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Abstract: Herein, we report on our investigation of a fabrication scheme for self-assembled quantum
dots (QDs), which is another type of Stranski–Krastanow (S–K) growth mode. The In(P)As QD
structure was formed by the irradiation of As flux on an InP(311)B surface in a molecular beam
epitaxy system controlled by substrate temperature and irradiation duration. These QDs show
photoluminescence at around 1500 nm, which is suitable for fiber optic communication systems.
The QDs formed by this structure had high As composition because they had size, density, and emission
wavelength similar to those of QDs grown by the usual S–K growth mode.

Keywords: nanostructures; diffusion; desorption; atomic force microscopy; molecular beam epitaxy;
semiconducting III-V materials

1. Introduction

Semiconductor quantum dots (QDs) have attracted much attention because they can confine
electrons and holes three dimensionally. Therefore, QDs were expected to be used in high performance
semiconductor lasers and to be applied in quantum information and communication technologies [1–5].
The technique for self-assembling QDs is widely used for application to optical devices (such
as semiconductor laser diodes) using the Stranski–Krastanow (S–K) growth mode because these
applications do not require control of a QD position. In the crystal growth of a compound semiconductor,
especially lattice-mismatched-material systems, the strained layer on the substrate forms a QD structure
that is determined by the total energy stabilization including strain energy and surface energy [6,7].
In systems of III-V materials, techniques for self-assembling of InAs QDs on GaAs or InP substrate
have been well investigated [8–11]. Control of the size, density, and emission wavelength of the QDs is
achieved by optimizing the crystal growth condition. In the growth of self-assembled QDs, a molecular
beam of group III atoms and group V atoms are usually supplied simultaneously. On the other hand,
there are some special growth techniques such as droplet epitaxy [12,13], in which only group III atoms
are supplied to the substrate at low temperature followed by irradiation with group V atoms at high
temperature. Droplet epitaxy has an advantage because the nanoscale droplets of group III atoms
form independently of lattice mismatch, which allowed us to fabricate QDs in lattice-matched-material
systems. In addition, we found that, during the formation of QDs irradiated only by group V atoms,
growth occurred on the substrate by molecular beam epitaxy (MBE), in which the group V atoms on
the substrate were replaced by the irradiating atoms [14]. It is believed that the replacement of group
V atoms occurred at equilibrium, so that high-quality crystals formed. However, detailed research
has not been done because changing the group V atoms during irradiation is not easy due to the high
vapor pressure of this group. In this study, we investigated a technique for the growth of QDs using
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interdiffusion of arsenic atoms into an InP(311)B substrate via a process called interdiffusion epitaxy
(IDE).

2. Experiments

The samples were fabricated using solid-source molecular beam epitaxy (MBE; Veeco Gen 930).
Semi-insulating substrates of InP(311)B were used for this study. A large amount of atom migration
was observed on the (311)B surface [15,16]. Interdiffusion also occurred easily on this surface as
compared to a (001) surface [14]. The supply of group V atoms was provided by a valved cracker cell,
which could rapidly change the group V equivalent beam pressure. The surfaces of the InP(311)B
substrates were cleaned by increasing the substrate temperature to 500 ◦C under irradiation with a P
beam (2 × 10−6 Torr) in the growth chamber. After thermal cleaning, the substrate temperature was
set to 470 ◦C and the InP buffer layer was grown. Then the substrate temperature was set to each
process temperature, and irradiation with As was conducted. Change of the surface morphology was
monitored by reflection of high-energy electron diffraction (RHEED) in situ. After growth of the QDs,
the surface morphology was evaluated using atomic force microscopy (AFM) in air. The samples used
for photoluminescence (PL) of the InP embedding layer were grown at 430 ◦C after the As irradiation
process. PL measurement was carried out using a second harmonic line of a YAG laser (532 nm),
a 320 mm monochromator, and an InGaAs array photodetector at room temperature.

