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Abstract: We report a first-principles study of hybrid organic–inorganic perovskites with formula
[A]Cu(H2POO)3 (A = triazolium (Trz) and guanidinium (Gua), and H2POO− = hypophosphite),
and [HIm]Cu(HCO2)3 (HIm = imidazolium cation, HCO−2 = formate). The triazolium hypophosphite
and the formate have been suggested as possible ferroelectrics. We study the fully relaxed structures
with different magnetic orderings and possible phonon instabilities. For the [Trz]Cu hypophosphite,
the Trz cation is shown to induce large octahedral distortions due to the Jahn-Teller effect, with Cu-O
long-bond ordering along two perpendicular directions, which is correlated with antiferromagnetic
ordering and strongly one-dimensional. We find that the structure is dynamically stable with respect
to zone-center distortions, but instabilities appear along high symmetry lines in the Brillouin zone.
On the other hand, for the [HIm]Cu formate, large octahedral distortions are found, with large Cu-O
bonds present in half of the octahedra, in this case along a single direction, and correspondingly,
the magnetism is almost two-dimensional.

Keywords: hybrid organic-inorganic; perovskite; hypophosphite; formate; low-dimensional
magnetism

1. Introduction

Metal-organic frameworks (MOFs), where metal centers or clusters are linked by organic ligands,
have received intense research interest recently. The denser MOFs, in particular with ABX3 perovskite
topology, where the X− and/or A-site of simple perovskites are substituted by polyatomic ions,
have shown fascinating ferroelectric, magnetic, and multiferroic properties [1–3], similar to their
inorganic counterparts [4,5]. Theoretical studies of this family of compounds using density functional
theory calculations [6] have matched well with experimental results, which highlights the predictive
power of computation [7,8].

Recently, hybrid organic-inorganic perovskites based on the hypophosphite ligand have been
synthesized [9]. Both formate and hypophosphite ligands produce intermediate-size cubic interstices,
allowing for a choice of several different amine cations on the A site.

A recent group-theoretical analysis [10] showed that the number of possible distortions is greatly
enhanced in molecular perovskites due to the additional kinds of symmetry-breaking degrees of
freedom allowed, including unconventional octahedral rotations [11–13], columnar shifts [11,14],
and multipolar order of the organic cations [15]. This allows more flexibility for different functionalities.
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The symmetry analysis [10] of the distortions present in synthesized Mn compounds, triazolium
manganese hypophosphite [9] or imidazolium manganese formate [16], has suggested that the
respective Cu analogues could be ferroelectric, due to the propensity of the Cu octahedra to show
Jahn–Teller distortions in combination with the distortion modes available for hybrid perovskites
already present in the Mn compounds. This motivated us to study Cu-based organic-inorganic
perovskites using first-principles density functional theory calculations. For the hypophosphites,
besides the suggested triazolium hypophosphite, we have also considered guanidinium as an organic
cation. The structures considered in this work are shown in Figure 1.
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[Gua]Cu(H2POO)3, with space group 𝑃1. (c) [HIm]Cu(HCO2)3, with space group P21/c. Color code: 
The orange octahedra are Cu centered, with oxygen (black) at the vertices; P—gray; C—brown; H—
white; N—blue. 
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in the spin exchange paths which involve the long Cu-O bonds, but we do not find significant 
structural instabilities with respect to the centrosymmetric group of the Mn analogues. 

2. Methods 

We have used the Vienna Ab-initio Simulation Package, VASP  (VASP Software GmbH, Vienna, 
Austria) [17] for density functional calculations, which uses a plane wave basis set and the projector 
augmented-wave (PAW) method [18]. We considered the GGA-PBE (generalized gradient 
approximation, Perdew-Burke-Erzernhof) exchange-correlation functional [19] and added an 
effective Coulomb repulsion U to Cu 3d orbitals, according to the simplified approach of Dudarev et 
al. [20]. For Cu oxides, values of U = 4 eV may be most appropriate, but it is difficult to choose an 
appropriate U value that correctly describes different properties [21]. Here, we studied the variation 
of U from 0 to 5 eV. For the PBE (U = 0) cases, we also applied the DFT-D3 (BJ) method [22,23] to take 
van der Waals corrections into consideration. The following settings were used, except when stated 
otherwise: a 3 × 3 × 2 k-points mesh for the hypophosphites and a 2 × 2 × 1 mesh for the formate; the 
energy cutoff for the plane waves was 600 eV for the [Trz]Cu(H2POO)3 and 520 eV for the other two 

Figure 1. Unit cells of the considered materials. (a) [Trz]Cu(H2POO)3, with space group P21/c.
(b) [Gua]Cu(H2POO)3, with space group P1. (c) [HIm]Cu(HCO2)3, with space group P21/c. Color code:
The orange octahedra are Cu centered, with oxygen (black) at the vertices; P—gray; C—brown;
H—white; N—blue.

