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Abstract: Nicosulfuron (NS) is a widely used sulfonylurea herbicide because of its high selectivity,
broad spectrum of herbicide activity, and excellent performance. In this work, nicosulfuron methanol
solvate (NS-MeOH) and [[3-[(Dimethylamino)carbonyl]-2-pyridinyl]sulfonyl]carbamic acid methyl
ester (PCM) as a product of methanolysis of NS were obtained. Both of their structures were
determined by a single crystal X-ray diffraction. A broad range of analytical techniques was applied
to characterize the NS-MeOH, such as Powder X-ray diffraction (PXRD), thermogravimetric analysis
(TGA), differential scanning calorimetry (DSC), and hot stage microscopy (HSM). Combined with the
analysis of the Independent gradient model (IGM), Atom-in-molecules (AIM), and Hirshfeld surface
(HS), direct insights into the role of solvent played in the formation of NS-MeOH and the mechanism
of solid-to-solid phase transformation of NS-MeOH could be obtained. In addition, the aqueous
solubility of NS was improved through the formation of NS-MeOH. A systematic investigation of
herbicidal activity of NS and PCM was carried out. It was found that NS and NS-MeOH had similar
herbicidal activities at the experimental concentrations while PCM exhibited significantly lower
activity. It was suggested that methanolysis of the sulfonylurea bridge in the NS molecule exerted a
great influence on the herbicidal activity.
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1. Introduction

Solvates are crystal forms with solvents incorporated into the crystal structure of the host compound
in a stoichiometric or non-stoichiometric ratio [1], which are also identified as pseudopolymorphs [2].
In the pharmaceutical industry, necessary solvents or solvent vapors are involved in various unit
operations such as mixing and spray drying. During these processes, the active pharmaceutical
ingredient (API) is in close contact with the solvents, and the corresponding solvates may form under
certain conditions. Due to the differences in the solvates’ structure based on the packing arrangement [3],
molecular conformation [4,5], and intermolecular interaction, they may give rise to great variation in
physicochemical properties such as solubility, stability, dissolution, and bioavailability. It will further
exert great influences on the processing of API into drug products [5,6]. Therefore, the study on solvate
behavior is of great value, which can not only provide a theoretical basis for the selection of optimal
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solid forms, but also serve for the polymorphic control [7] and optimization of the products as a basic
method [8].

To get a better understanding of solvate formation, more attention needs to be paid to the role
of solvent molecules. Two situations should be considered regarding it [9]: (a) the incorporation of
the solvent molecules compensates the imbalance between the hydrogen bond donor and acceptor
sites [10–12] of the host molecules and contributes to stronger intermolecular interaction, and (b)
the solvent molecules embedded in lattice reduce the void space and increase the packing efficiency.
Usually, both of these driving forces take effect in the formation of solvate along with a reduction of
crystal-free energy [13].

Solvate desolvation [14] has been identified as an effective approach to control polymorphic forms.
Sometimes, new polymorphic forms could be obtained, which might be unprocurable by common
crystallization methods. Berzins et al. [15] revealed that dehydration of fine benperidol dihydrate
powder at 30 ◦C, over P2O5, resulted in the formation of new polymorph V. Moreover, polymorph V
could be transformed to new polymorph IV at an elevated temperature (above 40 ◦C). In addition,
Aitipamula et al. [2] found that desolvation of the sulfamerazine solvates at reduced pressure and at
90 ◦C converted all the solvates to Form I. Li et al. [16] observed that carbamazepine dihydrate was
converted to amorphous upon dehydration at 45 ◦C, which could recrystallize into anhydrous γ-CBZ
(carbamazepine) upon further heating (at 86 ◦C). Thereby, comprehensive knowledge of desolvation
behavior is conducive to grasp the mechanism of solid-state reactions and further control the crystal
form of the drug substances.

Nicosulfuron (2[(4,6-dimethoxypyrimidine-2-yl)aminocarbonyl]-aminosulfonyl-N,N-dimethyl-3-pyridinecarboxamide,
NS, Figure 1a) in its anhydrous form Ia has been reported in a patent [17]. It is widely recognized as a
potent sulfonylurea herbicide employed as getting rid of weeds in corn. Flexible conformation along
with several donor and acceptor sites in the NS molecule provides the potential possibility to exhibit
polymorphism. To date, several solvates and solvent-free forms of NS have been reported. Liu [18] et al.
found six different NS solvates and four different solvent-free forms. However, only the structures of
form II, S1, and S3 were solved. Chen [19] characterized the structure and revealed a gas-phase-mediated
transformation of NS DMF (N,N-Dimethylformamide) solvate and hydrate. The crystallographic data
of all known polymorphs based on NS (II, S1, S3, hydrate, and DMF solvate) was summarized in Table
S1. In addition, PCM ([[3-[(Dimethylamino)carbonyl]-2-pyridinyl]sulfonyl]carbamic acid methyl ester,
Figure 1b) was mentioned as a product of alcoholysis of NS by Sabadie [20]. So far, no research had
revealed its structure and relevant polymorphs based on PCM. In our work, the single crystal structure
of PCM was elucidated for the first time.