3. Results and Discussion

Figure 1a shows the RHEED pattern after growth of the InP buffer layer along the [01−1] direction.
The RHEED pattern shows a streak pattern, which means that a clean, flat surface was obtained after
growth of the buffer layer. First, we examined the As irradiation process at 470 ◦C. Figure 1b,c show
the change of the RHEED pattern, of which the streak pattern was weakened after starting irradiation
with the As beam. A spotty pattern appeared at around 180 s, as shown in Figure 1b. After irradiating
with As for 240 s, a clear spot pattern was observed, as shown in Figure 1c. These results indicate that a
crystalline three-dimensional nanostructure was formed, because metallic or amorphous surfaces show
a halo pattern with RHEED. Therefore, the surface phosphorus of the substrate was exchanged with
irradiating arsenic atoms, and interdiffusion occurred during this process [14]. This is quite different
from the process used for the InP(001) substrate. On the InP(001) surface, one or two monolayer
phosphorus atoms were exchanged with arsenic, and a stabilized flat surface was obtained [17,18].
On the other hand, more than two monolayer phosphorus atoms should be exchanged to form a
three-dimensional structure in our case because large mass transport occurred along the normal
direction on the (311)B surface [15,16]. The incorporated As atoms form an InPAs layer with high As
composition, which generates a strain field. This strain is the driving force that forms the structure
of the QDs. This is the reason for the use of the (311)B surface in our process. Next, we examined
the same process at different substrate temperatures during which the As irradiation time was fixed
to 240 s. Figure 1d,e show the RHEED pattern after 240 s of As irradiation at 450 ◦C and 430 ◦C,
respectively. In the process at 450 ◦C, the RHEED pattern changed from a streak to a spotty pattern.
Although it was similar to the one formed during the process at 470 ◦C, the three-dimensional structure
on the surface was expected to be smaller at 450 ◦C than at 470 ◦C. In the process at 430 ◦C, the RHEED
streak pattern was maintained or changed to slightly streaky, which indicates that the surface was flat
and that there was insignificant formation of a three-dimensional structure.
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Figure 1. Reflection of high-energy electron diffraction (RHEED) pattern for InP(311)B substrate (a) 
after growth of the InP buffer layer, (b) after irradiation of As for 180 s at 470 °C, (c) for 240 s at 470 
°C, (d) for 240 s at 450 °C, and (e) for 240 s at 430 °C. 
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Figure 1. Reflection of high-energy electron diffraction (RHEED) pattern for InP(311)B substrate (a)
after growth of the InP buffer layer, (b) after irradiation of As for 180 s at 470 ◦C, (c) for 240 s at 470 ◦C,
(d) for 240 s at 450 ◦C, and (e) for 240 s at 430 ◦C.
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To investigate the surface morphology, AFM measurement was conducted after the processing at
three temperatures. In this case, we kept the substrate in the growth chamber for 300 s after setting
the substrate temperature at 430 ◦C for each process because this better adapted the growth process
of the cap layer for the PL samples. Figure 2a shows an AFM image after As irradiation at 470 ◦C
for 240 s. Three-dimensional QD structures were observed on the surface, which is consistent with
RHEED measurements. The average lateral size (L) along the [−233] direction, the height (H), and the
density (D) were 35.7 nm, 4.51 nm, and 8.96 × 1010/cm−2, respectively. The histogram of the lateral size
and height are shown in Figure 3a. The size and density of this sample were almost the same as for
InAs QDs grown on InP(311)B substrate with an ordinary scheme [19–21]. Although it is difficult to
determine accurately the composition of the thin surface layer, these QDs were expected to be formed as
InPAs with high As composition (nearly InAs). In the AFM image, some larger islands were observed
that were considered to be formed by the coalescence of smaller QDs. However, the fluctuation of
size was not very large; it remained around 17%. Figures 2b and 3b show AFM images of the surface
morphology after 240 s of As irradiation at 450 ◦C and a histogram of QD size, respectively. In this
sample, the surface morphology observed was similar to the one processed at 470 ◦C. The lateral size,
height, and density were 31.7 nm, 3.70 nm, and 8.04 × 1010/cm2, respectively, slightly smaller than
those of the sample at 470 ◦C. Their smaller size is consistent for spotty patterns of RHEED. In this
sample, fewer coalescent islands were observed than in the sample processed at 470 ◦C. In contrast,
the sample processed at 430 ◦C showed different surface morphology and size distribution, as shown in
Figures 2c and 3c. It is believed that the small change in the RHEED pattern mentioned above indicates
that these small QD structures were formed with As irradiation at 430 ◦C. The average lateral size,
height, and density were 25.8 nm, 1.82 nm, and 4.80 × 1010/cm2, respectively. Since the size distribution
in Figure 3c shows a significant shift to the smaller region, it is clear that the exchange reaction and
interdiffusion of P and As were not promoted as well in this temperature range. In addition, the height
distribution shows a bimodal shape. The larger peak (around 4 nm) is similar to the ones for the
samples processed at 470 ◦C and 450 ◦C. Therefore, the group with greater height was distinct from the
coalescent islands observed in Figure 2a,b. This is related to the self-size-limiting phenomena that occur
during formation of QDs [22,23]. In [18,19], the size of InAs QDs was limited under low As pressure or
low growth rates, which can be considered a quasi-equilibrium condition even for the non-equilibrium
growth technique of MBE. In our case, a better equilibrium condition was achieved because we only
supplied As atoms and exchanged P and As at the surface. However, the P and As atoms exchanged
under our conditions did not achieve states of complete equilibrium, so that large coalescent islands
were observed in the samples processed at 470 ◦C and 450 ◦C. These results show that the P and As
exchange and interdiffusion process is strongly dependent on the substrate temperature.

