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Abstract: In this work, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE),
a novel deposition technique, was used to produce a transparent composite electrode of polyflourene
(PFO) and two-dimensional (2D) Ti3C2Tx nanosheets, which are part of the broader MXene family
of transition metal carbides and nitrides. This deposition technique offers a facile way to vary film
composition in polymer/polymer and polymer/nanoparticle films. Through this method, composite
PFO and MXene films were studied across six different compositions, enabling the identification of a
film composition that exhibited excellent charge storage (above 10 mF/cm2) and transparency (over
75% transmittance) when used as a supercapacitor electrode material. Thus, RIR-MAPLE shows
promise as a controllable and facile deposition technique for organic/inorganic composite films for
use in transparent supercapacitors, as well as in other energy storage applications.
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1. Introduction

Composite films offer a great advantage to improve material properties that can lead to increased
device performance. Depositing very thin composite films using traditional solution processing
approaches is a challenge, due to differences in material solubility [1–3]. As a result, composite
materials are often not compatible with traditional solution processing techniques [1], motivating the
need to develop novel approaches to deposit composite films. Supercapacitor electrode materials are
one application that can benefit from being deposited as a thin composite film because it would allow
for the creation of films that combine energy and power dense storage with other properties, such as
high optical transmittance and/or flexibility [1,4,5]. Additionally, as consumer electronics move toward
optically transparent devices, supercapacitors present a promising energy storage technology, due to
their combination of high transmittance and energy density, properties that are not currently met by
conventional batteries, capacitors, and other electrochemical energy storage devices [6,7].

While multiple metal- and non-metal-based transparent supercapacitor electrode materials have
been investigated, almost all reported materials have a capacitance of less than 1 F/cm2 [8]. In many
cases, the low capacitance is due to the use of a single material. In general, a tradeoff exists between
optical transmittance and capacitance [4]. To achieve transparency, the thickness of the films must
be very small (~<300 nm); however, this very thin nature leads to an increase in electrode resistance,
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and this diminishes its capacitance [4]. Composite films are an ideal choice for transparent energy
storage because they enable multi-functional films with both a capacitive material and a transparent
conductive material. While composite materials have been shown to help increase the capacitive
behavior and transparency of supercapacitor electrodes, the film properties are limited by solution
processing deposition techniques [1,9]. Specifically, there are restrictions on the materials that can
be combined, it can be difficult to deposit homogenous films, and control over material composition
is diminished. Thus, a novel approach is needed to create better composite films for transparent
supercapacitor electrodes.

One such novel approach is RIR-MAPLE (resonant infrared matrix-assisted pulsed laser
evaporation) [10]. RIR-MAPLE is particularly useful for creating composite organic/inorganic films
comprising materials that require incompatible solvents and cannot be deposited using traditional
solution processing techniques. In addition, RIR-MAPLE is a gentle physical vapor deposition
technique that is appropriate for organic materials [11] and nanoparticles [12] because it avoids
high-energy sources that induce damage in the target materials. The process uses a low-energy
erbium: yttrium-aluminum-garnet infrared (Er:YAG) laser with a peak wavelength at 2.94 µm to
irradiate a frozen target solution [11,13]. The laser wavelength is resonant with hydroxyl bonds that
must be present in the target matrix (or solvent), such that the matrix is evaporated and the target
material is released and transferred to the substrate. Typically, organic materials are deposited from an
emulsion that is formed (using minimal surfactant) between a water matrix and a nonpolar solvent
that contains the dissolved organic material [14,15]. The emulsion is frozen, and the water–ice matrix
is evaporated by the laser, allowing the organic material to transfer to the substrate (maintaining
the morphology it has in the frozen emulsion). Nanoparticles are deposited from suspensions in
water that are frozen in the same manner as the emulsion [16]. Polymer/nanoparticle composite films
deposited by RIR-MAPLE have exhibited minimal phase segregation compared to other methods of
nanocomposite deposition [17,18]. In addition, RIR-MAPLE has recently been implemented in the
fabrication of organic/inorganic metal halide perovskite solar cells, further demonstrating its versatility
and suitability for hybrid organic/inorganic material systems [19,20].

