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Abstract: The surface hardening of single-face-centred cubic (fcc)-phase CrMnFeCoNi and
the manganese-free CrFeCoNi alloy was conducted using low-temperature nitrocarburisation.
The microstructural investigations reveal the successful formation of a homogeneous diffusion layer
with a thickness of approximately 16 µm. The interstitial solution of carbon and nitrogen causes
an anisotropic lattice expansion. The increase in microhardness is in accordance to the graded
concentration profile of the interstitial elements. Wear tests show a significantly enhanced resistance
at different loads. The electrochemical tests reveal no deterioration in the corrosion resistance.
The absence of precipitates is proven by microstructural investigations. The results prove the
applicability of the concept of solution hardening by the formation of supersaturated solutions for
the material group of high-entropy alloys. Hence, an increase of entropy with the consideration of
lattice interstices provides new development approaches.

Keywords: high-entropy alloy; thermochemical treatment; surface hardening; supersaturated
solution; wear; corrosion

1. Introduction

In recent years, the multi-component alloy concept of high-entropy alloys (HEAs) has received
considerable attention [1]. Despite the absence of a main alloy constituent, promising material
properties, e.g., high specific strength, high wear resistance and high oxidation and corrosion resistance
have been proven [2–4]. The demands of superimposed loading require a complex profile of functional
surface properties, resulting in a challenge for recent research activities in surface technology [5,6].
In general, single-phase HEAs like the CrMnFeCoNi HEA system with a face-centred-cubic (fcc)
structure reveal good ductility and corrosion resistance, while a sufficient wear resistance is often
associated to other compositions with body-centred-cubic (bcc)- or multi-phase constitution [7,8].
However, heterogeneous structures with a large variance of the local chemical composition often
do not exhibit an adequate passivity and corrosion resistance [9]. An improvement of the relatively
poor wear resistance of single-phase HEAs requires a functional division between surface and
constructive properties. In this case, surface technologies are an appropriate opportunity to adjust the
surface functionality.

Thermochemical treatments are suitable to enhance the performance of the surface layer region.
The diffusion of elements causes the formation of solid solutions or precipitates. Thereby, the wear
and corrosion resistance can be improved. Only few studies focusing on the surface hardening of
HEAs have been conducted so far. Meng et al. have studied the nitriding of the duplex phase (fcc +
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bcc) FeNiMnAlCr alloy system. The formation of a heterogeneous layer was proven [10]. Wang et al.
investigated the plasma nitriding of the HEA system Al1.3CoCuFeNi2. However, metallographic
investigations as well as phase analyses do not show clear evidence of a nitrided layer. Additionally,
no significant improvement of the wear resistance was achieved [11,12]. Tang et al. conducted
plasma nitriding of the bcc-phase HEA Al0.5CrFe1.5MnNi0.5. Metallographic investigations prove the
successful diffusion treatment by the formation of a nitride layer with a thickness of approximately
75µm. Microhardness values of up to 1250 HV were achieved and the wear resistance was improved [13].
Lindner et al. performed a boriding treatment of CrMnFeCoNi as well as CrFeCoNi. Both alloys differ
in the structural formation of the diffusion layer. A strong effect of the Ni content and of the donator
composition is mentioned [14]. Accordingly, these studies prove a significant potential of hardening
techniques for surface functionalisation. However, there is a considerable need for alloy specific process
adjustments. Furthermore, the depletion of matrix elements can impair the corrosion resistance.

