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Abstract: A class of D-π-A compounds that can be used as dyes for applications in polymer
solar cells has theoretically been designed and studied, on the basis of the dyes recently
shown by experiment to have the highest power conversion efficiency (PCE), namely the
poly[4,8-bis(5-(2-butylhexylthio)thiophen-2-yl)benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl-alt-TZNT]
(PBDTS-TZNT) and poly[4,8-bis(4-fluoro-5-(2-butylhexylthio)thiophen-2-yl)benzo[1,2-b:4,
5-b’]dithiophene-2,6-diyl-alt-TZNT] (PBDTSF-TZNT) substances. Electronic structure theory
computations were carried out with density functional theory and time-dependent density
functional theory methods in conjunction with the 6−311G (d, p) basis set. The PBDTS donor and
the TZNT (naphtho[1,2-c:5,6-c]bis(2-octyl-[1,2,3]triazole)) acceptor components were established
from the original substances upon replacement of long alkyl groups within the thiophene and
azole rings with methyl groups. In particular, the effects of several π-spacers were investigated.
The calculated results confirmed that dithieno[3,2-b:2′,3′-d] silole (DTS) acts as an excellent π-linker,
even better than the thiophene bridge in the original substances in terms of well-known criteria.
Indeed, a PBDTS-DTS-TZNT combination forms a D-π-A substance that has a flatter structure, more
rigidity in going from the neutral to the cationic form, and a better conjugation than the original
compounds. The highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital
(LUMO) energy gap of such a D-π-A substance becomes smaller and its absorption spectrum is more
intense and red-shifted, which enhances the intramolecular charge transfer and makes it a promising
candidate to attain higher PCEs.

Keywords: D-π-A dyes; PBDTS-TZNT and PBDTSF-TZNT; DTS; polymer solar cells; PCEs;
DFT calculations

1. Introduction

For several decades, polymer solar cells (PSCs) have been the subject of intensive research due to
a number of reasons including their easy fabrication, high flexibility and light weight, when compared
to other photovoltaic technologies [1–12]. Along with their practical applications, great work has been
accomplished in developing new active layer materials featuring broad absorption bands, appropriate
molecular orbital energy levels and high charge mobilities. Many strategies have been devoted to the
optimization of conjugated photovoltaic polymers in order to grasp more efficient PSCs. These include
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the interface engineering, morphology control of the materials and innovative device architectures, thus
fostering their power conversion efficiencies (PCEs) to higher standards [13–27]. Clearly, the strong
demand for the upgrading of the photovoltaic efficiency of PSCs is one of the main driving forces for
the preparation of novel polymers that have excellent photovoltaic properties. Let us briefly describe
the recent advances in molecular design strategies of polymeric photovoltaic donor materials used in
PSC devices.

In order to meet the criteria for highly efficient polymer donors, research work has been carried
out to enhance the intrinsic variables of a conjugated polymer and to design many novel molecular
structural motifs. Besides the degree of polymerization and the molecular weight of the polymers,
the two major molecular design strategies involve the optimization of parameters related either to
their backbones or to their side chains [28–39]. Planar and rigid backbones are usually preferred
because they exhibit small reorganization energies and a tendency to pack closely in solid films
through strong intermolecular interactions and high charge-carrier mobility. Accordingly, promising
candidates for fabricating high performance PSCs include low band gap conjugated D-A polymers
that contain planar and rigid backbones. An overview of the strategies for backbone design reported
in recent literature points out that the introduction of novel building blocks, functional substituents
and, especially, π-spacers are the most frequent approaches. A literature analysis also emphasizes that
the dithieno[3,2-b:2′,3′-d] thiophene (DTT), dithieno[3,2-b:2′,3′-d] silole (DTS), cyclopenta[2,1-b:3,4-b0]
dithiophene (CPDT), dithieno[3,2-b:2′,3′-d]pyrrole (DTP) components have been used as bridges in
D-π-A compounds and they lead to relatively good efficiency [40–51].

