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Abstract: Pentaerythritol tetranitrate (PETN) is a commonly used high explosive (HE) in detonators.
Often, surrogate or “mock” materials are used in place of HE for mechanical tests, proofing out
equipment, or developing new diagnostics. However, there is no commonly accepted mock for
PETN. A good mock should match at least one physical property of the target material, and ideally
mimic multiple thermal and mechanical properties. Here, we investigate several molecular crystals
to evaluate their efficacy in mocking PETN density, melting point, elastic modulus, hardness, plastic
deformation, and fracture behavior. Materials were tested with a combination of calorimetry and
nanoindentation. Two materials, 2,4,6-trifluorobenzoic acid (246 TFBA) and mesoerythritol, were
downselected for detailed indentation study after the initial round of screening experiments, both
were found to mimic PETN mechanical behavior quite well, 246 TFBA closer to PETN in most
properties (hardness, modulus, and density) than erythritol, but erythritol having advantages in
relative cost and matching the onset of yield. Depending on the desired implementation of the mock,
one material may be preferred over the other, but both have potential as generic mocks for PETN.
Nanoindentation is demonstrated as a versatile tool to provide rapid screening of these materials’
mechanical properties.

Keywords: nanoindentation; explosive; mock; fracture

1. Introduction

Pentaerythritol tetranitrate (PETN) is a high explosive (HE) that is generally accepted to be the
most sensitive of secondary explosives, with any explosive more sensitive than PETN being categorized
as a primary explosive [1]. PETN is most commonly used as a detonator material due to its reliable
initiation, and finds some limited applications in composite explosives as well [2]. While PETN can be
safely handled in most situations, its relatively high sensitivity to impact and friction can pose some
hazards. Occasionally, it can be appropriate to replace PETN with a non-hazardous surrogate material
(“mock”) for initial experiments. These could include proofing equipment used for making detonators,
performing thermal stability/aging experiments, performing mechanical experiments, or developing
new diagnostic capabilities. The goal is to carry out the desired test on the mock instead of the HE,
having a reasonable expectation that the results of the experiment would be similar for both materials.

There has been limited investigation in the literature for suitable mocks for PETN, in recent years
using mocks to develop techniques for explosives trace detection [3–5]. For other HE materials, inert
molecular crystals are often used as mocks in cases where handling HE is a concern [6]. A high fidelity
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or versatile mock will replicate the most important property of the target HE (e.g., density) while also
mimicking as many of the other thermal and mechanical properties of the HE as possible. While there
are many methods to identify suitable mocks, generally they fall along two ideas: (1) use an inert
material with similar molecular structure to the HE [7–9]; (2) search for inert materials that mimic a
specific property, and then choose target materials based on molecular structure or other secondary
properties [10–12]. For PETN specifically, our properties of interest include density, melting point,
elastic properties, and fracture behavior.

When searching the literature for candidate mock materials, density and thermal properties are
often reported along with other routine characterizations of a material. Mechanical properties, on
the other hand, are usually not reported for molecular crystals because they are either proprietary
materials (e.g., pharmaceuticals) or not of substantial interest in the application. Nanoindentation
can be a powerful tool to measure mechanical properties when testing potential mocks because
measurements can be performed quickly with high repeatability on extremely small quantities of
material. This also lends itself well to the testing of explosives, where the risk associated with handling
the material is proportional to the amount of material present. Nanoindentation has previously been
used for the purpose of characterizing explosives such as cyclotetramethylene-tetranitramine (HMX),
cyclotrimethylenetrinitramine (RDX), triaminotrinitrobenzene (TATB), and others [13–17]. PETN had
previously been characterized via nanoindentation but some unusual properties were discovered, such
as extreme depth dependence of the elastic modulus [18], which merited a re-examination for this
present work.

