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Abstract: Reactively synthesized porous Ti3SiC2 with different pore sizes was prepared using TiH2,
Si and graphite powders as starting materials. The effect of pore size on the flexural stress–strain
relationship, bending strength and flexural elastic modulus were investigated. The results show that
the synthesized porous Ti3SiC2 intermetallic compounds have a characteristic of a high-purity MAX
phase with typical laminate microstructure. When the average pore size decreases from 21.8 to 2.1
µm, the volume content of Ti3SiC2 phase ranges from 96.9% to 99.6%, and the porosity is in the range
of 49.9% to 54.1%. The flexural stress–strain curves of porous Ti3SiC2 show a characteristic of two
stages of elastic deformation and fracture. The flexural modulus is in the range of 13 to 70 GPa, which
increases rapidly with further decrease of the pore size. A relation similar to the Hall–Petch equation
between the mechanical property and the pore size was investigated for the porous material.

Keywords: Ti3SiC2; intermetallic compound; porous material; mechanical property; pore size;
elastic modulus

1. Introduction

Porous Ti3SiC2 [1–5], as a new type of porous intermetallic compound with MAX phase, has the
performance advantages of porous metals and ceramics, such as excellent environmental corrosion
resistivity [1], high temperature stability [2] as well as good thermal shock resistance and machining
performance [3]. In addition, porous Ti3SiC2 prepared by reactive synthesis of elemental powders [6–8]
also shows a good open-pore structure and pore-structure stability [1,2].

Compared with dense material, the mechanical strength of porous material decreases
significantly [9–11]. The mechanical model [8,12], microstructure [8] and the effect of porosity
on mechanical properties [12,13] of porous Ti3SiC2 have been investigated, which is classified as a
kinking nonlinear elastic solid [14,15]. The strength and stiffness of porous Ti3SiC2 decrease with
increasing the porosity [12]. In the case of porous MAX phases prepared with space holder with the
size of several hundred microns [4,5,13], it was found that the porosity and the pore type were the main
factors influencing the elastic properties [13]. On the other hand, porous Ti3SiC2, due to its unique pore
structure and material properties, can be well applied in biological separation [16], chemical filtration
and hydrometallurgy [1], etc., where the mechanical properties of porous materials should meet the
requirements of the working conditions [3]. The pore size is an important pore structure parameter
determining the filtration accuracy, and its influence on mechanical properties is an important design
basis for porous materials in the filtration application. To the best of our knowledge, investigations on
the effect of pore size of porous Ti3SiC2 on its strength and stiffness have not been reported so far.
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Currently, the relationship between porosity and strength of porous materials can be simulated
by the Barsen equation [17]. The Hall–Petch equation can be used to reveal the relation between the
strength or hardness and the grain size of single phase material [18–20] or composite material [21–23].
In this work, a series of porous Ti3SiC2 compounds with different pore sizes and approximately the
same porosities and phase purities were prepared by the reactive synthesis of elemental powders
through a pressure less sintering process. The Hall–Petch relationship between the pore size and the
bending strength was studied, and the effect of pore size on the flexural modulus of porous Ti3SiC2

was discussed.

2. Experimental Procedure

Porous Ti3SiC2 compounds were prepared using commercially available TiH2, Si and graphite
powders as the starting materials by a pressure less sintering process [1]. TiH2 powder can be
prepared by hydrogenation of titanium sponge and subsequent mechanical pulverization process [24].
The median diameter of TiH2 powder is in the range of 10 to 180 µm, which was utilized to fabricate
porous material with different pore sizes. The median diameters of Si and graphite powders are in
the ranges of 10–15 µm and 5–10 µm, respectively. The purities of all the used powders were above
99.0 wt.%, and were mixed according to the atomic ratio of Ti, Si, and C of 3:1.2:2. An excess of
20% Si was added to compensate for its high temperature volatilization loss [1,3]. Analytically pure
stearic acid was used as forming agent and lubricant. Cold forming procedure was carried out by
means of uniaxial die pressing with the pressure of 100 MPa. The prepared compacts are cuboids
with dimensions of length, width and thickness of 30 mm, 6–7 mm and 2–3 mm, respectively. A
multi-stage heating process under vacuum was utilized for the sintering of compacts [3]. The sintering
procedure diagram is shown in Figure 1. The low-temperature sintering process at 350 ◦C is designed to
decompose and remove the organic additives from the compacts, which is followed by a heating stage
at 650 ◦C to dehydrogenate TiH2. At the intermediate sintering stage at 1000 ◦C, the binary intermediate
phases including TiC and Ti5Si3 are gradually formed through the solid phase diffusion [3,6], which is
conducive to the subsequent synthesis of Ti3SiC2 [3]. The final sintering temperature is 1350 ◦C for 3 h
with the vacuum pressure of 10−1–10−3 Pa. The heating rate is controlled at 5–10 ◦C/min. After the
pressure less sintering, the compacts are cooled with the furnace.
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Figure 1. Temperature-time diagram for the sintering procedure of cold pressed compacts.
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The phase compositions of the compacts after sintering at 1350 ◦C for 3 h were analyzed by
X-ray diffraction (XRD: Dmax 2500VB, Tokyo, Japan) with a Cu Kα source at room temperature.
The corresponding XRD data processing and analysis was carried out by Jade5 software (MDI,
California, USA). The mechanical properties and the relation between flexural stress and strain of
porous Ti3SiC2 were measured according to the three point flexural test by an electric servo-hydraulic
material test system (Instron3369, Instron Ltd., High Wycombe, UK). The sintered compacts with the
rectangular section mentioned above were used as the samples for the bending strength test, in which
the span and the displacement rate are 25 mm and 0.02 mm/min, respectively. The mechanical strengths
are the average of the three replicates used. The pore size was determined by the bubble point method
(FBP-III) [6]. The open and overall porosities were calculated through the pycnometry method.