Benzo[1,2-b:4,5-b′] dithiophene (BDT), first introduced into photovoltaic polymers by Hou and
co-workers in 2008 [52], has extensively been used as a building block as well as an electron donor
unit for conjugated copolymers over the past five years [53]. Optimizations of BDT-based polymers
thus provide us with a good strategy for the development of backbones. To alter the band gap and
orbital energy levels in BDT-based polymers, different electron acceptor units, such as thiophene,
benzothiadiazole (BT), thieno[3,4-b] pyrazine (TPZ), etc., have been explored [52]. The band gaps of
these BDT-based polymers are located in the range of 1.1–2.0 eV and their highest occupied molecular
orbital (HOMO) (−4.6 to −5.2 eV) and lowest unoccupied molecular orbital (LUMO) (−2.7 to −3.5 eV)
energy levels could also be tuned effectively. The absorption edges were also tuned up from 600 to
1100 nm. Previous work provided valuable insights into the band gap and molecular orbital energy
level modulation via change of backbone structure in conjugated polymers.

Recently, two novel TZNT-containing wide band gap (WBG) polymers, including the combined
motifs PBDTS-TZNT and PBDTSF-TZNT, were successfully designed and synthesized for their use in
highly efficient non-fullerence polymer solar cells (NF-PSCs) with low energy loss. The rigid planar
backbones of both BDT and TZNT units provided these copolymers with high crystallinity and good
molecular packing. Homo-tandem devices based on PBDTSF-TZNT:IT−4F subcells further enhanced
the light-harvesting ability and boosted their PCE up to 14.52%, which is currently the best value for
homo-tandem NF-PSCs [54]. Overall, any further improvement of the performance appears to depend
more on the regulation of the π-conjugation than on the donor and acceptor components. It is also
valuable to note that the selection of atoms, such as C, Si and N, can notably impact both the electronic
traits of semiconducting polymers and tuning of the performance of organic optoelectronic devices.

In this context, we set out to obtain more insights into the correlation between the electronic
properties of the D-π-A material that links closely to the device performance and the effects of their
structural aspects such as the π-linkers. The two PBDTS and TZNT units were chosen to be the donor
(D) and acceptor (A) components of the D-π-A compounds due to their orbital energy levels, absorption
domain, crystallinity, charge carrier mobility and blend morphology that can feasibly be tailored by
modifying the two-dimensional (2D) conjugated side chains of the PBDTS and TZNT components
[40−52,54]. This would lead to a rational guidance for molecular design and fine-tuning of novel
photovoltaic polymers. For this purpose, we employed electronic structure theory computations
to predict relevant optoelectronic parameters. The calculated results allow us to propose a design
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strategy for novel materials with the aim being to achieve a better device performance. We also
give some future directions and approaches to develop higher performance donor polymers for
photovoltaic applications.

2. Computational Details

All the electronic structure theory computations are based on density functional theory (DFT)
and time-dependent DFT (TD-DFT) [55,56]. All calculations are carried out with the Gaussian
09 package [57]. The popular hybrid B3LYP functional is used in combination with the split-valence
polarization 6−311G (d, p) basis set [58] to optimize geometrical structures and to calculate the UV-VIS
absorption spectra. Geometry optimizations are carried out for the singlet ground state (S0) of all
compounds considered in their neutral forms. The open-shell doublet state is considered for the anionic
and cationic counterparts. Harmonic vibrational frequencies are subsequently calculated at the same
level to confirm that each ground state does not have any imaginary frequency and to evaluate their
zero-point energies. In order to take the solvent effect into account, the polarizable continuum model
(IEF-PCM) is used. Accordingly, TD-DFT calculations are used to obtain the absorption wavelengths
and their oscillator strengths of the studied compounds both in the gas phase and in the solvent.