Solid solution strengthening using the interstices of the lattice can be an appropriate alternative to
precipitation hardening. Moravcik et al. synthesised nitrogen alloyed CrMnFeCoNi HEAs by reactive
powder milling. Precipitation occurs during spark plasma sintering of the powder, while the maximum
solubility is stated as limiting factor [15]. Results of Xie et al. of doping CrMnFeCoNi powder with
nitrogen reveal the formation of precipitates during vacuum hot pressing [16]. Alternatively, several
research groups conducted the casting of HEAs. Wang et al. investigated the influence of the carbon
content in the single-phase FeNiMnAlCr HEA system. Increasing the carbon concentration up to
1.1 at % results in a linear expansion of lattice parameter while precipitates are excluded [17]. Chen
et al. doped Fe40Mn40Co10Cr10 with up to 8.9 at % carbon. A single-phase state and interstitial
hardening were obtained up to a carbon concentration of 4.4 at %, whereas higher concentrations
result in a decrease in lattice expansion by precipitate formation [18]. Shang et al. found that carbon
additions in NiCoCr refine the dislocation substructure and increase the stacking fault energy, thereby
decreasing the thickness of the twin bundles [19]. Moravcik et al. proved an increase in yield strength
by interstitial nitrogen doping for the same alloy [20]. Zhang et al. found that adding yttrium can
prevent boron precipitation promoting the solid solution strengthening effect induced by interstitial
atoms. An fcc-phase microstructure provides a higher solubility. Moreover, laser cladding reliably
inhibits boride precipitation in HEAs mainly composed of a bcc solid solution [21,22]. The different
studies show a solid-solution strengthening effect. In particular, the fracture elongation is not affected
unlike the common interstitial strengthening behaviour [17–22]. However, the effect on wear resistance
is not investigated so far. Regarding the surface properties, thermochemical treatment can be an
appropriate option for the enrichment of interstitial elements.

While precipitation hardening can affect the corrosion resistance, interstitial supersaturation of
the matrix reliably prevents this. This behaviour has been proven in comprehensive investigations of
stainless steels. The formation of HEAs with passive layers can be a promising opportunity for surface
functionalisation. Therefore, the diffusion process has to be conducted below the critical temperature
for precipitate formation respectively above their decomposition temperature [23].

Accordingly, the recent article investigates supersaturation hardening of single phase HEAs by
thermochemical treatment. Phase formation and microstructural evolution in the surface layer region
as well as the wear and corrosion behaviour are studied for the two single fcc-phase CrMnFeCoNi and
CrFeCoNi HEA systems.

2. Materials and Methods

The two single-phase HEA-systems CrMnFeCoNi and CrFeCoNi were produced in equimolar
composition using arc-melting of elemental granulates. The raw material provides a purity of over
99.9%. The arc melting process was carried out in a water-cooled copper crucible. Prior to the
arc-melting process, the furnace chamber was evacuated and subsequently filled with argon. The arc
was ignited using a tungsten electrode. To ensure chemical homogeneity, all samples were remolded
three times including turning after each step. For a sample weight of 10 g, a cooling rate of < 50 K/s was
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determined for the furnace in preliminary studies. The manufacturing parameters are summarised
in Table 1. The chemical composition was analysed by X-ray fluorescence (XRF) FISCHERSCOPE
X-RAY XAN (Helmut Fischer, Sindelfingen, Deutschland) with 30 kW and 1 mm collimator lens.
The evaluation software Fischer XAN-WinFTM 6.33 was used. Each measurement was performed
five times.

Table 1. Arc-furnace parameters.

Mean Quantity
(g)

Droplet Size
(mm)

Vacuum Pressure
(mbar)

Argon
Pressure (bar)

Gas Purity
(%)

Current
(A)

10 20 2 × 10−4 1.1 99.9999 250

Slices with a thickness of 1.5 mm were cut out of the arc-melted samples using the Accutom 50
(Struers, Willich, Germany) device. The low temperature gasnitrocarburisation process was performed
by BorTec GmbH and Co. KG (Hürth, Germany). Comparative investigations regarding the as-cast state
were conducted. Metallographic cross-sections were prepared according to standard metallographic
procedures. After hot mounting in conductive resin the grinded and polished cross-sections of the
thermochemical treated samples were etched using Beraha-II colour etchant, to enable distinguishing of
different microstructural domains in the surface layer region. An optical microscope GX51 (Olympus,
Shinjuku, Japan) equipped with a SC50 camera (Olympus, Shinjuku, Japan) was used to study the
distribution of the diffusion-enriched area. Furthermore, glow discharge optical emission spectroscopy
(GDOS) was applied to determine the depth profile of the chemical composition. Therefore, a GDA750
analyzer (Spectruma Analytik GmbH, Hof, Germany) was used. The measurement was performed
using a 2.5 mm anode, 800 V, 35 mA under 3 hPa argon pressure. Nanoindentation was performed
for selective hardness measurements. A quasi-static measurement with a load of 1 mN was carried
out using the nanoindenter UNAT (ASMEC GmbH, Radeberg, Germany) with a Berkovich tip.
Vickers microhardness was deduced from the indentation depth using the InspectorX testing software
version 3 (ASMEC GmbH, Radeberg, Germany). Crystallographic studies to identify the characteristic
lattice parameters were conducted by X-ray diffraction (XRD) using a D8 DISCOVER diffractometer
(Bruker AXS, Billerica, MA, USA) with Co-Kα radiation (tube voltage: 40 kV, tube current: 40 mA).
The diffractometer was equipped with polycap optics for beam shaping, a 1 mm pinhole collimator
and a 1D Lynxeye XE detector. The diffraction diagrams were measured in the diffraction angle (2θ)
range from 20 to 130◦ with a step size of 0.01◦ and 3 s/step, which corresponds to 576 s/step due to
the use of the 1D detector. The powder diffraction file (PDF) database 2014 was applied for phase
identification. To investigate the wear behaviour ball-on-disk and reciprocating ball-on-plane tests
were conducted. The applied parameters are summarised in Table 2.