The aims of this study are (a) to provide a comprehensive knowledge of the role of solvent
molecules in the formation of solvates and the influence of structure exerted on the physicochemical
property such as solubility and herbicidal activity, (b) to evaluate the strength of the main H-bonds in
the NS-MeOH and calculate the corresponding bonding energy, (c) to investigate the solid-to-solid
phase transformation of NS-MeOH upon desolvation and give direct insight on the mechanism of
desolvation, and (d) to analyze the methanolysis reaction and herbicidal activity of a corresponding
methanolysis product.



Crystals 2020, 10, 157 3 of 17

Crystals 2019, 9, x FOR PEER REVIEW 3 of 19 
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A 0.008 g sample of NS was dissolved in a glass vial with 2 mL of acetone. Then, 2 mL of 
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Figure 1. Chemical structure of (a) nicosulfuron (NS) and (b) [[3-[(Dimethylamino)carbonyl]-2-
pyridinyl]sulfonyl]carbamic acid methyl (PCM).

2. Experimental Section

2.1. Materials

NS with the analytical standard (identified as form Ia, Figure 2) was purchased from Wuhan
Yuancheng Gongchuang Co., Ltd (Wuhan, China). All solvents with an analytical grade were obtained
from Tianjin Jiangtian Chemical Co. (Tianjin, China) and used without further purification.
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Figure 2. Powder X-ray diffraction (PXRD) patterns of form Ia, nicosulfuron (NS), NS-MeOH, and
simulated pattern of NS-MeOH.
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2.2. Preparation of NS-MeOH and PCM

A 0.008 g sample of NS was dissolved in a glass vial with 2 mL of acetone. Then, 2 mL of
methanol was slowly added as an anti-solvent. The glass vial was sealed and placed motionlessly
in the refrigerator at 5 ◦C. Then NS-MeOH was formed 24 h later. The NS-MeOH was filtered and
dried in vacuum, while the filtrate was used to obtain the single crystal by slow evaporation at the
same temperature.

An excess of NS (0.01 g) was dissolved in methanol in 10 mL glass, which was heated under reflux
at the temperature of the boiling point of methanol. After the solution was cooled to room temperature,
the saturated solution was then filtered by a 0.22 µm PTFE (Poly tetra fluoroethylene) membrane filter.
Lastly, the filtered solution was placed in the refrigerator at −20 ◦C, and single crystal of PCM was
obtained one week later.

2.3. Thermogravimetric Analysis (TGA)

Thermogravimetric analysis was performed using a Mettler TGA/DSC 1 (STARe, Mettler,
Switzerland) instrument. The samples of NS-MeOH were heated under a nitrogen purge flow
rate of 20 mL/min at scan rates of 10 ◦C/min.

2.4. Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry was carried out using a Mettler DSC 1 (STARe, Mettler,
Switzerland) instrument calibrated by indium and tin. The sample of NS-MeOH was heated at
a scan rate of 10 ◦C/min under a nitrogen purge flow of 50 mL/min.

2.5. Powder X-ray Diffraction (PXRD)

Powder X-ray diffraction was conducted on a X-ray diffractometer (D/MAX 2500, Rigaku, Japan)
using Cu Kα radiation (λ = 1.54184Å) with a graphite monochromator at 40 kV and 100 mA. The
samples were measured at an ambient temperature in the 2θ range of 2◦–40◦ with a scan rate of 8◦/min.

2.6. Single Crystal X-ray Diffraction (SCXRD)

Single crystal X-ray diffraction (SCXRD) measurement of NS-MeOH was conducted on a
diffractometer (Saturn 70 CCD, Rigaku, Japan) using Mo Kα radiation (λ = 0.710 73 Å) with a
graphite monochromator while SCXRD of PCM was measured by diffractometer (007HF XtaLAB P20,
Rigaku, Japan) using Cu Kα radiation (λ = 1.54184 Å) with a graphite monochromator. Integration and
scaling of the intensity data were both accomplished using the SAINT program (Dephi corporation,
USA). The structures of NS-MeOH and PCM were solved using SHELEX 2014 (George Sheldrick,
Gottingen University, Germany) [21]. Refinement was conducted by full-matrix least-squares using
SHELEX 2014 [22] implemented in Olex2-1.2 (O.Dolomannov, Durham University, UK) [23]. Data were
both corrected for the effects of absorption using SADABS in the SAINT program. All non-hydrogen
atoms were refined anisotropically. Hydrogen atoms on N or O atoms were located in difference maps.
All hydrogen atoms bound to carbon atoms were generated by a riding model in idealised geometries
and their positions were refined with Uiso(H) = 1.5Ueq(C) for -CH3 groups and Uiso(H) = 1.2Ueq(C) for
other H atoms. The packing diagrams of crystal structures of NS-MeOH and PCM were obtained by
Mercury 4.1.0 software (Cambridge Structural Database, Cambridge, UK) [24].