3. Results and Discussion

The XRD patterns of porous Ti3SiC2 with three different average pore sizes are shown in Figure 2.
The phases of these porous materials are composed of Ti3SiC2 phase (a = 3.062 Å and c = 17.637 Å,
Space Group P63/mmc, PDF 40-1132) and a small amount of TiC impurity phase (a = 4.327 Å, Space
Group Fm-3m, PDF 65-0242). According to the standard additive method [25], the Ti3SiC2 phase
volume contents of the porous compounds with average pore sizes of 2.1, 12.9 and 21.8 µm have been
calculated to be 99.6%, 98.8% and 96.9%, respectively, showing a high-purity characteristic. The MAX
phase content of porous Ti3SiC2 increases to a certain extent as the pore size reduces. The phase
composition of porous Ti3SiC2 compounds prepared by reactive synthesis has been investigated to be
influenced by the raw material type [1], the synthesis parameters [3], the material composition and
alloying elements [7] and the material granularity [16]. The addition of TiH2 was proved to improve
the phase purity of the synthesized Ti3SiC2 MAX phase, which was attributed to the low oxygen
content and high reactivity of elemental Ti generated from the dehydrogenation of TiH2 [1,3].
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Figure 2. X-ray diffraction (XRD) patterns of porous Ti3SiC2 with different average pore sizes.

In the preparation process of porous Ti3SiC2 by the reactive synthesis of TiH2, Si and graphite, the
pore size of the resultant porous material has a strict linear relation with the powder particle size of
TiH2, and the porosity is kept essentially constant when the pore size changes [6]. Therefore, the pore
size of porous Ti3SiC2 can be adjusted by changing the powder size of TiH2. In fact, the synthesized
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porous Ti3SiC2 in this work has the average pore size in the range of 2.1–21.8 µm with the open and
overall porosities in the ranges of 44.6%–48.5% and 49.9%–54.1%, respectively. The decrease of pore
size means the increase of specific surface area of the reactant under the condition that porosity is
basically constant, which helps to enhance the surface diffusion during the synthesis process.

Figure 3 reveals the pore structure morphology and the lamellar microstructure of porous Ti3SiC2.
The synthesized Ti3SiC2 compound has the characteristics of rich porous structure and high specific
surface area, as shown in Figure 3a and b with the average apertures of 6.2 µm and 3.0 µm, respectively.
A large number of interconnected pores are generated in the sintered compact with the aperture at the
micron level. A few coarse pores exist locally, which is related to the original particle clearance in the
compacts [7]. The prepared Ti3SiC2 phase skeleton generally has a smooth surface, which is conducive
to the permeability of the porous material. Further observations reveal that the Ti3SiC2 grains exhibit
obvious lamellar characteristic with the grain size in the range of several microns (Figure 3c), which is
a typical microstructure feature of the reactively synthesized MAX phase [1–3].
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Figure 3. SEM images of the pore structure morphology of the sintered compacts with the average
apertures of 6.2 µm (a) and 3.0 µm (b) and the lamellar microstructure of the synthesized porous
Ti3SiC2 (c).

Figure 4 shows the relation between the flexural stress and strain for porous Ti3SiC2 with different
average pore sizes. The variation rate of flexural stress with strain increases with decreasing the
pore size. All the stress–strain curves show a typical elastic deformation stage directly followed by
a fracture stage. However, the flexural stress increases nonlinearly with increasing strain, which is
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mainly attributed to the deformation of the MAX phase as a kinking nonlinear elastic solid through the
formation of regular and incipient kink bands [12].Crystals 2020, 10, 82 6 of 10 
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Figure 4. Flexural stress–strain curves of porous Ti3SiC2 with different average pore sizes.