Here, we report the results of several thermal and mechanical tests on PETN and newly
identified mock candidates. We developed selection criteria for PETN and identified five
candidates through a combination of Cambridge Structural Database (CSD) [19] queries and
general literature searching. Meso-erythritol (erythritol), 2,3,4,5,6-pentafluorobenzamide (PFBA),
2,4,6-trifluorobenzoic acid (246 TFBA), 1,1,1,5,5,5-hexafluoropentane-2,2,4,4-tetraol (HFPT), and
N,N′-bis(2,3,4,5,6-pentafluorophenyl)oxamide (N-BPFPO) were chosen for examination as potential
thermomechanical mocks for PETN. Mechanical comparisons were initially made on the basis of
hardness and elastic modulus, while thermal comparisons used differential scanning calorimetry
(DSC) to determine properties such as melting point. These initial tests enabled downselection to two
candidates, which were then subjected to intensive nanoindentation studies for determining incipient
plastic deformation, indentation fracture toughness, and in-plane anisotropy in elastic modulus. We
find erythritol and 246 TFBA to be particularly promising for mocking PETN in various scenarios,
with respective advantages and disadvantages that may result in selection for specific applications.
Quantitative and qualitative comparisons of the mocks to PETN are given and the merits of each
are discussed.

2. Materials and Methods

All materials except for N-BPFPO and PETN were purchased commercially and used without
further purification. None of the materials were initially suitable for nanoindentation as received,
generally presenting as fine powders, and so single crystals were crystallized from appropriate
solvents. Meso-erythritol (Erythritol) was purchased from Sigma-Aldrich (now Millipore Sigma) and
crystals were grown from a water solution. Pentafluorobenzamide (PFBA) was purchased from Alfa
Aesar and crystallized from dichloromethane solution. 1,1,1,5,5,5-hexafluoropentane-2,2,4,4-tetraol
(HFPT) was purchased from SynQuest Laboratories (Alachua, FL) and crystallized from acetone.
2,4,6-trifluorobenzoic acid (246 TFBA) was purchased from TCI America and crystallized from acetone.
N-BPFPO was synthesized using literature methods [20], reacting pentafluoroaniline (Sigma-Aldrich)
with oxalyl chloride (Acros Organics) in benzene. The mixture was concentrated under vacuum and
recrystallized in a 1:1 solution of ethyl acetate:hexanes. Fine crystalline powder was recovered, and
larger crystals suitable for nanoindentation were produced by slow recrystallization from an acetone
solution. PETN was synthesized at and provided by Purdue University and single crystals were
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crystallized in isopropyl alcohol. Figure 1 shows optical micrographs of the indentation surface of the
six materials, and Figure 2 shows the chemical structure of each of the six materials.
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Figure 1. Optical micrographs of single crystals of (a) meso-erythritol (erythritol), (b)
pentaerythritol tetranitrate (PETN), (c) 1,1,1,5,5,5-hexafluoropentane-2,2,4,4-tetraol (HFPT), (d)
N,N′-bis(2,3,4,5,6-pentafluorophenyl)oxamide (N-BPFPO), (e) pentafluorobenzamide (PFBA), and (f)
2,4,6-trifluorobenzoic acid (246 TFBA).
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Figure 2. Chemical structures of (a) erythritol, (b) PETN, (c) HFPT, (d) N-BPFPO, (e) PFBA, and (f)
246 TFBA.

All samples were mounted using the technique described by Maughan et al. [21] for mounting
small crystals in which single crystals on a level surface are glued to a 7-mm steel disc from above.
Nanoindentation was performed using a Hysitron Triboindenter 950, with both Berkovich and cube
corner indenter probes on both low-load and high-load transducers, with the low-load transducer
used for all indents below a peak load of 12 mN. All indents were quasistatic open-loop with 30 s
loading, 5 s hold, and 5 s unload times, a loading profile that has previously been used to characterize
other molecular crystals [13,15]. All indents for the purpose of determining hardness and elastic
modulus had a peak load of 1 mN and the unloading curves were analyzed using the Oliver and
Pharr technique [22]. Indents performed for the purpose of quantifying indentation fracture threshold
were analyzed using the technique developed by Morris et al. [23] with material-specific procedures
described in a previous publication by the authors [24].