In this paper, two-dimensional (2D) titanium carbide (Ti3C2Tx)nanosheets, a member of the recently
discovered MXene family [21], were combined with polyflourene (PFO) for study as a transparent
supercapacitor electrode material, using RIR-MAPLE as the deposition technique. 2D Ti3C2Tx

nanosheets were chosen to provide high capacitance [21–23], while PFO was chosen to improve optical
transparency, due to its high transmittance in visible light [24]. It is important to note that PFO has
been used previously as a composite supercapacitor electrode material, and PFO has been deposited
using emulsion-based RIR-MAPLE [25–27]. However, 2D Ti3C2Tx nanosheets are best dispersed in
polar solvents, which are not compatible with the solubility of PFO. Thus, solution-based deposition
(i.e., spin coating) of composite thin films with both materials is challenging. In contrast, RIR-MAPLE
allows for concurrent deposition through the use of a partitioned, rotating target, comprising separate
mixtures for the PFO and Ti3C2Tx nanosheets, thus eliminating the need for the PFO to be soluble in
the solvent used to suspend the nanosheets. Known as sequential deposition, the partitioned target is
irradiated by the rastered Er:YAG laser while the target rotates to deposit the different components
of the film [14]. The final film composition reflects the composition of the partitioned target. Thus,
the RIR-MAPLE deposition of composite thin films comprising Ti3C2Tx nanosheets (herein referred
to as MXene) in a PFO polymer matrix for application as transparent supercapacitor electrodes with
significantly improved performance (i.e., capacitance and transparency) is an important demonstration
of achieving a multi-functional film comprising two materials with complementary properties, yet
incompatible solubility. This approach will greatly expand the materials options available to achieve
state-of-the-art transparent supercapacitor electrodes.
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2. Materials and Methods

2.1. Solution Preparation

MXene flakes were created according to Ghidiu et al. [23]. First, the MAX phase ceramic precursors,
in this case Ti2AlC3 and TiC, were combined and ball-milled for 18 hours. The resulting powder was
then heated to 1350 ◦C at 5 ◦C per minute under Ar atmosphere, using a tube furnace, in which the
powder was annealed for 2 hours. The annealed powder was then ground using a mortar and pestle
and passed through a 400-mesh sieve. Concentrated HCl was added to distilled water to create a 6 M
solution, to which 1.98 g of LiF was added. Next, 3 g of Ti3C2Tx powder was added to the solution and
allowed to react for 45 h. The reacted solution was rinsed with deionized (DI) water 5 times until the
pH of the solution was approximately pH 6. The solution was then vacuum filtered onto cellulose
membranes with a pore size of 100 nm to isolate the MXene powder and stored in a N2 glove box until
use. MXene suspensions were created by dispersing the isolated MXene powder into DI water to a
concentration of 12 mg/mL. The suspension was bath-sonicated (Branson 5510, Danbury, CT, USA) for
10 min, after which it was centrifuged for 30 min at 1500 rpm (Allegra X-22R Centrifuge, Beckman
Coulter, Indianapolis, IN, USA).

PFO emulsions were prepared by dissolving PFO (MilliporeSigma, Burlington, MA, USA Product
#571652) in trichlorobenzene (CAS 120-82-1) at a concentration of 20 mg/mL for 3 h in an inert N2

atmosphere at 60 ◦C while being stirred at 400 rpm. The resulting PFO solution was mixed with
phenol (CAS 108-95-2) and DI water containing 0.001% by weight sodium dodecyl sulfate (SDS) (CAS
151-21-3). The resulting emulsion composition was 1:0.25:3 (trichlorobenzene/phenol/SDS/water). This
mixture was shaken and stirred at 35 ◦C for an additional 20 min.