Table 2. Parameters of the conducted wear tests.

Ball-on-Disk Test Reciprocating Ball-on-Plane Test

Force 20 N Force 26 N
Radius 5 mm Frequency 40 Hz
Speed 96 RPM Time 900 s
Cycles 15,916 Amplitude 0.5 mm

Counter body Al2O3 Counter body Al2O3
Diameter 6 mm Diameter 10 mm

A Tetra Basalt Tester (Tetra, Ilmenau, Germany) and a Wazau SVT 40 device (Wazau, Berlin,
Germany) were used for ball-on-disk and reciprocating ball-on-plane tests. The wear depth of the
ball-on-disk tracks was determined by contact stylus instrument with a Hommel Etamic T8000
device (Jenotik, Villingen-Schwenningen, Germany). An optical 3D profilometer MikroCAD (LMI
Technologies Inc., Burnaby, Canada) was used for the evaluation of the reciprocating ball-on-plane wear
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tracks. Current-density potential curves were recorded using 0.05 M H2SO4 and 0.5 M NaCl electrolyte
for studying the passivation properties and pitting resistance, Table 3. With the used three-electrode
arrangement a round surface area with a diameter of 10 mm was tested. As a cathodic counter electrode,
a platin sheet with the dimensions (2 × 2 cm2) was used. The reference was defined by the Ag/AgCl
electrode with a potential of 207 mV compared to hydrogen, which was immersed into the Haber
Lugging capillary with the different electrolytes. The tests were conducted at room temperature and the
potential was recorded using a PS6 (Sensortechnik Meinsberg, Meinsberg, Deutschland) potentiometer.

Table 3. Parameters of the conducted corrosion tests.

Passivation Pitting

Electrolyte 0.05 M H2SO4 0.5 M NaCl

Potential-scan
−1000 to +1800 mV −250 to +700 mV
0.5 mV/s 0.1 mV/s

3. Results

3.1. Chemical Composition

The elemental compositions of the cast alloys are analysed by XRF measurement. The results are
summarised in Table 4. In comparison to the intended equimolar composition, slight deviations can be
determined. Especially, the chromium and manganese content are below the nominal values, which
can be caused by evaporation of these elements in the arc-melting process. However, the obtained
compositions were sufficiently accurate for further processing. Comparative measurements on the
thermochemical treated samples revealed no deviation in elemental concentration. Hence, the absence
of elemental segregation can be excluded, while nitrogen and carbon were below the detection limit of
the XRF device.

Table 4. Average chemical composition of CrMnFeCoNi and CrFeCoNi in as-cast condition measured
by X-ray fluorescence (XRF; main alloy elements in relative wt %).

Co Cr Fe Mn Ni

CrMnFeCoNi 21.1 18.9 20.8 18.5 20.7
CrFeCoNi 26.0 23.0 25.6 - 25.4

GDOS measurements enable the investigation of the nitrogen and carbon distribution in the
surface-layer region. The intensity levels of both elements were determined in dependence of sputter
time. To obtain the surface distance of the elemental information, a series of spots were produced
in increments of 100 s. 3D profilometry proves a homogeneous sputtering rate for both samples.
Due to a lack of reference alloys, a reliable quantification of the element concentration is not possible.
The intensity levels of nitrogen and carbon are plotted over the surface distance for the different
alloys, Figure 1. A high nitrogen intensity was measured for the surface near area. While the nitrogen
concentration decreases sharply with increasing distance to the surface, a plateau with a relatively
constant intensity up to 22 µm and 15 µm occurs for the carbon intensity. The results prove a successful
diffusion enrichment of the surface layer region. Manganese alloying does not affect the diffusion
depth of nitrogen, while the carbon intensity indicates a higher diffusion depth for CoCrFeMnNi.
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Figure 1. Depth profile measured by glow discharge optical emission spectroscopy
(GDOS) measurement.