Of the 1 mN indents used to determine hardness and elastic modulus, 112 indents were performed
on six PETN crystals, 33 indents on four 246 TFBA crystals, 26 indents on four PFBA crystals, 8
indents on two HFPT crystals, 19 indents on three N-BPFPO crystals, and 181 indents on 13 erythritol
crystals. Of the indents at various loads used to determine indentation fracture behavior, 80 indents
were performed on five PETN crystals, 20 indents on three 246 TFBA crystals, and 52 indents on four
erythritol crystals.

DSC was performed on PETN and the five mock candidates in triplicate using a heating rate of
10 ◦C/min. Each sample was run from 40 to 400 ◦C using a Q2000 DSC (TA Instruments, New Castle,
DE) that had been calibrated with an indium standard.

3. Results

3.1. Material Selection

The general methodology for creating a list of mock candidates and then downselecting to several
materials for further testing has been reported for HMX recently [25]. Following that example, five
materials were chosen as potential mock candidates for PETN: 246 TFBA, PFBA, HFPT, N-BPFPO, and
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erythritol. Baseline properties for each of these materials including PETN are listed in Table 1. The
initial selection criteria were that the materials be inert molecular crystals with density and crystal
structure similar to PETN. The first four mocks had similar or slightly higher density, but had a more
anisotropic crystal structure. Erythritol, while much lower in density, has the same crystal structure
as PETN [26] and is a precursor material in the synthesis process for the related energetic material
erythritol tetranitrate [27].

Table 1. Physical property values used as initial mock selection criteria for PETN and each of the
materials initially under consideration as mechanical mocks for PETN. References contain complete
X-ray data.

Material Density (g/cm3) Crystal Structure

PETN 1.778 Tetragonal [28]

246 TFBA 1.759 Monoclinic [29]

Erythritol 1.452 Tetragonal [30]

HFPT 1.941 Monoclinic [31]

N-BPFPO 1.932 Monoclinic [20]

PFBA 1.884 Monoclinic [32]

3.2. Thermal Characterization

Figure 3 shows typical DSC results for each of the six materials tested, with the thermal profiles
offset along the y-axis for clarity. PETN has been extremely well-characterized thermally in the
literature and so is only shown here for reference when assessing desired mock performance and
confirmation that the measurements were done correctly.
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Figure 3. Typical differential scanning calorimetry (DSC) thermal profiles for PETN and mock
candidates. Profiles are arbitrarily offset along the y-axis for clarity.

These results show that several of the mock materials exhibit thermal behavior within acceptable
margins to mimic PETN. The average melting points of each material (from three measurements),
defined for convenience here as the onset of the endotherm, are given in Table 2. HFPT showed
evidence of sublimation as low as 50 ◦C, with onset of melt around 93 ◦C, and so is not a good thermal
match for PETN. N-BPFPO melts at a much higher temperature than PETN, which could be useful in
some applications, but is not ideal for a thermally similar mock. The other materials are reasonably
similar, with 246 TFBA being nearly identical to PETN.
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Table 2. Thermal properties of interest for PETN and mock candidates.

Material Melt Temperature (◦C)

PETN 141

246 TFBA 143

Erythritol 119

HFPT 93

N-BPFPO 235

PFBA 147

3.3. Hardness and Modulus Measurements

Each of the six materials previously discussed was indented with a Berkovich indenter probe with
an open-loop load function to a nominal load of approximately 1000 µN; a representative load-depth
curve for each material is shown in Figure 4.
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mechanical mocks for PETN.

Load-depth data from several such indents per material were analyzed using the method described
by Oliver and Pharr [22] to obtain elastic modulus and hardness values, averages for which are reported
for each material in Table 3.

Table 3. Average values for elastic modulus and hardness, as measured via nanoindentation, for PETN
and each of the materials initially under consideration as mechanical mocks for PETN.