2.7. Hot Stage Microscopy (HSM)

The HSM experiment was performed by using a polarizing microscope (Olympus BX-51, Tokyo,
Japan) combined with a DSC600 hot stage Linkam system at a heating rate of 10 ◦C/min.
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2.8. Dissolution Measurement

The powder dissolution experiment of NS and NS-MeOH were conducted in a dissolution test
(RC-6, Guangzhou Hangxin scientific instrument Co., Guangzhou, China) analyzer for 270 min at 25 ◦C.
Accurate 0.3000 g samples were added to dissolution vessels containing 900 mL of pure water. All the
samplings were analysed using a spectrophotometer (U-3010, HITACHI, Japan). Before measuring the
concentration of samplings, they were filtered by 0.22 µm PTFE membrane filters and then diluted
10-fold with pure water. The concentration was determined for three times by a UV standard curve
(y = 0.0412x + 0.0162, R2 = 0.9992, Figure S1) at 25 ◦C, and the mean value was used for further study.

2.9. Herbicidal Activity

The pot test was applied to investigate the herbicidal activities of NS, NS-MeOH, and PCM against
E. crusgalli (Echinochloa crusgalli Beauv), S. viridis (Setariaviridis Beauv), D. sanguinalis (Digitariasanguinalis
Scop), and A. theophrasti (Abutilon theophrasti Medicus) by postemergence foliar spray processing at
dosages of 37.5 and 150 g a.i./ha, respectively [25].

2.10. Computational Details

The geometry optimization of NS-MeOH was performed in CASTEP built in Materials Studio 60
(Accelrys, USA) [26] with relaxing positions of all atoms by plane-waves density functional calculations.
The unit cell parameters were fixed during the optimization. All calculations were performed using the
generalized gradient approximation (GGA) by PBE (Perdew–Burke–Ernzerhof) as exchange–correlation
density functional and ultra-soft pseudopotentials [27] with the addition of Grimme’s D2 dispersion
correction [28]. Energy cutoff used for a plane wave basis set was set to 780 eV. Brillouin zone
integration was performed using a discrete 2 × 2 × 2 k-point sampling for a primitive cell. The energy
threshold, force threshold, and atomic displacements threshold for structural relaxation were set to
10−5 eV, 5 × 10−2 eV/Å, and 10−3 Å, respectively. Two NS-methanol molecular pairs corresponding
to hydrogen bonds N3-H3A···O7 and O7-H7A···O6, respectively, were extracted from the optimized
crystal structure. Their wave functions were separately generated by running single point energy
calculations at the M062X-D3/6-311++G (2d, p) level [29–31] using the Gaussian 09 program [32] in the
gas phase, and the calculations were further performed in methanol using the SMD (Solvation Model
Based on Density) model [33] to explore the impacts of solvent on the hydrogen bonding systems.
Then, the wave functions generated by Gaussian 09 were further analysed through Atom-in-molecules
(AIM) analysis performed by Multiwfn 3.6 [34] and visualization program VMD (Visual Molecular
Dynamics) 1.9.3 [35]. Independent gradient model (IGM) analysis was also performed using Multiwfn
3.6 and visualization program VMD 1.9.3. In addition, according to the criterion proposed by Emamian
and Lu et al. [36], the binding energy (BE, kcal/mol) for neutral complexes may be calculated by the
following equation,

BE = −223.08× ρBCP + 0.7423, (1)

where ρBCP is the value of the electron density at the bond critical points (BCPs).

3. Results and Discussion

3.1. Structual Analysis

As shown in Figure 2, The PXRD pattern of NS-MeOH showed new peaks at 12.8◦, 14.3◦, 16.2◦,
17.4◦, and 22.8◦, which exhibited clear differences compared to the pattern of pure NS. These unique
peaks indicated that NS-MeOH was a new crystal form. Moreover, good agreement between the
experimental pattern and a simulated pattern also confirmed the identity of the new phase and
high crystallinity of NS-MeOH. In addition, the structure of NS-MeOH and PCM were determined
by SCXRD. The crystallographic parameters of two crystal structures were summarized in Table 1.
Hydrogen bonds of the obtained crystals were listed in Table 2.



Crystals 2020, 10, 157 6 of 17

Table 1. Crystallographic data of NS-MeOH and [[3-[(Dimethylamino)carbonyl]-2-pyridinyl]sulfonyl]carbamic
acid methyl (PCM).