We find that the different Cu compounds have both 1D and 2D magnetism, with small couplings
in the spin exchange paths which involve the long Cu-O bonds, but we do not find significant structural
instabilities with respect to the centrosymmetric group of the Mn analogues.

2. Methods

We have used the Vienna Ab-initio Simulation Package, VASP (VASP Software GmbH, Vienna,
Austria) [17] for density functional calculations, which uses a plane wave basis set and the
projector augmented-wave (PAW) method [18]. We considered the GGA-PBE (generalized gradient
approximation, Perdew-Burke-Erzernhof) exchange-correlation functional [19] and added an effective
Coulomb repulsion U to Cu 3d orbitals, according to the simplified approach of Dudarev et al. [20].
For Cu oxides, values of U = 4 eV may be most appropriate, but it is difficult to choose an appropriate
U value that correctly describes different properties [21]. Here, we studied the variation of U from
0 to 5 eV. For the PBE (U = 0) cases, we also applied the DFT-D3 (BJ) method [22,23] to take van der
Waals corrections into consideration. The following settings were used, except when stated otherwise:
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a 3 × 3 × 2 k-points mesh for the hypophosphites and a 2 × 2 × 1 mesh for the formate; the energy cutoff

for the plane waves was 600 eV for the [Trz]Cu(H2POO)3 and 520 eV for the other two compounds;
the full relaxations (atomic positions, cell shape, and volume) did not use symmetry, and stopped when
the maximum residual force components were less than 0.005 eV/A. The FINDSYM program (Brigham
Young University, Provo, UT, USA) [24,25] was used to find the symmetry of the optimized structure,
the VESTA software for analysis and structural representation [26], and PHONOPY to post-process
VASP results and calculate phonons.

3. Triazolium Cu Hypophosphite

3.1. Magnetism

We started from the structural data for [Trz]Mn hypophosphite given by Wu et al. [9], wherein the
compound adopts the space group P21/c and subsequently replaces the Mn atoms by Cu. We performed
a series of full structural optimizations with the ferromagnetic and the three antiferromagnetic orders
obtained by the different combinations of up/down spins in the unit cell. These can be called A, C,
and G-type antiferromagnetism (AFM) [27], considering that the Cu framework is cubic-like (even if
the framework is distorted from ideal cubes by columnar shifts).

Figure 2 shows the total energies obtained for the optimized structures as a function of U. There is
a clear separation between two pairs of states; the A and G-type AFM are always lowest in energy,
while the C-type AFM and FM are highest. This separation decreases with U, as expected from the
increased localization of states, but it is always much larger than between each pair. These degeneracies
between states with different (F/AF) in-plane interactions suggest that the in-plane exchange interaction
is very weak. On the other hand, the states where the out-of-plane magnetic ordering switches
from F to AF are separated by large energy differences; thus, the out-of-plane exchange must be
much stronger (particularly for low U values and AFM). The A-AFM state is slightly lower in
energy than the G-AFM state, with the difference slightly larger for lower U values, suggesting a
small in-plane ferromagnetic (FM) coupling, while the C and F states remain almost degenerate.
Thus, this compound presents a quasi-1D magnetism, particularly for lower U values, with very weakly
coupled 1D antiferromagnetic chains. This unusual property has previously been shown in another Cu
metal–organic framework perovskite [28], dimethylammonium copper formate ([DMA]Cu[HCO2]3),
and it could be understood on the basis of Jahn–Teller distortions in the CuO6 octahedra. We will
show in the following structural analysis that strong octahedral distortions are also present in our
compound. Indications of low-dimensional magnetism were also seen in guanidinium Cu formate [29],
which is consistent with first-principles calculations that have shown a dominant 1D interaction [7].
We also used the DFT-D3(BJ) method to check the influence of dispersion corrections, parametrized for
GGA (U = 0), shown in the rightmost set of points of Figure 2. The FM/AFM out-of-plane difference
corresponds to intermediate values of U, while the A/G and particularly C/F states are now more
separated, indicating higher in-plane exchange, but dominant 1D magnetism is still seen.