Material Elastic Modulus (GPa) Hardness (GPa)

PETN 15.2 ± 2.4 0.45 ± 0.08

246 TFBA 19.2 ± 2.6 0.54 ± 0.18

Erythritol 21.2 ± 2.4 1.22 ± 0.13

HFPT 6.3 ± 0.4 0.33 ± 0.07

N-BPFPO 17.6 ± 0.4 0.44 ± 0.07

PFBA 5.8 ± 1.5 0.24 ± 0.03

Nanoindentation results for PETN were previously published by Zhai and McKenna [18], showing
a dramatic depth dependence for elastic modulus. Their results showed that PETN appeared to be
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stiffer (i.e., higher modulus) at the surface, with a significantly decreasing stiffness as a function of
depth (indenter penetration) into the material. This type of result is atypical for similar molecular
crystals, both energetic and inert, that have previously been characterized via nanoindentation. To
assess the elastic modulus of PETN crystals used in this study, indentations were made and modulus
measured over a similar range of depths, as shown in Figure 5. No such depth dependence was seen,
with the experiment repeated over a period of seven months to ensure thoroughness. While no depth
dependence was revealed, the elastic modulus of these PETN crystals did appear to decrease from
month 0 to month 7, prompting additional assessment of the elastic modulus again at month 13 to
observe if any changes were occurring due to the age of the material. While the elastic modulus of the
newly synthesized material measured 18.2 ± 2.8 GPa, the material at ages 7 months and 13 months
appears to have settled around 15.0–15.8 GPa. Due to the behavior of the samples at larger depths at
month 0 and the low indentation depths of typical nanoindentation tests, differences over time were
also considered only for indents below 300 nm in depth. Considering only those indents below a
depth of 300 nm had a minimal effect on the results, with the elastic modulus at month 0 measuring
18.4 ± 2.9 GPa, at month 7 measuring 15.1 ± 0.6 GPa, and at month 13 measuring 15.8 ± 1.8 GPa,
unchanged due to the lack of higher-depth indents at month 13. Other studies on PETN powder have
shown similar trends with properties such as surface area coarsening, where newly synthesized PETN
initially coarsens at a very high rate but the rates soon become much more gradual, if not completely
stable [33,34].
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Figure 5. Elastic modulus of PETN as a function of maximum indentation depth. This material does not
show any significant depth dependence of elastic modulus. Elastic modulus of the newly synthesized
material (month 0) is higher than later measurements (month 7, month 13) but as the material ages
the modulus appears to stabilize. This is consistent with observation of other properties of PETN as a
function of time (reference).

Following these initial test results, evaluation of PFBA, HFPT, and N-BPFPO as mock candidates
for PETN was halted. N-BPFPO did match the modulus and hardness of PETN quite well, but since
the density and melting points were much higher it was not considered as good a candidate as 246
TFBA and erythritol. Another practical consideration was that there is no current commercial supplier
of N-BPFPO, requiring local synthesis to produce material. However, the synthesis is not overly
complicated, so future examination of this molecule as a mock for high density or high melting point
explosives is probably warranted. While closer in density and melting temperature, PFBA and HFPT
both had significantly lower elastic modulus and hardness than PETN. Detailed mechanical testing
was only continued on PETN, erythritol, and 246 TFBA.
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3.4. Incipient Plasticity and Fracture Behavior

Incipient plasticity and fracture behavior of erythritol and 246 TFBA were studied in comparison
to PETN because PETN powder is subjected to high mechanical loads when pressed into pellets for
detonators. During compaction of PETN, the mechanical properties being probed include elastic, plastic,
and fracture responses. Nanoindentation can provide detailed information on each of these regimes of
mechanical response. Elastic behavior was reported in the previous section, as was hardness (resistance
to plastic deformation). Material hardness is effectively dominated by the resistance to the motion of
dislocations (i.e., plastic flow). Study of the initiation of dislocations can be particularly impactful when
deforming either reasonably defect-free samples or materials with limited slip systems [16,35], both
of which describe the molecular single crystals tested here. The onset, or incipient, plasticity can be
assessed by “pop-in” analysis. A pop-in is a sudden increase in displacement without a corresponding
increase in applied load commonly observed in indentation systems that are operated primarily in
load control, and the first pop-in observed during loading is often considered to be the onset of
plastic deformation [36,37]. Figure 6 shows typical pop-ins for these materials and uses a cumulative
distribution of load at the first yield point (pop-in) to compare differences in defect density or defect
formation. The ease with which 246 TFBA accommodates plastic deformation relative to PETN and
erythritol indicates that either the initial defect density was very high in 246 TFBA, or that defects form
easily in that material. However, given that all materials tested yield at loads below 1 mN, and loads
expected in regular processing such as pressing are generally at least a thousand times higher than
this [38], these differences are not expected to be impactful. In other words, relative to the high load
conditions of a die press, the materials are effectively equally prone to plastic deformation.