Parameters NS-MeOH PCM

Formula C15H18N6O6S·CH4O C10H13N3O5S
Formula weight 442.46 287.29
Crystal system triclinic monoclinic

Space group P−1 P21/n
Temperature/K 293(2) 199.99(10)
Radiation type Mo Kα Cu Kα
Wavelength/Å 0.71073 1.54184

a/Å 7.918(16) 8.531(1)
b/Å 10.255(2) 10.029(1)
c/Å 13.859(3) 15.212(1)
α/o 72.19(3) 90.000
β/o 79.14(4) 102.860(1)
γ/o 85.00(4) 90.000

Volume/Å3 1051.641(4) 1268.86(2)
Z 2 4

θ range/o 3.1–27.5 5.3–76.8

Index ranges
−10 ≤ h ≤ 8 −10 ≤ h ≤ 10
−13 ≤ k ≤ 13 −12 ≤ k ≤ 11
−17 ≤ l ≤ 17 −18 ≤ l ≤ 19

Density/g·cm−3 1.397 1.504
Rint 0.0398 0.0304

R1[I>2σ(I)] 0.054 0.0297
ωR2 0.1438 0.0865

goodness-of-fit 1.07 1.0762
CCDC No. 1865250 1894251

Color colorless colorless
Shape block irregular

Table 2. Hydrogen bonds of NS-MeOH and PCM.

Compound D-H···A d(D-H)/Å d(H···A)/Å d(D···A)/Å ∠(DHA)/◦

NS-MeOH a
N4-H4B···N2 0.86 2.00 2.629(2) 129
N3-H3A···O7 0.86 1.97 2.821(3) 169
O7-H7A···O6 0.89(3) 1.82(3) 2.696(3) 169(3)

PCM b N11-H11···O15 0.85(18) 1.91(18) 2.755(16) 173(2)
a Symmetry transformations used to generate equivalent atoms: −x, −y, −z. b Symmetry transformations used to
generate equivalent atoms: (1) 1/2 − x, 1/2 + y, 1/2 − z. (2) −x, −y, −z. (3) 1/2 + x, 1/2 – y, 1/2 + z.

NS-MeOH crystallizes in a triclinic crystal system with the group of P−1, and the asymmetric
unit contains one NS molecule and one methanol molecule (Figure S2). In the structure of NS-MeOH,
all NS molecules are in the same conformation, where intramolecular N4-H4B···N2 hydrogen bonds
connect the pyrimidine ring to the sulfonylurea bridge so as to stabilize the structure of NS molecules.
Furthermore, methanol molecules are connected to transition-related NS molecules by significant
intermolecular O7-H7A···O6 and N3-H3A···O7 hydrogen bonds. The O7, identified as an acceptor,
hydroxy group of the methanol interacts with the N3 imino group of the urea linking in a neighbouring
NS molecule. Meanwhile, the O7, deemed to be a donor, interacts with the O6 carbonyl group of
the other adjacent NS molecule. These two contacts aggregate the molecules into a zigzag chain
along the crystallographic b axis. Then, chains are connected through weak interactions to form the
final network packing patterns (Figure 3a). In general, incorporation of the methanol molecule into
the crystalline lattice of NS leads to more H-bond donor sites and acceptor sites, which provides
potential intermolecular interaction to rearrange the intermolecular hydrogen bond pattern (Figure 3b).
In addition, for a better understanding of the influence of methanol molecules on the crystal structure,
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the overlays of NS conformational molecules in NS-MeOH and other solved solvates were obtained.
It was noteworthy that intermolecular interactions such as hydrogen bonds and van der Waals
interactions, conformations, and packing motifs influenced each other. Furthermore, polymorphs
with a larger number of symmetry-independent molecules (high Z′) were more likely to lead to
different conformations of these symmetry-independent molecules [37,38]. As shown in Figure 4, the
results indicated a significant conformational difference between the NS molecule in NS-MeOH and
that in other solved solvates. When compared with NS-MeOH, the different conformations of NS
molecules in form II, S1 and hydrate could be ascribed to a high Z’ and complicated interactions. The
acetonitrile molecules filled in a cage-shape structure mainly interacted with NS molecules through
van der Waals interactions in form S3 while methanol molecules in NS-MeOH formed hydrogen bonds
with NS molecules. The discrepancy in intermolecular interactions led to different conformations
of NS. In addition, NS and methanol molecules formed zigzag chains by H-bonds in NS-MeOH,
while heterodimers formed by NS and DMF molecules through H-bonds connected to each other by
weak interaction in DMF solvate. Thus, different interactions between solvents and NS molecules
combined with different packing motifs led to the final differences in conformations of NS molecules in
all solved solvates.