Figure 5 shows the relation between the bending strength and the average pore size of porous
Ti3SiC2. The bending strength increases in a nonlinear manner with decreasing the average pore size
(Figure 5a). As the aperture decreases from 21.8 to 2.1 µm, the bending strength increases from 22 to
89 MPa. Through data fitting, the relationship between them is as follows:

σ = k·d−λ (1)

where σ and d are the bending strength (MPa) and the average pore size (µm) of the porous material,
respectively. k and λ are the constants with the values of 154.04 and 0.56, respectively. The determination
coefficient R2 of the fitting relation equation is 0.92. Given λ is close to 0.5, further relationship between
σ and d−0.5 is investigated, as shown in Figure 5b. It is observed that σ increases linearly with d−0.5.
Through data fitting, the relationship between them is as follows:

σ = σ0 + k·d−
1
2 (2)

where σ0 and k are the constants with the values of 1.60 MPa and 135.48 MPa·µm1/2, respectively.
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(b) for porous Ti3SiC2.

The determination coefficient R2 of the fitting relation equation is 0.94, which shows a higher
fitting degree than Equation (1). Equation (2) is the Hall–Petch equation reflecting the relationship
between the microstructure parameter and the mechanical property [20,21]. The result indicates that
the influence of the pore size on the strength of the reactively synthesized porous Ti3SiC2 compound
can be described by the Hall–Petch equation under the condition of approximately the same porosities
and phase purities. In fact, a similar linear relationship between strength and reciprocal square root of
the pore size was also found in porous alumina ceramics [26]. As the main component of the porous
material, the pore can be approximately regarded as a phase in composite material. The decrease
of pore size weakens the size factor that causes stress concentration [27], which is conducive to the
improvement of material strength. On the other hand, the content of MAX phase in the sintered
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compacts increases with decreasing the pore size (Figure 2). Compared with Ti3SiC2 phase, TiC
impurity phase has higher hardness and brittleness. Under the action of external load, this kind of
hard and brittle impurity phase can often cause the stress concentration, which results in the decrease
of the strength of the material. Therefore, the synthesis of Ti3SiC2 phase with high purity has always
been the focus of researchers [1,3,25].

In this work, the pore size of porous Ti3SiC2 compounds has been adjusted by changing the
particle size of TiH2 powder. In the reactive synthesis process, there is a strict linear relationship
between the powder size of TiH2 and the pore size [6]:

dm = g·dp (3)

where dm and dp are the maximum pore size (µm) of porous Ti3SiC2 and the powder particle size
(µm) of TiH2, respectively, and g is the proportionality coefficient. Under the same synthetic process
conditions, the reduction of powder size is beneficial to obtain the resultant material with smaller
pores [6].

Figure 6 shows the relationship between the flexural elastic modulus and the pore size. When
the pore size decreases from 21.8 to 2.1 µm, the flexural modulus increases from 13 to 70 GPa, which
increases rapidly with the further decrease of the pore size to several microns. For comparison,
the Young’s and the shear moduli of porous Ti3SiC2 with the porosity fraction of ca. 0.5 prepared by
space holder were investigated to be about 50 GPa and 20 GPa, respectively [13]. Through data fitting,
the relationship between them is as follows:

E = h·d j (4)

where E and d are the flexural modulus (GPa) and the average pore size (µm) of porous Ti3SiC2,
respectively. h and j are the constants with the values of 97.42 and −0.61, respectively.
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The determination coefficient R2 of Equation (4) is 0.95, indicating that the flexural modulus of
porous Ti3SiC2 has a relatively good power function relation with the pore size. In the investigations
on the relation of pore size and elastic modulus for porous materials, there are two kinds of research
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results for different material types. On the one hand, it has been revealed that the elastic modulus
increases slightly with the increase of the pore size for a porous alumina ceramic [26]. On the other
hand, it has been found that the elastic modulus increases with the decrease of the pore size for a
porous nickel metal [28]. In this study, the change behavior of Ti3SiC2 MAX phase is similar to that of
the latter, which indicates that porous Ti3SiC2 exhibits similar characteristics to porous metals under
the action of bending stress.

4. Conclusions

Reactively synthesized porous Ti3SiC2 compounds with different pore sizes have the characteristics
of high purity of MAX phase and laminar microstructure. The flexural stress–strain curves of porous
Ti3SiC2 compounds exhibit two stages of elastic deformation and fracture, and the elastic deformation
behavior shows a characteristic of kinking nonlinear elastic solid. The bending strength increases with
decreasing the pore size for the synthesized porous Ti3SiC2 with approximately the same porosities
and phase purities, and the change law between them follows the Hall–Petch equation. The flexural
modulus of porous Ti3SiC2 has a power function relationship with the pore size. The reduction of
the pore size of porous Ti3SiC2 improves the phase purity, strength and stiffness while increasing its
filtration accuracy.
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