Semi-quantitative measurements of fracture behavior are feasible using indentation testing; while
there are challenges in extracting pure mode I fracture toughness, relative toughness assessments are
possible by using indentation probes which cause a stress field to initiate and propagate a crack in the
material surrounding the region being indented. As pelleting and compaction can cause both plastic
deformation and fracture of individual crystals, assessing fracture behavior in as-grown materials
provides a method to test for suitability of mock materials without the need for initial large volumes
required to create pellets in conventional press/tableting. An unloading analysis technique to detect
the occurrence of indentation fracture was previously developed by Morris et al. [23] and has been
tested for its efficacy on brittle molecular crystals [24]. This technique is especially useful for materials
which exhibit fracture at very low loads, where inspecting the material post-indentation is difficult to
verify cracking. In the unloading analysis method, a material is indented with two probes of highly
varied acuity to the same maximum load, and the unloading portions of the load-depth curves for
those two indents are plotted together. Superimposability of these curves implies that indentation did
not cause a fracture event, while nonsuperimposability implies indentation-induced fracture. As seen
in Figure 7, PETN, erythritol, and 246 TFBA all experience indentation fracture with a cube corner
probe geometry (the more acute of the two geometries, and thus the more likely to cause fracture) at
loads as low as 500 µN.
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Figure 6. (a) Load-depth curve excerpts for erythritol, PETN, and 246 TFBA exhibiting pop-ins. (b)
Cumulative fraction of yield behavior for erythritol, PETN, and 246 TFBA. Similar yield behavior is
shown for PETN and erythritol, with mean load at yields of 175 µN and 140 µN respectively, whereas
246 TFBA shows a much lower resistance to plasticity with a mean load at yield of 15 µN.
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Figure 7. Unloading traces indicating indentation-induced fracture at 500 µN for PETN, erythritol, and
246 TFBA.

Based on these results showing fracture in PETN, erythritol, and 246 TFBA with a cube corner
probe at loads as low at 500 µN, the validity of Berkovich measurements on these materials at a
maximum load of 1 mN became a concern, as the method used for determining hardness and elastic
modulus is only valid for indents in which a fracture event did not occur. In order to address these
concerns, PETN was indented with a Berkovich probe at loads of 1 mN intervals from 2 mN to 12 mN
and scanning probe microscopy was used to check for evidence of cracking. Figure 8 shows typical
images for indents at loads of 2 mN, 4 mN, and 12 mN. The 12 mN indent shows clear evidence of
fracture while the 2 mN and 4 mN indents do not. Overall, fracture using a Berkovich tip was never
observed in PETN at loads below 8 mN. This result provided confidence in measurements of modulus
and hardness taken with a Berkovich probe of 1 mN.
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3.5. Assessment of Experimental Uncertainty due to Crystal Properties and Anisotropy.

Mechanical anisotropy between crystal faces of molecular crystals is well-documented [16,39,40]
and possible preferred directions for fracture have been observed [24], indicating that there may be
in-plane directional anisotropy that is sensitive to the relative normal orientation of pyramidal indenter
probes with respect to the crystal face. For example, some researchers have found that cracks tend
to nucleate from the corners of pyramidal indents due to stress localization [41]. To test for this on
various crystals of both PETN and erythritol, a single face of the crystal was chosen to be indented,
and an arbitrary direction of that face chosen as the origin, labeled 0◦. Two probes were chosen to
study any in-plane anisotropy. First, a typical pyramidal (Berkovich) tip was used, which has a 120◦

angle between the edges. Second, an axisymmetric conical tip was used, with a circular cross section.
The axisymmetric tip should show no in-plane orientation effects; if any were observed, the variation
should only be due to random variability in the local properties. During the experiment, each crystal
was rotated about a consistent normal direction relative to the arbitrary origin, and indented at 30◦