PCM crystalizes in a monoclinic crystal system with a group of P21/n, and the asymmetric unit
contains one PCM molecules (Figure S3). In the structure of PCM, the N11-H11···O15 H-bond is formed
by the hydrogen atom in the amine bond with one carbonyl oxygen atom of an adjacent PCM molecule.
As a result, a zigzag chain along the b axis is formed through adjacent molecules linked head-to-tail
(Figure 5a). Then, chains are connected through the dispersion force shown hereafter, which results in
the final packing motif (Figure 5b).
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Crystals 2020, 10, 157 9 of 17

3.2. Independent Gradient Model (IGM) Analysis

Independent gradient model (IGM) [39] is a novel computational approach that lay more emphasis
on non-covalent features. VMD plots on the basis of IGM analysis provide immediate insight in
intermolecular interaction with corresponding colored ellipsoids, where the green part of the ellipsoid
represents the dispersion force and the blue part is electrostatic force. To shed some light on the
relationship between packing motifs and intermolecular interactions, molecules in the crystal were
analyzed by IGM. As shown in Figure 6a, the results indicated that it had both electrostatic and
dispersive effects on the intermolecular interactions between NS molecules and methanol molecules.
However, the intermolecular interactions of two NS molecules were mainly dispersive, which identified
two zigzag chains formed by an H-bond interaction between NS and methanol that were packed
through a weak interaction. Similarly, adjacent PCM molecules forming zigzag chains were connected
through electrostatic forces, and the two PCM molecules in the unit cell were primarily dispersive. It
contributed to explaining that two chains bonded closely to form the final packing patterns in Figure 6b.
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3.3. AIM Analysis

Atom-in-molecule (AIM) [40] analysis has been widely used to reveal the feature of hydrogen
bonds, which was not only appropriate for a conventional intermolecular H-bond but also applicable
to an intramolecular H-bond [41]. In this case, this method was implemented to further evaluate
the strength of H-bonds (N4-H4B···N2, O7-H7A···O6, N3-H3A···O7) in NS-MeOH. Considering the
influence of solvent effect on the H-bond interactions, two NS-methanol molecular pairs were analyzed
in a gas phase and a liquid phase, respectively. Pair 1 contained H-bonds of N3-H3A···O7 and
N4-H4B···N2, while Pair 2 contained H-bonds of O7-H7A···O6 and N4-H4B···N2. The results of the
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AIM topological path were shown in Figure 7 and the topological parameters of H-bonds were listed
in Table 3.
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Table 3. Topological parameters of H-bonds at (3,−1) BCPs in two NS-methanol pairs in different phases.

Phase Complex H-Bond ρ ∇
2ρ H V G

gas
a N3-H3A···O7 0.0249 0.0940 −0.0014 −0.0219 0.0205

N4-H4B···N2 0.0217 0.0813 −0.0012 −0.0160 0.0148

b
O7-H7A···O6 0.0270 0.1065 −0.0016 −0.0238 0.0222
N4-H4B···N2 0.0213 0.0812 −0.0014 −0.0159 0.0145

liquid
c N3-H3A···O7 0.0305 0.1164 −0.0012 −0.0287 0.0275

N4-H4B···N2 0.0228 0.0814 −0.0013 −0.0163 0.0150

d
O7-H7A···O6 0.0316 0.1172 −0.0011 −0.0290 0.0278
N4-H4B···N2 0.0229 0.0814 −0.0013 −0.0163 0.0150

As shown in Figure 6, (3, −1) bond critical points (BCPs) for H-bonds in two NS-methanol pairs in
different phases were exhibited with orange lines and dots, which provides evidence of the multiple
intermolecular and intramolecular interactions in NS-MeOH. According to the criterion proposed
by Bader and Popelier [42], once the electron density (ρ) and the Laplacian of the electron density
(∇2ρ) values lies in the range (ρ: 0.002 - 0.035 a. u., ∇2ρ: 0.024 - 0.139 a. u.), the interaction types
between atoms can be identified as the H-bond. In addition, Rozas et al. [43] proposed to characterize
the strength of H-bonds based on the relationship among the ∇2ρ and the energy density (H) at the
critical point of the bond. The interaction is weak H-bonds when ∇2ρ> 0 and H > 0, and it is medium
H-bonds when ∇2ρ > 0 and H < 0, while strong H-bonds show ∇2ρ <0 and H < 0. As shown in Table 3,
it was clear that the ρ and ∇2ρ values of adjusted to range mentioned and H < 0, which indicates
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that three H-bonds can be ascribed to a medium H-bond. Since the ρ value was positively related to
the bond strength [44], the evidence that ρ values of H-bonds exhibited an increase in the sequence
of N3-H3A···O7, N4-H4B···N2, O7-H7A···O6 whether in a gas phase or in a liquid phase, indicated
O7-H7A···O6 H-bond was the strongest interaction of them, which was in line with the smallest H-bond
distance of O7-H7A···O6 shown in Table 2. However, ρ values of O7-H7A···O6 and N3-H3A···O7
H-bonds in the gas phase were slightly higher than that in the liquid phase, while that of N4-H4B···N2
were approximately consistent in two phases, which indicates that the solvent effect had an influence
on the H-bond interaction. In addition, the calculated BE of the O7-H7A···O6, N3-H3A···O7, and
N4-H4B···N2 H-bonds were −6.3052 kcal/mol, −6.0536 kcal/mol, and −4.3547 kcal/mol, respectively.