2.2. RIR-MAPLE Deposition

While target mixtures were prepared, the target cup within the RIR-MAPLE (PVD Products,
Inc., Wilmington, MA, USA) system was pre-cooled with liquid nitrogen to −196 ◦C. The partitioned
target cup area was adjustable using a mold, and varied systematically to change the MXene/PFO
composition within the deposited films. The prepared MXene suspension and PFO emulsion were
added in 0.5 mL quantities to the designated regions of the target cup to ensure flash-freezing within
10–30 s. Once frozen, the chamber pressure was reduced to approximately 10−5 Torr and maintained
throughout the deposition. The 2.94 µm Er:YAG laser with an average fluence of 2 J/cm2 was pulsed at
a frequency of 2 Hz, with a pulsed duration of ~90 µs. Films were deposited on glass, silicon, and PET
substrates for 4 h.

For this process, we used a sequential deposition method, which allows for the deposition of
two materials with different suspension/emulsion requirements. In this case, sequential deposition
is required because MXene interferes with the emulsion formation of PFO. Due to the raster pattern
of the laser and the rotation of the target cup, which is segmented into different sections comprising
different materials, each laser pulse transfers material from either the MXene suspension or the PFO
emulsion in proportion to the target composition. In this way, the composition of the film is controlled.
In addition, the MXene flakes are randomly and uniformly distributed throughout the thickness and
area of the film.

2.3. Characterization

The electrochemical characterization of MXene/PFO composite working electrodes was performed
using a three-electrode cell, with an Ag/AgCl reference electrode and a Pt-mesh counter electrode
connected to a potentiostat (Biologic SP-200, Seyssinet-Pariset, France). The deposited films were
characterized on conductive silicon substrates, and all electrochemical characterization was conducted
through a back contact to the substrate. A 0.5 M Na2SO4 electrolyte was used, unless otherwise
specified, by adding 99.9% purity Na2SO4 (Alfa Aesar A19890-0B, Haverhill, MA, USA) to deionized
water. The effective voltage window of the electrode was found by scanning the potential window until
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cathodic and anodic peaks appeared at a current density of 0.2 mA/cm2 in the cyclic voltammogram.
Scanning electron microscopy (SEM) images were collected using a FEI XL30 SEM-FEG (Hillsboro,
OR, USA) at an accelerating voltage of 5 kV. Energy dispersive X-ray (EDS) spectra were collected
using a Bruker XFlash 4010 (Billerica, MA, USA) at 25 kV. UV–Vis transmission spectra were taken
between 300 and 720 nm on a Shimazdu UV-3600 (Kyoto, Kyoto, Japan) with a dwell time of 1 s, and
the transmittance of the film was taken as the data point at 550 nm in the transmission spectra.

3. Results and Discussion

To understand the impact of composition (as determined by the RIR-MAPLE-partitioned target
area) on the capacitive and optical properties of the deposited MXene/PFO composite films, six different
compositions were deposited and named according to the MXene/PFO mixture area percentage within
the target cup (Table 1). SEM imaging was performed to characterize the film morphology based on
composition. As shown in Figure 1, the film morphology varied dramatically across all compositions,
from just a few flakes of MXene occurring in the P50M50 composition, to large regions of MXene flakes
occurring in the P25M75 and P15M85 compositions. These large regions contribute to the capacitance
of the film, as having a connected network of MXene flakes allows for movement of charge through
the film. With up to 15% of the film being transparent PFO, the composite film can maintain these
capacitive networks but allow for the passage of light. This directly ties the film morphology to its
ability as a supercapacitor electrode.

Table 1. List of electrode names tested where the percentages refer to the area of the target in
resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE), as well as naming convention.
PFO: polyfluorene.

Electrode Name PFO Target Area Percentage (%) MXene Target Area Percentage (%)

P100 100 0
P75M25 75 25
P50M50 50 50
P25M75 25 75
P15M85 15 85

M100 0 100
  

Crystals 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/crystals 

 

 
 

Figure 1. SEM images of different film compositions deposited in RIR-MAPLE, labeled according to
Table 1. MXene flakes appear as bright white regions within each of these films, while the darker
regions are the PFO matrix. The naming scheme is as follows: PxxMyy, where xx and yy indicate the
area percentage within the RIR-MAPLE frozen emulsion target for PFO and MXene, respectively.
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As can be seen in Figure 1, the pure PFO (P100), MXene-rich composite (P15M85), and MXene
(M100)) films have a transmittance of ~80%, 75%, and ~60%, respectively. The transmission spectra
are shown for the visible spectrum in Figure S1 in Supplementary Materials. This trend shows that a
higher amount of PFO in the composite film leads to better transmittance. Figure 2b shows the cyclic
voltammogram (CV) of the P15M85 electrode. The box-like shape of the CV with decreasing scan rate
is indicative of good capacitive behavior, though the internal resistance does appear to be high and is
an area of ongoing research. The areal capacitance (C/A) was calculated from the CV according to the
following formula [5]:

C
A

=
1

(∆V)
.