intervals with both Berkovich and conical probes. The goal was to determine typical variability of
elastic modulus and hardness as a function of indenter probe angle. This procedure is similar to that
employed by Taw et al [13] for aspirin and Maughan et al [21] for griseofulvin, though those studies
sampled only the one crystal morphology each, with only a single pyramidal probe. The results
of the present orientation study, exemplified in Figure 9, were that the in-plane orientation of the
indenter relative to the crystal surface did not seem to affect the measured properties. Some random
indents had abnormally low or high modulus results due, most likely, to local material properties (e.g.,
defects), but there were no systematic trends, particularly trends that would repeat at orientations
that would align with equivalent directions (i.e., (111) and (111). This finding provides confidence
in all nanoindentation-derived mechanical properties measured to date in these highly anisotropic
molecular crystal materials.

Crystals 2020, 10, x FOR PEER REVIEW 11 of 15 

 

3.5. Assessment of Experimental Uncertainty due to Crystal Properties and Anisotropy. 

Mechanical anisotropy between crystal faces of molecular crystals is well-documented [16,39,40] 

and possible preferred directions for fracture have been observed [24], indicating that there may be 

in-plane directional anisotropy that is sensitive to the relative normal orientation of pyramidal 

indenter probes with respect to the crystal face. For example, some researchers have found that cracks 

tend to nucleate from the corners of pyramidal indents due to stress localization [41]. To test for this 

on various crystals of both PETN and erythritol, a single face of the crystal was chosen to be indented, 

and an arbitrary direction of that face chosen as the origin, labeled 0°. Two probes were chosen to 

study any in-plane anisotropy. First, a typical pyramidal (Berkovich) tip was used, which has a 120° 

angle between the edges. Second, an axisymmetric conical tip was used, with a circular cross section. 

The axisymmetric tip should show no in-plane orientation effects; if any were observed, the variation 

should only be due to random variability in the local properties. During the experiment, each crystal 

was rotated about a consistent normal direction relative to the arbitrary origin, and indented at 30° 

intervals with both Berkovich and conical probes. The goal was to determine typical variability of 

elastic modulus and hardness as a function of indenter probe angle. This procedure is similar to that 

employed by Taw et al [13] for aspirin and Maughan et al [21] for griseofulvin, though those studies 

sampled only the one crystal morphology each, with only a single pyramidal probe. The results of 

the present orientation study, exemplified in Figure 9, were that the in-plane orientation of the 

indenter relative to the crystal surface did not seem to affect the measured properties. Some random 

indents had abnormally low or high modulus results due, most likely, to local material properties 

(e.g., defects), but there were no systematic trends, particularly trends that would repeat at 

orientations that would align with equivalent directions (i.e., (111) and (11 1 ). This finding provides 

confidence in all nanoindentation-derived mechanical properties measured to date in these highly 

anisotropic molecular crystal materials. 

 

0 50 100 150 200 250 300 350

0

5

10

15

20

25

 berkovich

 conical

R
e

d
u

c
e

d
 e

la
s
ti
c
 m

o
d

u
lu

s
 (

G
P

a
)

Relative angle (degrees)

PETN 

Figure 9. Cont.



Crystals 2020, 10, 126 12 of 15
Crystals 2020, 10, x FOR PEER REVIEW 12 of 15 

 

 

Figure 9. Elastic modulus of PETN and erythritol as a function of relative angle, showing no evidence 

of in-plane orientation dependence. Orientation is arbitrary between samples, so 0° is not the same 

orientation between PETN and erythritol. 

4. Discussion 

The series of thermal and mechanical tests on PETN and several candidate mocks revealed that 

246 TFBA was a promising material for generically mocking PETN in a variety of applications. It 

matched the melting point and density of PETN almost exactly, and was within acceptable range 

(20%) of elastic modulus and hardness. It tended to plastically deform more easily than PETN, but 

for most applications both materials would be considered equally soft, and fracture behavior was 

effectively identical within the error of measurement. In other words, during quasi-static pressing or 

any other mechanically intensive operation, PETN and 246 TFBA should behave similarly. 246 TFBA 

is available commercially at reasonable, though not particularly cheap, prices. Overall, 246 TFBA is 

the most promising material to date for mocking a blend of PETN thermal and mechanical properties 

with acceptable density match. 