The calculated Cu moments are in the range between 0.6 and 0.8 µB, and the total moment per
cell is 1 µB/Cu for the FM state. The values are consistent with the Cu2+ S = 1/2 Jahn-Teller state.
Considering the cubic-like framework of Cu ions, we can use the same model as in Ref. [28] to map
the density functional theory (DFT)total energies to a Heisenberg model and obtain three exchange
interactions between spins: intra-chain nearest-neighbor (J1), interchain in-plane (J2), and interchain
out-of-plane (J3). The interactions are shown in Table 1. (For comparison with the previous work,
we follow the convention where AFM interactions are positive.) As it can be seen by comparison of
the two rightmost columns, the exchange interactions in our compound are qualitatively similar to
[DMA]Cu[HCO2]3 for the same U value, with an AFM intrachain larger by far than the interchain
interactions J2 + J3 (overall weakly ferromagnetic). Therefore, similar experimental signatures of 1D
magnetism should be found. The AFM intrachain spin exchange J1 is slightly weaker in our case,
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but so is the interchain exchange (J2 + J3), such that the dimensionless ratio J1/(J2 + J3) is −38 for
[Trz]Cu(H2POO)3 and −35 for [DMA]Cu(HCO2)3.
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Table 1. Spin exchange interactions (in K) for H = 1/2
∑

ijJij Si Sj, with S = 1/2, calculated with GGA,
GGA+U, GGA+D3(BJ), and comparison with another quasi-1D Cu MOF.

U = 0 eV D3 U = 5 eV [DMA]Cu(HCO2)3
1

J1 780 533 141 214
J2 −18.6 −36 −6.8 −8.8
J3 7.8 5.9 3.1 2.7

1 U = 5 eV [27].

3.2. Structure

Concerning the structure, while the Mn analogue at room temperature has a measured volume
of 277.22 Å3/Mn, for the Cu compound, our calculations (after full relaxation and without use of
symmetry) result in 279.29 to 285.91 Å3/Cu, depending on UCu, with smaller volumes for larger U.
For G/A-AFM orders, the changes in volume are similar and come mostly from the change of U.
There is a small expansion in any case, as could be expected on the basis of a slightly larger Cu2+ ionic
radius relative to Mn2+ [30]. Concerning the transition metal–oxygen bonds, in the synthesized Mn
compound, the Mn-O bonds vary between 2.11 and 2.24 Å, with an average bond length of 2.18 Å,
while for the Cu compound, our predictions for U = 0 (U = 5) show a much more distorted octahedron,
consisting of a Cu-O square with “equatorial” bonds 1.95–1.99 (1.96–1.99) Å, while the other two
“axial” distances are much larger, 2.62 (2.42) and 2.94 (2.76) Å. These distances are almost the same
for A and G-type orders. The strong AFM coupling between ab-planes can be related to the Cu-O
bonds along the c direction connecting planes, which are all the smaller equatorial ones, while in the
ab-plane, half of the bonds are the long axial bonds. The very large Cu-O 2.94 (2.76) Å distance in
particular, alternating direction in half of the in-plane framework edges, must considerably weaken the
Cu-Cu super-exchange path through the O atoms, disrupting the formation of long-range magnetic
order in the plane. For increasing U values, the two axial distances decrease, so the distortion of
the Cu-O octahedra is not so large; nevertheless, the in-plane magnetic coupling is lower due to the
enhanced localization.

The comparison of structural parameters between GGA with and without D3 corrections and U is
shown in Table 2. The D3 corrections cause a large decrease in volume (10.6%) corresponding to the
decrease of in-plane lattice parameters a and b by 3.0 and 7.0%. The effect of U = 5 eV is much smaller,



Crystals 2020, 10, 1129 5 of 10

and the small decrease in volume is mostly caused by a decrease in b by 1.5%. Looking at the Cu-O
octahedral distances, the equatorial bonds remain in the range 1.95–1.99 Å, and the difference caused
by the dispersion corrections is smaller axial distances, now 2.39 and 2.63 Å, compared with 2.62 and
2.94 Å with GGA, respectively. In this case, GGA+U also produces a considerable decrease in the axial
bonds to 2.49 and 2.76 Å, although it is not as great as D3. Thus, the effect of both corrections is a less
distorted octahedron.

Table 2. Structural parameters a, b, c (Å), β (◦), Volume V (Å3/fu), and Cu–O equatorial and axial
distances (Å) for different approximations: GGA, GGA+D3(BJ), and GGA+U (UCu = 5 eV).