Based on the electronic structure of neutral geometries at their ground states, their band gaps
(Egap) are simply determined from the difference in the energies of the HOMO and LUMO. To probe
the electron accepting and donating abilities, the electron affinity (EA) and ionization energy (IE) are
evaluated for both vertical and adiabatic processes. The charge transfer, one of the most important
properties of semiconductor materials, can be determined by two different theories, namely the Band
theory and the Hopping model [59]. In this work, the charge transports are obtained according to the
semi-classical Marcus theory and can be written as shown in the following Equation (1) [60–65]:

kET =
4π2

h
1

√
4πλkBT

V2 exp
{
−
λ

4kBT

}
(1)

where kET, h, kB, T, λ and V are the hopping rate, Planck constant, Boltzmann constant, temperature,
the reorganization energy and transfer integral, respectively.

According to Equation (1), a lowering of the reorganization energy enhances the charge transfer
property by an increase of the hopping rate. For a neutral molecule, the reorganization energy for hole
(λh) and electron (λe) are described by Equations (2) and (3) [60–65]:

λh = (EC(N) − EC) + (EN(C) − EN) (2)

λe = (EA(N) − EA) + (EN(A) − EN). (3)

in these equations, EC(N) and EA(N) are the energy of cations/anions in the optimized geometry of
neutral form, respectively. EN(C)/EN(A) is the energy of neutral molecules computed with the optimized
cation/anionic states. EN/EC/EA could be viewed as the energy of neutral molecules/cations/anions in
their corresponding optimized geometries.

3. Results and Discussion

3.1. Structural and Optoelectronic Properties

The structural shapes of the compounds considered are shown in Figure 1. The Cartesian
coordinates of studied compounds can be found in Table S1. They are the analogs of the PBDTS-TZNT
and PBDTSF-TZNT compounds that were found to be the most efficient polymer solar cells to date [54].
In this study, we theoretically designed the new compounds by replacing the thiophene bridge
S1 in the original compound by the DTT, DTS, CPDT and DTP bridges in order to obtain the new
compounds. To simplify the notations, the designed compounds are denoted as DTT, DTS, CPDT
and DTP, respectively, which correspond to the D-π-A compounds having these bridges, as displayed
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in Figure 1. For computational ease, in this work, we replaced the long alkyl groups attached to the
thiophene ring and the N atom in the azole ring by methyl groups. We thus assume that the electronic
properties are not significantly affected by the length of alkyl groups.Crystals 2020, 10, x FOR PEER REVIEW 5 of 13 
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Figure 1. Molecular structures of the compounds designed with rigid π-spacers. S1 is the original
compound with the thiophene bridge. DTS, CPDT, DTP and DTT denote the compounds having the
corresponding bridges.

The r1, r2 parameters are defined as the bond lengths between the bridge and the donor (PBDTS)
and acceptor (TZNT) components, whereas the ϕ1, ϕ2 parameters are the dihedral angles between
the π-linker plane and the planes of PBDTS and TZNT components, respectively. The main structural
parameters, including both the bond length r and dihedral angle ϕ of the original and the modified
compounds, are summarized in Table 1.

The computed r1 and r2 values do not change significantly when we compare the gas phase results
with the solvated ones (see Table 1). It is interesting to note that the values of r1 and r2for the modified
compounds with the bridge being DTS, CPDT, DTP, DTT are almost the same as compared to the
original compound S1. These values are in the range of 1.44–1.45 Å, values well in between the lengths
of the C–C single bond (1.53 Å) and the C=C double bond (1.34 Å). This indicates that these molecules
display an excellent π-delocalization throughout their backbone chains, from the donor (BDT) through
the π-spacer to the acceptor (BT). This is expected to enhance the intramolecular charge transfer (ICT),
which is related to a red-shift of their absorption spectra [66]. This shall be discussed in Section 3.4.