Other mock materials investigated here could be used as surrogates for PETN in specific 

applications, depending on which properties were most important. Erythritol was found to be a 

reasonable thermomechanical mock, particularly in the similarity of the yield behavior, but the 

difference in density may be too large for some applications. Erythritol is widely available and 

relatively cheap, and so may be a cost-effective mock for PETN, especially for large-scale applications. 

N-BPFPO was an even better mechanical mock than erythritol but was much higher in density and 

currently requires on-demand synthesis to produce material. It also has a substantially higher melting 

point, potentially limiting applicability as a thermal mock. HFPT and PFBA are commercially 

available and match PETN hardness, but the thermal and elastic properties were quite far off, and so 

are not recommended for a PETN mock moving forward. 

5. Conclusions 

Of the five mock materials considered here as surrogates for PETN, several had reasonable 

matches to various PETN properties. 246 TFBA had the best blend of thermal and mechanical 

similarity to PETN, with nearly identical density and melting points and <20% difference in 

mechanical properties. Erythritol may be a convenient alternative if matching PETN density is not 

important for the specific application, while N-BPFPO is a good choice if matching melt behavior is 

not important. Nanoindentation was found to be an especially useful tool to rapidly test these 

0 50 100 150 200 250 300 350

0

5

10

15

20

25

 berkovich

 conical

R
e

d
u

c
e

d
 e

la
s
ti
c
 m

o
d

u
lu

s
 (

G
P

a
)

Relative angle (degrees)

Erythritol

Figure 9. Elastic modulus of PETN and erythritol as a function of relative angle, showing no evidence
of in-plane orientation dependence. Orientation is arbitrary between samples, so 0◦ is not the same
orientation between PETN and erythritol.

4. Discussion

The series of thermal and mechanical tests on PETN and several candidate mocks revealed that
246 TFBA was a promising material for generically mocking PETN in a variety of applications. It
matched the melting point and density of PETN almost exactly, and was within acceptable range
(20%) of elastic modulus and hardness. It tended to plastically deform more easily than PETN, but
for most applications both materials would be considered equally soft, and fracture behavior was
effectively identical within the error of measurement. In other words, during quasi-static pressing or
any other mechanically intensive operation, PETN and 246 TFBA should behave similarly. 246 TFBA is
available commercially at reasonable, though not particularly cheap, prices. Overall, 246 TFBA is the
most promising material to date for mocking a blend of PETN thermal and mechanical properties with
acceptable density match.

Other mock materials investigated here could be used as surrogates for PETN in specific
applications, depending on which properties were most important. Erythritol was found to be
a reasonable thermomechanical mock, particularly in the similarity of the yield behavior, but the
difference in density may be too large for some applications. Erythritol is widely available and relatively
cheap, and so may be a cost-effective mock for PETN, especially for large-scale applications. N-BPFPO
was an even better mechanical mock than erythritol but was much higher in density and currently
requires on-demand synthesis to produce material. It also has a substantially higher melting point,
potentially limiting applicability as a thermal mock. HFPT and PFBA are commercially available
and match PETN hardness, but the thermal and elastic properties were quite far off, and so are not
recommended for a PETN mock moving forward.

5. Conclusions

Of the five mock materials considered here as surrogates for PETN, several had reasonable
matches to various PETN properties. 246 TFBA had the best blend of thermal and mechanical
similarity to PETN, with nearly identical density and melting points and <20% difference in mechanical
properties. Erythritol may be a convenient alternative if matching PETN density is not important for
the specific application, while N-BPFPO is a good choice if matching melt behavior is not important.
Nanoindentation was found to be an especially useful tool to rapidly test these molecular crystals
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for basic mechanical properties, but was also highly informative for detailed plasticity and fracture
measurements. Despite their high degree of anisotropy, further indentation tests revealed no in-plane
orientation effects on measured properties, giving confidence in the results reported here and elsewhere
in the literature on this class of material.
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