Next, we evaluated the surface morphology by changing the As irradiation time at 470 ◦C.
Two samples were fabricated using As irradiation for 120 s and 480 s. The other process was the same
as for the sample with As irradiation for 240 s at 470 ◦C, as shown in Figure 2a. The AFM image
and histogram of lateral size and height are shown in Figures 2d and 3d for 120 s of As irradiation,
and in Figures 2e and 3e for 480 s of As irradiation. For the sample with 120 s of As irradiation,
the average size, height, and density were 33.0 nm, 4.03 nm, and 6.84 × 1010/cm2, respectively,
which were slightly smaller than that of the sample with 240 s of As irradiation. The distributions of
the lateral size and height were similar to those of the sample with 240 s of As irradiation, and shifted
to smaller regions, which indicated that the formation of QDs was proceeding in this stage. In addition,
the coalescent islands were not found in this region. On the other hand, the sample with 480 s of
As irradiation shows many coalescent islands. The average size, height, and density were 38.6 nm,
5.26 nm, and 1.01 × 1011/cm2, respectively. The size distribution became quite broad, which means
that both the nucleation of small QDs and the formation of large islands by coalescence occurred in
this stage. This is also supported by the shift of average size to larger regions and by the increase in the
QD density. Therefore, the size limiting effect was not very large in this temperature region.
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Figure 2. Atomic force microscopy (AFM) images for samples irradiated with As for (a) 240 s at 470 
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(b) 240 s at 450 ◦C, (c) 240 s at 430 ◦C, (d) 120 s at 470 ◦C, and (e) 480 s at 470 ◦C.
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at 470 ◦C, (b) 240 s at 450 ◦C, (c) 240 s at 430 ◦C, (d) 120 s at 470 ◦C, and (e) 480 s at 470 ◦C.

Finally, we evaluated the optical properties of the observed QD by PL measurement at room
temperature. All QDs were embedded within 100 nm thick InP at 430 ◦C. The results are shown
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in Figure 4, where parts (a) to (e) show the spectra for the samples with As irradiation for (a) 240 s
at 470 ◦C, (b) 240 s at 450 ◦C, (c) 240 s at 430 ◦C, (d) 120 s at 470 ◦C, and (e) 480 s at 470 ◦C. These
correspond to the AFM images in Figure 2a–e. The sample with 240 s of As irradiation at 470 ◦C
shows strong emission (even at room temperature) around 1500 nm, which is a higher intensity when
compared with conventional S–K QDs. Therefore, the crystal quality of these quantum dots was very
high. The wetting layer emission could not be detected as it was expected to appear in a shorter
wavelength region (out of measurement range). The sample with 240 s of As irradiation in Figure 2b
at 450 ◦C, and c at 430 ◦C, shows shorter wavelength emission at 1346 nm and 1259 nm, which is
consistent with the smaller QDs observed in these samples, as compared to the sample processed
at 470 ◦C. The full widths at half maxima (FWHMs) of these spectra were (a) 95 meV, (b) 82 meV,
and (c) 102 meV. The wider spectrum was observed in the sample processed at 430 ◦C where the
size distribution of QDs was wide. The samples processed at 470 ◦C for 120 s and 480 s showed
emission centered at (d) 1446 nm and (e) 1608 nm, respectively. In this case, the center of the emission
wavelength shifted depending on the average size of the QDs. The FWHM of each spectrum was (d)
93 meV and (e) 93 meV. Furthermore, we could not observe the emission of the wetting layer (WL) in
any of the samples, which either implies that the WL did not form or that it had vanished during the
embedding process. Although the FWHM of spectrum (d) had almost the same size distribution of
QDs as in the sample processed for 240 s at 470 ◦C, the FWHM of spectrum (e) was also the same, in
spite of the wide size distribution in this sample. The reason for this is believed to be carrier transfer
from smaller QDs to larger QDs. In this sample, a highly packed structure was observed, as shown
in Figure 2e. The smaller QDs nucleated between larger QDs, so that the carriers in the smaller QDs
moved to neighboring larger QDs and were emitted from there. In these cases, higher energy emission
was suppressed so that the FWHM became smaller [24]. Although the details of carrier dynamics
still need to be investigated, it was found that this technique can be used to control the emission
wavelength over a wide range, from 1346 nm to 1608 nm. Therefore, wide-range optical devices with
these QDs could be realized using this technique after optimization. The PL results also show that
these QDs were composed of InPAs with a high As composition (more than 90%) because the InAs
QDs formed by the S–K growth at 470 ◦C showed emission wavelength centered at 1599 nm.
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Figure 4. Photoluminescence (PL) spectra of QDs obtained by interdiffusion epitaxy (IDE): irradiated
with As for (a) 240 s at 470 ◦C, (b) 240 s at 450 ◦C, (c) 240 s at 430 ◦C, (d) 120 s at 470 ◦C, and (e) 480 s at
470 ◦C.
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4. Summary

In summary, we fabricated self-assembled In(P)As QDs using IDE. The three-dimensional
QD structures were obtained by only irradiating As flux onto an InP(311)B substrate at substrate
temperatures ranging from 430 ◦C to 470 ◦C. The QD size and density were controlled by changing the
substrate temperature and duration of As irradiation. The QDs obtained by IDE show strong PL at
room temperature, controllable over a range of 300 nm, in the region of 1500 nm.
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