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Abstract: The effect of temperature distribution on a stress–strain state tube made of disperse-hardened
aluminum alloy subjected to internal pressure was investigated. The mathematical model is based on
equations of physical plasticity theory and principles of mechanics of deformable solids. The results
of this investigation demonstrate that varying the outer wall temperature in the range of 200 K at a
fixed temperature of the inner wall leads to a significant change in the plastic resistance limit (for the
considered tube sizes, this change is approximately 15%). An increase of the tube wall temperature
reduces the resistance to plastic deformation. For the same absolute temperature difference between
the outer and inner walls, the plastic resistance limit is less for the higher temperature of the inner wall
of the tube. A decrease of the distances between the hardening particles at the same volume fraction
of second phase leads to a significant increase in the pressure required to achieve plastic deformation
of the tube walls. An increase in tube wall temperature reduces the resistance to plastic deformation.
For the same absolute temperature difference between the outer and inner walls, the plastic resistance
limit is lower for the higher temperature of the inner tube wall. The decrease of the distance between
the hardening particles at the same volume fraction of the second phase leads to a significant increase
in the pressure required to achieve plastic deformation of the tube walls.

Keywords: deformation; dislocation; dispersion hardening; nanoparticles; stress; strain; plastic
deformation; tube; heat exchange; temperature

1. Introduction

A heat exchanger is a device designed to transfer heat from one medium to another in the most
efficient way [1]. Heat exchangers, consisting of tube bundles, are widely used in various industries.
Heat exchangers are extensively used in power engineering, automotive industry, aviation and space
industry and also in household applications (air condition, space heating and refrigeration) [2].

In [3], the mechanical properties of a heat exchange tube made of hardening materials have been
comprehensively investigated. In [4,5] von Mises yield criteria and Hencky deformation theory were
applied to determine the stress state of the heat exchange tube. In order to simplify the dependence on
the stresses from strains, in [5] a bilinear model has been proposed. The simplified bilinear model of
the stress–strain curve consists of two straight lines with different slopes. The slope of the first line
characterizes the elastic modulus of the material. The slope of the second line reflects the hardening
properties of the material.

Numerous studies on the elastic–plastic behavior of pipes subjected to internal pressure have led
to development of theories for predicting the tubes’ burst failure [6–8].
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Comparison of the stress state of the steel pipe under the action of constant pressure applied
(separately and simultaneously) to the outer and inner tube walls was performed in [9]. The action of
pressure on the outer cylindrical surface of the pipe leads to maximum stress of material. The outer
and inner layers of the pipe material are subjected to 85% compression strain when two loads are
simultaneously applied.

The authors of [10] presented two stress–strain models based on the theory of shells to describe the
stress–strain relationship in the cross-section of a coiled tube. Membrane theory of shells of revolution
applied to an elliptic torus has been proven to be a good approach for the axial strain description
but inaccurate with regard to circumferential strain. In order to assess the bending effect and correct
circumferential strains, a semi-empiric method has been proposed to determine an empiric law relating
to the ellipse focal distance with pipe inner pressure.

Zhu and Leis investigated the plastic flow and the elastic–plastic deformation of tubes, which is
based on the maximum shear stresses principle [11,12].

In [13], the authors presented evaluation of the stress–strain state and areas of stress concentration
accounting for detection of different loads. The finite element model is presented to determine the
pipeline sections in the pre-emergency state. Strength analysis of the pipeline showed that buckling or
sagging of its sections leads to unallowable stresses. Large pipeline sagging induces plastic deformation.

In [14], plastic deformation induced by unsteady pressure gradients in fluid-filled pipes was
investigated. The general expression for waves induced by plastic deformation is derived.

The effect of internal pressure on radial strain of a steel pipe, subjected to monotonic and cyclic
loading, was analyzed in [15]. The behavior of circular long tubes subjected to external pressure and
axial load under plane strain in conjunction with the constitutive equation taking into account corner
formation on the yield surface and the Bauschinger effect are analyzed in [16].

It should also be noted that the main trends of engineering development are use of new materials
that significantly increase the specific power of units. Mechanical properties of materials may be
improved by dispersion hardening [17,18]. Dispersion-hardened alloys contain fine, submicron and
nanoscale particles of another material distributed in the matrix. In such alloys, the matrix assumes
most of the load. Due to the large number of insoluble particles in the matrix, a structure resistant to
plastic deformation is formed [19].

