smectic behaviour
as n is increased revealing a distinct change occurring after n = 7. For n = 4–7, the NTB phase on cooling
forms a SmC phase whereas for n = 8 the NTB phase is precluded by the formation of a SmA phase on
cooling the N phase, and on further cooling forms the biaxial SmAb phase.
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TNTBN, • TSmCNTB and × TSmXSmC/Ab.

Resonant X-ray diffraction was used to study the phases formed by the CB6OBA:4OS mixture.
A resonant signal at the carbon edge is visible in the temperature range of the NTB phase, but was too weak
to measure accurately. This resonant signal associated with the helix in the NTB phase does not appear to
be temperature-dependent, but becomes even weaker on further cooling and completely disappears
on heating into the nematic phase. The transition to the SmC phase is precluded by crystallisation of
the sample, and hence, we could not establish whether this smectic C phase is a further example of
a heliconical smectic phase [6–8].

The FT-IR spectra obtained for the CB6OBA:4OS mixture as a function of temperature are shown
in Figure 8. The observation of A-, B- and C-type Fermi bands at ~2900 cm−1, ~2700–2400 cm−1

and ~1900 cm−1, respectively, indicates strong hydrogen bonding in the system (Figure 8a) [43,44].
The absence of two well-defined maxima in the B-region supports the formation of heterocomplexes
between the unlike hydrogen bond donor and acceptor molecules [45].
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Figure 8. Temperature-dependent FT-IR spectra of the CB6OBA:4OS mixtures obtained on cooling
from the isotropic melt: (a) High frequency and (b) carbonyl stretching region.

The carbonyl stretching region (1650–1740 cm−1) is complex, see Figure 8b, and contains a broad
peak comprising a number of vibrations associated with the various acidic species present in dynamic
equilibrium in the mixture: namely, free or monomeric benzoic acids (C=Omon.,≥ 1730 cm−1), asymmetric
acid dimers (C=Oasym., ~1730–1680 cm−1), symmetric acid dimers (C=Osym, ~1680 cm−1), and catemeric
acid aggregates (C=Ocat., ~1660 cm−1), see Figure 9 [46]. This region also contains the carbonyl stretching
band associated with the heterocomplexes formed by the unlike acid and stilbazole-based fragments [47].
Thus, the carbonyl stretching region shown in Figure 8b consists of a broad band between 1750 and
1650 cm−1, with two maxima seen for spectra collected in the isotropic phase at around 1715 and
1690 cm−1. The shape of the carbonyl stretching region indicates that the carbonyl groups are present in
a range of chemical environments, and this band shape strongly resembles that reported previously for
CB6OBA/pyridyl mixtures [42].
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Figure 9. Equilibria between the species in the alkoxybenzoic acids and the corresponding types of
carbonyl groups involved, C=O: (a) Symmetric dimers, C=Osym; (b) Monomeric species, C=Omon (free
acids); (c) Asymmetric dimers, C=Oasym; acting as hydrogen bond donors, C=OasymLow, or attached to
O–H hydrogen bond donors, C=OasymHigh; (d) Oligomers, catemer-like aggregates, C=Ocat.
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We have performed a semi-quantitative assessment of the relative amounts of each species present
at a given temperature by performing a deconvolution of the carbonyl stretching band into six Gaussian
peaks representing the different individual contributions of each species to the overall band shape,
as described in detail elsewhere [42,48]. Representative examples of the fitted carbonyl regions obtained
in each of the phases observed are shown in Figure 10. The stretching bands associated with the two
types of carbonyl groups expected in the asymmetric dimers, C=Oasym, have been fitted to two bands,
representing those participating as hydrogen bonding acceptors, C=OasymLow, or attached to O–H
groups that are hydrogen bonded, C=OasymHigh. Figure 11a show the percentage of carbonyl groups
involved in the various species as a function of temperature, and the relative amounts of each type of
H-bonded species scaled by the number of carbonyl groups in each species, respectively.Crystals 2020, 10, x FOR PEER REVIEW 12 of 16 
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represents monomeric acid species,
× asymmetric acid dimers, N heterocomplexes, • symmetric acid dimers and � catemers.