3.2. Microstructural Analyses

The diffusion enrichment causes changes in the microstructure and property profile as well.
In addition to the results of GDOS measurements, light microscopy of the cross-section enables the
visualisation of local deviations in expression of diffusion depth. Colour contrasting using Beraha-II
etchant enables a distinction between the diffusion layer and the unaffected material. Figure 2 illustrates
the formation of the surface layer regarding the element composition. For both alloys, the formation of
a dense surface layer free of cracks was proven. A homogeneous thickness was found for CrFeCoNi
with a mean value of 16 µm. As a result of the manufacturing process, small cavities were observed
within the manganese-containing alloy. These caused a deviation of the diffusion depth. Open porosity
enabled the penetration of the donator during the diffusion enrichment process. Excluding this
effect, a similar thickness was proven for both alloys. The results were in accordance with GDOS
investigations, revealing a different behaviour for the alloys. The treatment temperatures of the
thermochemical process strongly affected the diffusion speed. As a result, nitride layers in comparative
work reach up to 75 µm in thickness [13]. Boride layers of the same alloy system show a thickness of
35 µm [14].
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Figure 2. Light microscopy images of nitrocarburised CrMnFeCoNi and CrFeCoNi high-entropy alloys
(HEAs) in cross-section view of the surface layer using Beraha-II colour etchant.

XRD measurements have been conducted for the determination of the crystal structure and
the lattice parameter. Figure 3 shows sections of the diffraction diagrams for the {111} and {200}
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lattice planes. The present phases have been assigned to the peaks for both alloys in as-cast and
nitrocarburised state. The diffractograms of both alloys in as-cast state reveal another peak at 45.9◦ due
to the presence of the low-intensity Co Kβ radiation. Both alloys show a single-phase fcc-structure in
the as-cast condition with a slight deviation in lattice parameter. For the manganese containing alloy
CrMnFeCoNi a lattice parameter of a = 3.60 Å was calculated. The four-component system CrFeCoNi
shows a minor decrease with a = 3.58 Å. In both cases, the low temperature nitrocarburisation process
caused a change in microstructure. The absence of the peaks ascribed to the initial fcc-phase indicates
a full transformation during the diffusion process. Two broad peaks appeared, which were shifted
to lower diffraction angles in comparison to the former fcc-phase. This behaviour indicates a lattice
expansion due to the interstitial solution of nitrogen and carbon. The formation of two peaks can be
explained by a stronger expansion during interstitial solution of nitrogen compared to carbon. Hence,
the expanded fcc-phases γN and γC with different lattice parameters appeared for both alloys. Table 5
summarises the shift of the lattice parameter for the gasnitrocarburised state in relation to the values of
the as-cast state.
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Figure 3. X-ray diffraction (XRD) diffractograms of the as-cast and nitrocarburised CrMnFeCoNi and
CrFeCoNi HEAs.

Table 5. Lattice expansion determined for CrMnFeCoNi and CrFeCoNi depending on the lattice plane
and the solved interstitial element (in Å).

Lattice Plane γN γC

CrMnFeCoNi
{111} 0.24 0.14
{200} 0.35 0.16

CrFeCoNi
{111} 0.22 0.11
{200} 0.33 0.13

A strong increase in lattice parameter was found. However, the expansion depends on the
referenced lattice plane. According to the calculated values, a maximum relative lattice expansion of
almost 10% was reached. The {200} planes show a significantly higher expansion compared to the {111}
planes. A different expansion of the lattice planes {111} and {200} was expected as a consequence of
the residual stress due to the anisotropic behaviour of Young’s modulus. This is in accordance to the
behaviour observed for stainless steel [24]. A slightly stronger increase was found for CrMnFeCoNi,
which might be caused by a higher layer thickness.
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3.3. Microhardness and Wear Behaviour