In most of the compounds designed (Figure 1) the lengths of the C–C bridge bonds r1 are generally
shorter than those of the corresponding bonds r2. This can be explained by the additional electron
density at the r1 bond gained from the donor component, whereas in the opposite direction, there is a
withdrawal of electron density of the r2 bond by the acceptor component BT.

The rather large dihedral angles ϕ of the original compound S1, which has just a single thiophene
ring as a π-linker, suggest that there is a strong steric hindrance between the π-linker and the groups
on both sides. When the DTS, CPDT, DTP or DTT units are used as the π-spacer, the dihedral angles
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ϕ1 and ϕ2 of the resulting compounds are changed non-monotonously. However, the ϕ2 dihedral
angle of the investigated compounds changes insignificantly. The ϕ1 of the compounds in both the
gas phase and chlorobenzene solvent increases slightly from 11◦ and 12◦ in S1 to 16◦and 14◦ in CPDT;
to 20◦ and 18◦ in DTT, and decreases slightly to 11◦ and 11◦. Compared to the original compound
S1, the ϕ1 of the DTS component decreases significantly to 3◦ and 1◦ both in the gas phase and in
chlorobenzene solvent, respectively.

We also see that, for compounds S1, DTT, DTP, CPDT, the values of ϕ1 are significantly larger
than those of ϕ2, indicating that the above bridges enjoy a better conjugation with the acceptor rather
than with the donor component. Meanwhile, for DTS component, these values are not significantly
different from each other, indicating that DTS bridge possesses the best conjugation with both donor
and acceptor components.

These results emphasize that the DTS is the most co-planar π-spacer with the components in
both sides, involving a strong conjugation between the spacer and the other D and A components.
We would expect that the more co-planar structure in the ground electronic state is, the faster the
photo-induced electron transfer from the ground electronic state to the first singlet excited state is.
Therefore, a compound containing a DTS π-linker connecting the components on both sides is thus
expected to behave as better transport materials.

Table 1. Selected bond lengths (in Å) and dihedral angles (in degrees) of the optimized structures in
gas phase and in solvent (chlorobenzene) using B3LYP/6−311G (d, p) calculations.

r1 r2 ϕ1 ϕ2 raver ϕaver

0S1 (1)
Gas 1.443 1.454 11 3 1.449 7

Solvent 1.444 1.455 12 2 1.450 7

CPDT (2)
Gas 1.440 1.451 16 4 1.446 10

Solvent 1.441 1.452 14 5 1.447 10

DTS (3)
Gas 1.441 1.452 3 2 1.447 2

Solvent 1.442 1.453 0.8 2 1.448 2

DTP (4)
Gas 1.440 1.451 11 0.5 1.446 6

Solvent 1.441 1.452 11 0.4 1.447 6

DTT (5)
Gas 1.443 1.453 20 2 1.448 11

Solvent 1.444 1.454 18 3 1.449 11

It can be seen in Table 2 that, in going from the neutral state to the ionic state, all the modified
compounds have smaller variations in the values of the bridge lengths r1 and r2 than in the original
one. In detail, the bridge bond lengths in the parent compound change by 0.052 Å and 0.044 Å when
switching from the neutral molecule to the anion and cation, respectively, whereas these values for the
modified compounds vary between 0.045–0.050 Å and 0.037–0.040 Å, respectively. For the values of
ϕ1 and ϕ2, when converting from the neutral to the ionic state, the DTS component has the smallest
variations for these values, two and three degrees respectively, being the smallest changes as compared
to other compounds.

The lengthening of the inter-ring bond can be understood by an anti-bonding interaction between
the π orbitals in both rings. Hence, the loss of an electron from the HOMO upon ionization leads
to a shortening of the bridge in the cationic state in comparison to that in the neutral state. A weak
relaxation in geometrical parameters upon removal/addition of electrons is also expected to reduce the
reorganization energy, which, in turn, would increase the hopping rate [67].