3.4. Hirshfeld Surface Analysis

Hirshfeld surface analysis (HS) and the two-dimensional (2D) fingerprint plots [45] are powerful
tools to elucidate the features of intermolecular interactions. To better understand the role of solvent
molecules in the solvate formation, HS was performed based on CrystalExplorer 17.5 [46]. Moreover,
the dnorm surface is shown as transparent, which allows the NS group to be visible and highlights
the acceptor and donor equally. With respect to NS-MeOH (Figure 8a), the results suggested that the
close contacts O7-H7A···O6 and N3-H3A···O7 were formed between NS and the methanol molecule,
where the deeply red spots on the surfaces indicated the H-bonding contacts [47]. In addition, for
further investigation of the interactions among NS and methanol molecules, 2D-fingerprint plots were
performed. The relative contributions of dominant interactions of the NS molecule in NS-MeOH
crystal forms were concluded in Figure 8b. The results indicated that the intermolecular H···H and
O···H interactions making the greatest contribution to the HS were in proportion of 42% and 35.7%,
respectively, which could be ascribed to the formation of hydrogen bonds and the existence of other
weak interactions involving H atoms on the surface. In addition, it was also found that there was a
small proportion of C···H and N···H interaction comprising 6.6% and 8.8%, respectively, which also
played an important role in stabilizing the structure.

Crystals 2019, 9, x FOR PEER REVIEW 12 of 19 

 

density (∇2ρ) values lies in the range (ρ: 0.002 - 0.035 a. u., ∇2ρ: 0.024 - 0.139 a. u.), the interaction types 
between atoms can be identified as the H-bond. In addition, Rozas et al. [43] proposed to characterize 
the strength of H-bonds based on the relationship among the ∇2ρ and the energy density (H) at the 
critical point of the bond. The interaction is weak H-bonds when ∇2ρ> 0 and H > 0, and it is medium 
H-bonds when ∇2ρ > 0 and H < 0, while strong H-bonds show ∇2ρ <0 and H < 0. As shown in Table 3, 
it was clear that the ρ and ∇2ρ values of adjusted to range mentioned and H < 0, which indicates that 
three H-bonds can be ascribed to a medium H-bond. Since the ρ value was positively related to the 
bond strength [44], the evidence that ρ values of H-bonds exhibited an increase in the sequence of 
N3-H3A···O7, N4-H4B···N2, O7-H7A···O6 whether in a gas phase or in a liquid phase, indicated O7-
H7A···O6 H-bond was the strongest interaction of them, which was in line with the smallest H-bond 
distance of O7-H7A···O6 shown in Table 2. However, ρ values of O7-H7A···O6 and N3-H3A···O7 H-
bonds in the gas phase were slightly higher than that in the liquid phase, while that of N4-H4B···N2 
were approximately consistent in two phases, which indicates that the solvent effect had an influence 
on the H-bond interaction. In addition, the calculated BE of the O7-H7A···O6, N3-H3A···O7, and N4-
H4B···N2 H-bonds were −6.3052 kcal/mol, −6.0536 kcal/mol, and −4.3547 kcal/mol, respectively. 

3.4. Hirshfeld Surface Analysis 

Hirshfeld surface analysis (HS) and the two-dimensional (2D) fingerprint plots [45] are powerful 
tools to elucidate the features of intermolecular interactions. To better understand the role of solvent 
molecules in the solvate formation, HS was performed based on CrystalExplorer 17.5 [46]. Moreover, 
the dnorm surface is shown as transparent, which allows the NS group to be visible and highlights the 
acceptor and donor equally. With respect to NS-MeOH (Figure 8a), the results suggested that the 
close contacts O7-H7A···O6 and N3-H3A···O7 were formed between NS and the methanol molecule, 
where the deeply red spots on the surfaces indicated the H-bonding contacts [47]. In addition, for 
further investigation of the interactions among NS and methanol molecules, 2D-fingerprint plots 
were performed. The relative contributions of dominant interactions of the NS molecule in NS-MeOH 
crystal forms were concluded in Figure 8b. The results indicated that the intermolecular H···H and 
O···H interactions making the greatest contribution to the HS were in proportion of 42% and 35.7%, 
respectively, which could be ascribed to the formation of hydrogen bonds and the existence of other 
weak interactions involving H atoms on the surface. In addition, it was also found that there was a 
small proportion of C···H and N···H interaction comprising 6.6% and 8.8%, respectively, which also 
played an important role in stabilizing the structure. 