Structural Parameter GGA D3 U = 5 eV

a 9.88 9.58 9.86
b 9.18 8.54 9.04
c 12.68 12.66 12.73
β 99.47 99.14 99.30
V 285.91 255.45 279.29

Cu-O eq. 1.95–1.99 1.95–1.99 1.96–1.99
Cu-O ax. 2.56 & 2.95 2.39 & 2.63 2.49 & 2.76

We looked at the symmetry of the optimized structures, and, except for small (below 0.01 Å)
tolerances in atomic positions and lattice parameters, the structure remains with the initial space
group, P21/c, which is centrosymmetric. Using the structure found at U = 0 with the A-AFM order,
we searched for possible dynamical instabilities using the VASP software by calculating the Hessian
matrix (with central differences and a step size of 0.015 Å) and corresponding zone-center (Γ point)
vibrational frequencies. The 297 (3N−3, where N = 100 is the number of atoms) non-translational
modes are all real, showing that the P21/c structure is stable with respect to zone-center distortions,
and thus, this compound will likely not be a proper ferroelectric. For example, the five lowest mode
frequencies are 34, 46, 47, 48, and 51 cm−1. However, this does not exclude other possibilities such
as hybrid improper ferroelectricity [31], where the polarization would be induced by other modes.
Therefore, we also calculated phonons in other regions of the reciprocal space, using density functional
perturbation theory to calculate the force constants [32] and then post-processing using the PHONOPY
code [33] to calculate the phonon dispersion in high symmetry lines of the Brillouin zone. The resulting
phonon band structure plot is shown in Figure 3. Instabilities are seen in many lines in the Brillouin
zone, which are shown as negative frequencies in the plot, but with small magnitudes (≈33 cm−1).
Although a more extensive check is in order here, the calculations are already too computationally
expensive using the original cell.Crystals 2020, 10, x FOR PEER REVIEW 6 of 11 
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There are imaginary frequencies (negative in the plot) in all the studied lines. In addition to the
three lowest (acoustic) modes, two more modes (optic) get imaginary frequencies near the E point
(A–E and E–Z directions), and near C2 (Z–C2 and C2–Y2 directions) there is one more, with six total
imaginary modes.

To further explore these instabilities, we have looked at the eigenvectors of the phonons in
some high-symmetry points (Z, D, E, C2), and constructed modulated supercell structures with the
displacements given by weighted eigenvectors. Then, these structures were optimized, as before, and the
symmetry and energies of the optimized structures were analyzed. For the Z point, the modulated
structure, as well as the optimized final structure, have P1 symmetry, although it remains P21/c within
tolerances of 10−3 Å in lattice and 10−2 Å in atomic positions or larger, which shows that the distortions
are small. The energy lowering with respect to the initial P21/c structure is only a 0.30 meV/formula
unit. For the D and E points, the initial modulated and optimized structures have P1 symmetry (for D,
the structure remains P21/c symmetry for tolerances 10−3 Å in lattice and 10−2 Å in atomic positions or
larger; for E, the structure remains P21/c symmetry for tolerances 10−4 Å in lattice and 10−2 Å in atomic
positions or larger), and the energies are lower by 1.00 and 0.82 meV/Cu, respectively. These energy
and structural differences are indeed small but due to the computational cost of the calculations, we did
not explore this point further.

4. Guanidinium Cu Hypophosphite

We studied another compound of the Cu hypophosphite family with the Guanidinium cation
(C(NH2)3

±) at the A site. For this system, we also started with the structure from the Mn analogue
synthesized by Wu et al. [9]. In this case, we used the low temperature P1 structure [9]. Due to the
low symmetry, the only possible symmetry-lowering distortion is the break of inversion symmetry.
We considered the FM and the three AFM states supported by the four Cu atoms in the triclinic unit cell.
In this case, the + + − − state (where + (−) refers to the sign of projection of the spin moment on a given
Cu atom along the quantization axis, considered as a z-axis, and the order corresponds to Cu atoms
with z coordinates approximately 0.25, 0.75, 0.5, and 0), corresponds to the G-AFM alternating state for
the pseudo-cubic framework, while the + − + − and − + + − cases correspond to double-layered AFM
states for ferromagnetic (001) triclinic planes (corresponding to (111) pseudo-cubic planes), as shown
in Figure 4. Furthermore, the initial calculations in some cases converged to a ferrimagnetic state
of the type + + − +, suggesting that this is also a competing state; therefore, we also included it in
our analysis.
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Figure 5 shows the total energies obtained for the optimized structures of these five states as
a function of U, where FM is taken as the zero-energy state. Indeed, for low values of U (<4 eV),
the ferrimagnetic state (+ + − +) turns out to be the lowest energy state among those considered. In the
range U > 3 eV, which may be most appropriate, the G-AFM state becomes the ground state.
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5. Imidazolium Cu Formate

5.1. Magnetism

We started from the Mn analogue structure, which was also previously synthesized and
characterized [16]. The low-temperature ordered structure has the same space group (P21/c) as
[Trz]Mn(H2PO2)3, but the HIm cations order such that there are now two crystallographically
inequivalent cations and metal centers in 4e Wyckoff positions, and thus, the cell is approximately
doubled with respect to the previous hypophosphites.