The lengthening of the inter-ring bond can be understood by an anti-bonding interaction between
the π orbitals in both rings. Hence, the loss of an electron from the HOMO leads to a shortening of the
bridge in the cationic state in comparison to that in the neutral state.
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Table 2. Distortion between the neutral and ionic states of designed compounds (B3LYP/6–311G (d, p)
calculations, bond distances in angstrom and bond angles in degrees).

Anion Cation

∆r (Å) ∆ϕ (◦) ∆r (Å) ∆ϕ (◦)

S1 0.052 10 0.044 13

CPDT 0.050 16 0.038 17

DTS 0.048 2 0.038 3

DTP 0.045 8 0.037 8

DTT 0.048 18 0.040 18

3.2. Frontier Molecular Orbitals

Calculated results show that the rigidification of dithiophene linkers can noticeably tune the
orbital energy level alignments and orbital distribution.

Frontier molecular orbitals (FMOs) play an important role in the electrical properties since they usually
govern the charge carrier transport nature of molecular systems [9]. The HOMOs and LUMOs are plotted
in Figure 2. Both orbitals are distributed over the whole skeleton of the conjugated molecules, indicating
that there is a strong spatial overlap between the π electrons, and this likely results in a stronger optical
absorption corresponding to an electronic transition from the HOMO to the LUMO to generate the first
excited state S1 [14]. A good delocalization in both frontier orbitals is favorable for enhancing the hole and
electron transfer integrals of a transport material. In each system, the parent compound always has the
larger negative value of HOMO and smaller negative values of LUMO as compared to its derivatives. As a
consequence, the substituents tend to improve the transport properties.

The calculated HOMO and LUMO energy level of the studied compounds in the gas phase and in
the solvent are listed in Table 3. The HOMOs and LUMOs levels of the modified compounds are found
to be in between −5.0 eV and −5.2 eV and −2.5 eV and −2.6 eV, respectively, in the gas phase, and in
between −5.1 eV and −5.3 eV and −2.6 eV and −2.7 eV, respectively in the chlorobenzene solvent.
The HOMO levels of all modified compounds are lower than those of the original compound S1 (being
−5.3 eV in the gaseous state and −5.4 eV in the solvent), which was proven to be a good hole transport
material (HTM). This finding suggests that the designed compounds could behave even better as
HTMs than the original compound S1.

It is helpful to state again that the energies of HOMO and LUMO can be used to characterize
the hole and electron injection of material. A hole transport material having small negative HOMO
energy can lose its electrons more easily (low IE). On the contrary, an electron transport material (ETM)
needs to possess a large LUMO energy, which accepts electrons more easily (large EA). The HOMO
and LUMO levels themselves illustrate the charge transfer interactions occurring within a molecule in
which a small Egap could facilitate the interaction. The Egap values of the molecules studied spread out
over a wide range from 2.5 eV for CPDT to 2.7 eV for the original compound S1. A comparison of Egap

among the studied compounds points out an increasing ordering of Egap as follows: CPDT < DTP <

DTS < DTT < S1.
The calculated results show that while the LUMO energy levels of the compounds remain almost

unchanged, the corresponding HOMO energy levels become less negative (lower IEa), which reduces
the HOMO-LUMO energy gap and thereby facilitates their electron releases.
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Table 3. HOMO and LUMO energy levels of compounds considered in the gas phase and solvent
(chlorobenzene) (eV from B3LYP/6−311G (d, p) computations).

HOMO LUMO Egap

S1 Gas Phase −5.28 −2.56 2.7

Solvent −5.40 −2.67 2.74

CPDT Gas Phase −5.03 −2.56 2.47

Solvent −5.11 −2.64 2.46

DTS Gas Phase −5.08 −2.59 2.50

Solvent −5.17 −2.67 2.50

DTP Gas Phase −4.98 −2.49 2.49

Solvent −5.08 −2.59 2.49

DTT Gas Phase −5.23 −2.60 2.63

Solvent −5.31 −2.67 2.64

3.3. Electronic Properties

As mentioned in Section 2 above, in order to probe the electron accepting and donating abilities,
we calculate the vertical electron affinity (EAv) and vertical ionization energy (IEv) which can widely be
measured by the photoelectron spectroscopy (PES) method, along with the adiabatic ones. In addition,
we also calculate these indexes in adiabatic processes (IEa and EAa, respectively).