 
Figure 8. (a) Hirshfeld surface of the NS molecule in NS-MeOH. (b) 2D-fingerprint plots combined 
with the relative contributions of dominant interactions of the NS molecule in NS-MeOH. 
Figure 8. (a) Hirshfeld surface of the NS molecule in NS-MeOH. (b) 2D-fingerprint plots combined
with the relative contributions of dominant interactions of the NS molecule in NS-MeOH.

3.5. Thermal Analysis and Desolvation Study

Thermal behaviors of NS-MeOH were inspected by TGA and DSC. The overlaid TGA-DSC profiles
are summarized in Figure 9. It could be found that the desolvation of NS-MeOH corresponding to
the first sharp endothermic peak in DSC thermograms occurred at 142 ◦C, which was echoed in the
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weight loss stage in the TGA curves. Furthermore, the weight loss of the stage of desolvation obtained
by TGA analysis was 6.7%, which coincided with the theoretical value (7.2%). NS-MeOH exhibited
an unexpectedly higher Tonset (142 ◦C) than the boiling points of methanol. As mentioned before,
it was attributed to the intensely intermolecular H-bonds interaction between the host molecules
and methanol molecules. Meanwhile, after the desolvation process, form VI previously reported
in the literature [18] was obtained and verified by PXRD analysis (Figure S4). Afterward, with the
temperature increasing, the second broad endothermic peaks between 156 ◦C and 176 ◦C suggested
that the decomposition of form VI, which was consistent with the continuous weight loss in the
TGA thermograms.
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A single crystal has been considered as a representative example for the study on the phase
transition of polymorph and the desolvation of solvate. Pal et al. [40] revealed the temperature-induced
reversible first-order single crystal to a single crystal phase transition in Boc-γ4(R)Val-Val-OH through
hot-stage microscopy (HSM). Yang et al. [41] found the desolvation of the single crystal of solvates
of sorafenib tosylate converted to form I through HSM. To achieve comprehensive understanding of
phase transformation phenomenon of NS-MeOH, HSM was established to provide deeper knowledge
of the desolvation process at a heating rate of 10 ◦C/min. As could be seen in Figure 10, a single crystal
of NS-MeOH appeared to remain unchanged up to 130 ◦C. When heated to 140 ◦C, the progressive
loss of crystal transparency seemed to occur. Subsequently, defects were emerged from the interface,
which follows the appearance of some tiny bubbles labelled by red arrows up to 145.7 ◦C, indicating
the beginning of the event of desolvation. Upon further heating, it could be seen that methanol
gradually escaped from the cracks marked with a red circle in the top left corner. At 150 ◦C, the
complete loss of transparency indicated the completion of the desolvation process. Nevertheless, the
original shapes of the NS-MeOH was maintained. On the basis of the results of PXRD, TGA, and DSC
discussed above, it could be determined that the NS-MeOH was converted to form VI after desolvation.
Thus, a mechanism was proposed to explain the phenomenon. Methanol molecules escaped from the
crystal lattice in the defective zones, and then the structural rearrangement occurred, which results in
an anhydrous form analogous to the WET 3 model (water evolution type) classified by Andrew K.
Galwey [48].
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3.6. Dissolution Behaviour

Poor aqueous solubility of drugs has prevented their potentially widespread application. To
meet the urgent needs in improving the bioavailability, much effort has been devoted to enhancing
pharmaceutical solubility in aqueous solution from perspectives of cocrystal, polymorphism, and
solvate [49]. It is noteworthy that different structures may lead to different physicochemical properties.
Thus, it is of great value to compare the solubility among different solid forms. In this study, the
dissolution behavior of NS and NS-MeOH was determined by the paddle method. In addition, the
undissolved powders after the dissolution experiment were collected and analyzed by PXRD (Figure
S4). The results of PXRD indicated that the undissolved powders of NS-MeOH and NS underwent a
solution-mediated phase transformation to NS monohydrate [50–52]. The solubility versus time was
depicted in Figure 11. Clearly, “spring and parachute” behavior was demonstrated in the dissolution
profiles, which correspond to the process of solution-mediated phase transformation. The NS-MeOH
achieved a maximum concentration of approximately 186.7 µg/mL, which was 1.27 times of NS (147.1
µg/mL). This phenomenon proved that incorporation of methanol into the NS crystal lattice modified
its structure, which resulted in better solubility of NS in water.
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3.7. Methanolysis of NS