Figure 6 shows the energies for the three simple AFM orders, relative to FM, as a function of U.
In this case, due to the larger cell, other orders could have been investigated, but we will focus on
the G/C/A/F orders considering c as the out-of-plane axis. For example, the A-AFM order consists
of ferromagnetic ab-planes with antiferromagnetic stacking along the c axis. In this case, the C/G
states are much lower in energy than A/F; both pairs near degenerate, meaning that the out-of-plane
coupling must be much weaker than the in-plane coupling, and there is a quasi-two-dimensional
antiferromagnetism, particularly for low values of U.
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We can use the same model as before to calculate the exchange interactions: J2 is the in-plane
interaction, while J1 is the vertical out-of-plane interaction, and J3 is the diagonal one. Table 3 shows the
calculated exchange interactions. As seen for [Trz]Cu(H2PO2)3, the main exchange interaction decreases
with U. In the dimethylammonium Cu formate case, the DFT values were much closer to experiment for
the higher U values calculations [28], which indicates that for this Cu compound, the U = 5 eV results,
with overall ≈75 K AF interaction, are also more reasonable than U = 0 eV. In this case, the degree of 2D
magnetism can be estimated by J2/(J1 + J3) = −22 for U = 5 eV, i.e., the AFM in-plane interaction is much
larger than the out-of-plane ones (overall weakly ferromagnetic). Note that there are two times more
octahedral in-plane than out-of-plane bonds, so the overall exchange interactions, here dominated by J2

(in-plane), are of similar magnitude to the ones in the hypophosphite (where the dominant out-of-plane
J1 = 780 K for U = 0 eV and 141 K for U = 5 eV, approximately double the in-plane interactions here),
and to the ones in the previously studied DMA Cu formate (J1 = 214 K for U = 5 eV) [28].

Table 3. Spin exchange interactions (in K) for H = 1/2
∑

ijJij Si Sj, with S = 1/2, calculated with GGA and
GGA+U.

U = 0 eV U = 5 eV

J1 (out-of-plane) −11.7 −1.5
J2 (in-plane) +307.3 +77.9

J3 (out-of-plane) 2.5 −1.9

5.2. Structure

In this case, there are two inequivalent octahedra. Half of the octahedra have four bonds with
2 Å, one with 2.5 Å, and one with 2.9 Å, while the other half have four bonds with 2 Å, one with
2.4 Å, and one with 2.6 Å. As in the [Trz] Cu hypophosphite, long 2.9 Å bonds should reduce the
magnetic interactions. In the [Him]Cu formate, these bonds are only along the c out-of-plane direction,
decreasing the coupling in this direction.

Using the FINDSYM program to check the symmetry group of the optimized structures,
we found the P21 polar space group for the ferromagnetic calculation, U = 4 eV for small tolerances
(10−3 Å for lattice and position parameters), while increasing the positions tolerance (to 10−2 Å),
the centrosymmetric P21/c space group is found instead. Nevertheless, this indicated the possible
stability of the polar phase. In order to quantify a possible energy lowering, we performed relaxations
with the symmetry constraints of both P21 and P21/c space groups (using the initial structures found
with different tolerances) to well converged values for the more stable magnetic orders (C and G cases),
with U = 4 eV. However, after converging the calculations to more stringent parameters (energy cutoff

of 600 eV and forces threshold of 2 meV/fu), the energy difference is found to be 0.03 meV/fu for the
C magnetic order, meaning that P21 and P21/c are almost degenerate in energy, and it is also almost
vanishing for the G order, −0.006 meV/fu. In this case, we could not try to calculate phonons, due to
the larger size of the system.

6. Conclusions

Starting from the Mn analogues, we have explored the possible compounds triazolium/guanidinium
Cu hypophosphites and imidazolium Cu formate. We could not find significant energy-lowering
distortions with respect to the P21/c space group of the Mn analogues, which suggests these compounds
are not ferroelectric. We have shown that [Trz]Cu hypophosphite and [HIm]Cu formate exhibit strong,
almost ideal 1D and 2D magnetism, respectively, highlighting the role of strong octahedral distortions
in combination with different periodic orderings of the organic cations. We hope that our study
motivates the synthesis and characterization of these compounds.
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