On cooling from the isotropic phase through the liquid crystal phases, the relative concentration
of asymmetric acid dimers falls sharply, and this is mirrored by a rapid increase in the concentration
of symmetric dimers, seen semi-quantitively in Figure 11b. The concentrations of the monomeric
and catemeric acid species remain relatively constant across the whole temperature range. These
observations are in accord with the behaviour of pure CB6OBA, as well as for other benzoic acid
species [33,48]. The concentration of the heterocomplex in the isotropic phase is slightly greater than
that of the symmetric acid dimer, and increases on cooling through the N and NTB phases. On further
cooling into the smectic phases, there is a cross-over in the relative amounts of heterocomplex and
symmetric acid dimer, and the most abundant carbonyl species is now the latter. It should be noted,
however, that due to the highly monotropic nature of the lower temperature phases, it is not certain
whether these IR measurements are taken in the smectic phases or if the sample has, at least partially,
crystallised. Although it is evident that the CB6OBA:nOS heterocomplex is present as a significant
component in the mixture, it is clear that the pure CB6OBA asymmetric and symmetric acid dimers
must also play an important role in determining the phase behaviour.

We now turn our attention to mixtures of the hydrogen bond acceptor CB6OBA with the hydrogen
bond donors 1OB6OS and CB6OS [33,34], the transitional properties of these equimolar mixtures are
listed Table 3. Both the CB6OBA:1OB6OS and CB6OBA:CB6OS supramolecular trimers were found to
exhibit N and NTB phases. These were identified on the basis of characteristic optical textures: in a 1.6
micron planar-aligned cell a uniform nematic texture was observed with a high degree of Brownian
motion, and a striped texture developed following the transition to the NTB phase, see Figure 12.

Table 3. Transition temperatures and associated entropy changes for the supramolecular trimers
CB6OBA:1OB6OS and CB6OBA:CB6OS. * Temperature obtained from DSC cooling trace.

Complex TCr-/
◦C TNTBN/

◦C TNI/
◦C ∆SCr-/R ∆SNTBN/R ∆SNI/R

CB6OBA:1OB6OS 140 142* 184 12.03 0.04 0.60
CB6OBA:CB6OS 127 143 186 12.34 0.07 1.24
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The difference between these systems is the terminal group attached to the stilbazole-based
hydrogen bond donor. Exchanging the nitrile for a methoxy group increases the melting point by 13 K,
and similar, but more pronounced, behaviour has been reported for conventional dimers containing
these groups [11]. By comparison, TNI and TNTBN are essentially the same for both mixtures, whereas
for conventional dimers, the replacement of a methoxy group by a nitrile group leads to higher
transition temperatures, and particularly, a higher TNI [11]. The nitrile group is well-known to be more
efficient at enhancing TNI than the methoxy group and this is attributed to both the change in shape on
making this substitution and the tendency of cyanobiphenyls to self-organise in an antiparallel fashion.
The smaller effects seen here on changing the terminal group in these longer complexes compared to
those in dimers may be due to the dilution of these shape effects on increasing the overall complex
length. It should be noted, however, that, as we have seen, the heterocomplex is present in a dynamic
equilibrium with a range of other species and each will contribute to the transition temperature of
the mixture.

4. Conclusions

We have reported a new series of supramolecular dimeric liquid crystals formed by
hydrogen-bonding between unlike H-bond donor and acceptors, CB6OBA and nOS (n = 1–10), respectively.
For small values of n, NTB and N phases are seen. On increasing n a series of smectic phases are observed
on cooling the N phase. An FT-IR spectroscopic study confirms the formation of heterocomplexes
between the unlike components in the mixtures but that these coexist with various acidic species in
a complex equilibrium. Supramolecular trimers formed in CB6OBA:CB6OS and CB6OBA:1OB6OS
mixtures, show NTB and N phases, and these represent the first hydrogen-bonded trimers consisting of
unlike donor and acceptor fragments to do so.
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