As Sabadie [20,53] described, the alcoholysis reaction appeared to be a characteristic of all
sulfonylurea herbicides, involving the breakdown of the urea part of the molecule. In our study, the
single crystal of PCM was obtained after heating the supersaturated methanol solution of NS. Thus,
we could reach the conclusion that NS underwent a methanolysis reaction in which the corresponding
products were PCM and aminopyrimidine, as shown in Figure 12. The results indicated that NS
tended to form NS-MeOH at a lower temperature, while the methanolysis reaction occurred under
heating. This could be explained by the methanolysis reaction, which needed to overcome a relatively
higher activation energy barrier to dissociate the given covalent bond compared to the formation of
hydrogen bonds.
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3.8. Herbicidal Activity

The inhibition rates of NS, NS-MeOH, and PCM against weeds were listed in Table 4. The results
showed that the growth inhibition rates of E. crusgalli, S. viridis, D. sanguinalis, and A. theophrasti for
NS were 100%, 100%, 90%, and 20%, while, for NS-MeOH, were 100%, 90%, 85%, and 30%, and, for
PCM, were 70%, 55%, 50%, and 10%, respectively, at the dosages of 37.5 g a.i./ha. Compared with NS,
similar control efficacies against E. crusgalli, S. viridis, and D. sanguinalis, and a better control efficacy
against A. theophrasti, especially, for nicosulfuron methanol solvates were achieved. However, there
was a significant difference between NS and PCM. In contrast to NS, extreme lower inhibition rates
of PCM against four kinds of weeds were exhibited. As the concentration increased to 150 g a.i./ha,
the control efficacies against E. crusgalli, S. viridis, D. sanguinalis, and A. theophrasti for NS, NS-MeOH,
and PCM, were 100%, 100%, 95%, 40%, and 100%, 95%, 90%, 40%, and 80%, 70%, 70%, and 20%,
respectively. Although the control efficacies of PCM were promoted intensely, there was a relatively
large gap between PCM and the remaining compounds. Thus, it was indicated that NS and NS-MeOH
had similar herbicidal activities at the same experimental concentrations, which were more effective
than PCM. In terms of structure, the results should be due to the breakage of a sulfonylurea functional
group, which had great influence on herbicidal activity.

Table 4. The growth inhibition rates of E. crusgalli, S. viridis, D. sanguinalis, and A. theophrasti for NS,
NS-MeOH, and PCM. (Inhibition rate/%).

Compounds Concentration
(g a.i./ha) E. crusgalli S. viridis D. sanguinalis A. theophrasti

NS
37.5 100 100 90 20
150 100 100 95 40

NS-MeOH
37.5 100 90 85 30
150 100 95 90 40

PCM
37.5 70 55 50 10
150 80 70 70 20

4. Conclusions

In this study, nicosulfuron methanol solvate (NS-MeOH) was found at a relatively lower
temperature (5 °C), while PMC, which is a product of methanolysis of NS, was obtained when
the reaction occurred under heating. A detailed description of the NS-MeOH structure combined
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with an independent gradient model (IGM) analysis and Hirshfeld surface analysis (HS) indicated
that methanol molecules incorporated into the crystal lattice formed an H-bond with NS molecules,
where the H-bond controlled the assembly of the molecules resulting in final packing motifs and
also exerted great influence on physicochemical properties. In addition, it was concluded that
N3-H3A···O7, N4-H4B···N2, and O7-H7A···O6 H-bonds interactions in NS-MeOH belonged to medium
H-bonds in terms of AIM analysis. The bonding energies of these main H-bonds were also calculated.
In consequence, the bonding energy of the O7-H7A···O6 H-bond was the strongest of them. By
performing a comprehensive characterization of NS-MeOH desolvation, a proper mechanism of the
phase transformations of NS-MeOH was proposed. Methanol molecules escaped from the crystal
lattice in the defective zones, and then a structural rearrangement resulted in an anhydrous form.
Moreover, it was found that NS and NS-MeOH had similar herbicidal activities at the experimental
concentrations, while NS-MeOH exhibited better performance in solubility. Meanwhile, the herbicidal
activity of products of methanolysis were also investigated. As a result, a methanolysis reaction led to
the breakdown of the active group of the sulfonylurea bridge, which significantly reduced herbicidal
activity of the corresponding product.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/3/157/s1,
Table S1: Crystallographic data of II, S1, S3, Hydrate and DMF solvate based on NS. Figure S1: Plot of UV
standard curve for NS in aqueous. Figure S2: ORTEP view of NS-MeOH with atom labelling scheme. Figure S3:
ORTEP view of PCM with atom labelling scheme. Figure S4: PXRD patterns of (a) NS. (b) Desolvation product
of NS-MeOH. (c) Undissolved powders of NS after the dissolution experiment. (d) Undissolved powders of
NS-MeOH after the dissolution experiment. (e) Simulated pattern of the NS hydrate.
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