Thermochemical treatment results in a strong increase in microhardness. Nanoindentation
was performed on the surfaces and the cross-sections of the samples. The microhardness values
of the cross-sections were determined above a surface distance of 7 µm to exclude edge influences.
A higher microhardness of the base material was found for the manganese-alloyed system, while the
manganese-free alloy shows a slightly higher hardness within the supersaturated surface layer, Figure 4.
A gradual decrease in microhardness with increasing distance from the surface was found, whereas the
maximum was about 1300 HV0.001. Corresponding to the micrographs in Figure 2 the microhardness
decreased to the value of the base material at a surface distance of around 18 µm.
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Figure 4. Microhardness of CrFeCoNi and CrMnFeCoNi in nitrocarburised state in dependence of the
surface distance.

The results of comparative wear tests are shown in Figure 5. A strong increase in wear resistance
for both alloys in nitrocarburised state was revealed. Under sliding wear conditions, the diffusion
surface layer ensures a reliable wear protection. Furthermore, the wear depth and volume were
significantly decreased under reciprocating ball-on-plane test conditions. Both alloys show a similar
behaviour in ball-on-disk test, whereas a slightly higher wear could be observed for the manganese-free
alloy under reciprocating test conditions.
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Figure 5. Wear values of CrMnFeCoNi and CrFeCoNi in dependence of the treatment state and
wear condition.



Crystals 2020, 10, 110 8 of 10

The wear tracks show only minor deviations, confirming a homogeneous state of the material
properties. The alumina counter body exhibited no wear at all. With an average wear depth of
7 µm, both alloys show an almost intact diffusion layer after ball-on-disk test. With a wear depth
of 38 µm and 50 µm, the alternating wear exposure caused a degradation of the diffusion layer,
resulting in less improvement. Therefore, a strong influence of the applied wear conditions could be
concluded. In comparison to borided layers, the interstitial hardening provides advantages in case of
the reciprocating test conditions [14]. The formation of the expanded austenitic phase by the interstitial
solution of nitrogen and carbon results in a strong increase in microhardness and reliable improvement
of wear resistance of the studied HEAs.

3.4. Corrosion Behaviour

Surface treatments can affect the corrosion resistance of materials. Especially precipitate formation
can reduce the element concentration of chromium within the solid solution as a result of its high
affinity to carbon and nitrogen [25]. Therefore, current-density potential curves where determined for
different electrolyte types, Figure 6. The passivation properties were studied using H2SO4 electrolyte.
An increase in the resting potential was observed for the thermochemically treated CrFeCoNi alloy.
Both nitrocarburised samples show passivation, although their current density was approximately
100 times higher in comparison to the untreated state. Above 900 mV the untreated samples show a
stronger increase. Hence, the current densities approach each other at about 1000 mV. However, a slight
worsening in corrosion resistance could be concluded by the higher activity within the passivation
range. The pitting corrosion tests with NaCl electrolyte revealed the opposite behaviour. While the
resting potential was in the range of −30 to −140 mV, a lower gradient in current density increase was
found for the nitrocarburised samples. The thermochemical treated CrFeCoNi sample even shows
moderate current density at high potential. Therefore, an improvement of the resistance against pitting
corrosion could be expected.
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4. Summary

The first feasibility study proved the successful surface hardening of the fcc-phase HEAs by
interstitial supersaturation of the solid solution using low temperature nitrocarburisation. The evolution
of crystal structure and layer thickness were investigated in detail by microstructural and phase analyses.
The elemental distribution within the surface layer was determined. Detailed information about
mechanical, wear and corrosion properties were presented and discussed. The significant increase of
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wear resistance in combination with mainly unaffected corrosion properties for both HEAs underlines
the suitability and application potential of the surface treatment. Manganese alloying of CrFeCoNi
only results in a minor influence of the phase formation, while the formation of structural defects, e.g.,
pores, directly influences the diffusion depth. Excluding the effect of structural influences, a diffusion
depth of about 16–18 µm was confirmed for both alloys by nanoindentation and colour etching of the
surface layer. The current study presents a suitable route to circumvent the drawbacks of low hardness
and wear resistance inherent to fcc high-entropy alloys.
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