The calculated results listed in Table 4 show that the EAv has no significant change due to the
minor fluctuation of their LUMOs, as stated above, whereas the IEv significantly changes due to the
significant shift in their HOMOs. All modified compounds not only have smaller IEv values but also
larger EAv values, indicating that the substituted molecules can be considered good candidates for
better transport materials in comparison with compound S1. Moreover, the reorganization energies
for both the electrons and holes of the modified compounds are small and nearly equal to each other,
reflecting that these compounds exhibit improved characteristics of a balanced transformation of both
the holes and electrons within each molecule.

Table 4. Calculated chemical reactivities, vertical electron affinity (EAv) and vertical ionization energy
(IEv), along with the adiabatic ones; hole and electron reorganization energy (λh, λe) of the compounds
studied (in eV, B3LYP/6−311G (d, p)).

Dye IEv IEa EAv EAa λh λe

S1 6.21 6.11 1.73 1.85 0.23 0.22

CPDT 5.93 5.82 1.80 1.92 0.22 0.21

DTS 5.97 5.86 1.82 1.94 0.23 0.21

DTP 5.89 5.79 1.75 1.85 0.20 0.19

DTT 6.12 6.01 1.84 1.96 0.22 0.20

3.4. Absorption Spectra

The simulated absorption spectra are illustrated in Figure 3. The calculated wavelengths (in nm)
and oscillator strengths f and the corresponding transition assignments of the compounds listed in
Table 5 show that the modified compounds are all red-shifted as compared with the original S1 by
63 nm, 59 nm, 53 nm and 20 nm for CPDT, DTS, DTP and DTT, respectively. This is also consistent
with the analysis in Section 3.1 above. The absorption wavelengths of the modified compounds are
significantly higher than that of the parent compound. The main electronic transition arises in all cases
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from HOMO→LUMO. In addition, the computed absorption wavelength of compound S1 (525 nm) is
in good agreement with the experimental result (537 nm).
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Table 5. Calculated absorption wavelengths (λ in nm), oscillator strengths (f) and corresponding orbital
transition assignments of the designed compounds (TD-B3LYP/6−311G (d, p)).

Dye λ (nm) F Orbital Transition Singlet Electronic
State Transition

S1 525
53754 1.7 H→ L (99%)

So→ S1

CPDT 588 2.2 H→ L (99%)

DTS 584 2.0 H→ L (99%)

DTP 578 2.4 H→ L (99%)

DTT 545 2.2 H→ L (98%)

4. Concluding Remarks

We have designed D-π-A compounds with the aim of their application in polymer solar cells
attaining a high power conversion efficiency. Based on the compounds recently shown to have the
highest PCE to date, the new class was designed to achieve better performance. Relevant optoelectronic
properties were determined with density functional theory and time-dependent density functional
theory calculations. An outstanding aim of the present work was an investigation of the effects of
different π-spacers to find the bridges better than the thiophene ring connecting both donor D and
acceptor A components. Indeed, calculated results suggest that the DTS unit acts as the best π-linker
and much better than the thiophene bridge in the original substance, in terms of the planarity and
optoelectronic parameters. Its presence in the designed PBDTS-DTS-TZNT compound induces a flatter
structure, shorter r1 and r2 bond distances and much better electron conjugation than the original
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compounds. Its HOMO-LUMO band gap becomes smaller and its absorption spectrum is more intense
and red-shifted. We propose the use of this compound for an actual experimental preparation, followed
by a test of its application.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/3/163/s1.
Table S1: Cartesian coordinates (Å) for studied compound, as obtained using B3LYP/6-311G (d, p).
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