V

∫ v+∆V

v
j dV (1)

where C is the nominal capacitance, A is the electrode area in contact with the electrolyte (determined
by Image J), v (−0.4 V vs Ag/AgCl in this work) is the starting voltage, ∆V is the potential window
(0.6 V in this case), j is the current density, and

.
V is the voltage sweep rate (mV/s). The capacitance was

reported normalized to the sample area, because in the case of very thin films, volumetric capacitance
can overstate material performance. The overestimation occurs for films below 100 nm because the
energy storage is primarily a surface phenomenon [28]. Figure 2a shows the areal capacitance as a
function of the percent area of PFO in the RIR-MAPLE target. The capacitances were all calculated
at a 10 mV/s sweep rate. As can be seen in Figure 2a, both the M100 and P15M85 compositions
showed excellent areal capacitance at around 20 mF/cm2 when deposited on conductive silicon. These
promising results are enabled by the RIR-MAPLE sequential deposition that blends film components
on the nanoscale without phase segregation, such that multi-functional films can be achieved [29].
This nanoscale blending increases the film conductivity, while limiting percolation that may occur in
nanoparticle-based composite films, and improves optical properties due to the presence of PFO [4].
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Figure 2. (a) Double Y plot comparing film transmittance and capacitance as a function of the
composition of the RIR-MAPLE target. Error bars are included for transmittance measurements;
however, error for capacitance measurements are too insignificant to include (<0.5% of average);
(b) cyclic voltammogram (CV) curves of P15M85 electrode across multiple sweep rates in 0.5 M Na2SO4

with a Ag/AgCl reference electrode.

Figure 3 compares the reported areal capacitances for 10 different material systems, including
this work, demonstrating that the MXene/PFO composite system enabled by RIR-MAPLE deposition
possesses good optical characteristics for application in transparent energy storage. A picture of the
P15M85 electrode is shown in the inset to Figure 3 demonstrating its transparency. The transmittance
for this film composition of a transparent supercapacitor electrode is among the best reported in
literature, to the best of our knowledge.
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Figure 3. Comparison of areal capacitances for various material systems reported in the literature [30–38].
Inset: picture of P15M85 film on a 1 cm x 1 cm glass substrate, indicating its high transparency.

4. Conclusions

Through the use of RIR-MAPLE, a novel composite structure was fabricated in which MXene
flakes were embedded in a PFO polymer matrix. The resulting composite films have a higher areal
capacitance with an increasing presence of MXene but decreased transmittance. The ability to control
the electrode composition and to deposit a composite film with nanoscale blending or organic and
inorganic components allowed for an increase in the transparency of the electrodes without significant
changes in electrochemical performance (areal capacitances of >20 mF/cm2 at >75% transmittance).
These findings open new avenues for further investigation into composite materials that can be
created using the RIR-MAPLE technique. Such avenues include the following: i) binary, ternary,
and quaternary material systems; ii) controlled surface morphology by deposition conditions; iii)
deposition onto non-planar substrates; and iv) patterned area deposition. Thus, RIR-MAPLE is a
promising deposition technique for constructing tailored composite energy electrodes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/3/152/s1,
Figure S1: Transmittance plotted against wavelength for the full visible light spectrum. Two measurements were
taken for each sample, one indicated as a solid line and the other dashed. PFO shows a large absorbance at 400 nm
and a shoulder at 430 nm which indicates the presence of a crystalline phase of the polymer. A pure MXene film
yields the lowest overall transmittance which increases with the addition of PFO.
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