The dispersed hardening particles of the strengthening phase resist dislocation motion during
material loading. Consequently, the strength of material depends on the dislocation structure that
forms during plastic deformation. The basic principles of physical theory of plasticity and strain
hardening were formulated by Orowan [20], Ashby [21,22], Hirsch [23–25] and Humphreys [26–28].
In [29–31], based on physical plasticity theory, a mathematical model was developed, and investigations
of elastoplastic deformation of the tube made from disperse-hardened alloys were carried out.

The effect of internal and external pressure applied to the tube from dispersion-hardened aluminum
alloy was investigated in [32–34]. The results of the investigation demonstrate that hardening of the
alloy by nanoparticles significantly improves the strength characteristics of the material.

Understanding the heat transfer condition effect on the stress–strain state of the heat exchanger
walls is important because the strength properties are dependent on temperature. Thus, it is necessary
to evaluate the effect of the temperature field on the stress–strain state of heat exchangers to improve
their efficiency and reliability.

The present work is devoted to modeling of plastic deformation of a tube subjected to uniform
internal pressure in the inhomogeneous temperature field. It is assumed that the tube is made of an
Al-based alloy with incoherent spherical nondeformable nanoparticles.

The mathematical model is based on equations of the balance of the defect structure [35–37]
and principles of mechanics of deformable solids [38–40]. In this paper, to study the stress state of
the tube made from aluminum alloy strengthened by nanoparticles, numerical simulation was used.
This is because the investigated problem is nonlinear as the tensile strength, yield strength and Young’s
modulus depend on temperature.
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2. Methods

2.1. Mathematical Model of Plastic Deformations

The strength and plasticity of composite materials are highly dependent on the structural
condition of the materials. Therefore, to predict mechanical properties of materials it is necessary to
take into account evolution of the defect structure of materials, namely, generation of defects during
plastic deformation, their mutual transformation and annihilation. Kovalevskaya et al. proposed a
mathematical model describing plastic deformation of dispersion-strengthened metals [41]. This model
is based on concepts of hardening and rest. Physical mechanisms underlying the mathematical model
of plastic deformation of disperse-hardened alloys with incoherent particles are described in [42,43].

Presence of a disperse-hardening phase in the material makes the modeling object much more
complex than single-phase materials. In the process of plastic deformation, interaction of dislocations
with particles leads to formation of new elements of the dislocation structure, which leads to hardening
of the material [43,44].

The following types of defects are formed during plastic deformation in FCC alloys with incoherent
nanoparticles: shear-forming dislocations with density (ρm), prismatic dislocation loops of vacancy
(ρv

p) and interstitial types (ρi
p), dislocation dipoles of vacancy (ρv

d) and interstitial types (ρi
d), interstitial

atoms with concentration (ci), monovacancies (cv) and bivacancies (c2v). The start of formation of
dipole structures is determined by the achievement of a critical dislocation density [43], the value of
which depends on the scale characteristics of the hardening phase [42,43].

The mathematical model includes balance equations for deformation due to line and point defects
with regard to generation and annihilation of all types of defects. Generation and annihilation of
prismatic dislocation loops occur near incoherent strengthening particles. The model takes into account
the deposition of point defects on dislocations, which can lead to both annihilation of dislocations of
various types and an increase in their density. The possibility of transition of dislocations in prismatic
loops and in dipole configurations to shear dislocations is also taken into account.

The model assumes that the matrix material of the dispersion-hardened alloy is pure aluminum,
particles of the hardening phase are nondeformable, and the distance between them does not change
during plastic deformation at all temperatures.

The mathematical model uses the following balance equations of the defect dislocation structure [36,45]:

dρm
da = (1 − ωsPas)

F
Db −

2b.
a
(1 − ωs)ρ2

mmin(ra, ρ−1/2
m )(c2vQ2v + c1vQ1v + ciQi) +

+ 2b.
a
α
√
ρ(ρv

p(c1vQ1v + c2vQ2v) + ρi
pciQi) + 2b.

ara
(ρi

dciQi + ρv
d(c1vQ1v + c2vQ2v)),

(1)

dρi
p

da
=

< χ > δ

2Λ2
pb
−

2α
.
a
√
ρρi

pb(2c2vQ2v + ciQi + 2c1vQ1v), (2)

dρv
p

da
=

< χ > δ

2Λ2
pb
−

2α
.
a
√
ρρv

pb(c2vQ2v + 2ciQi + c1vQ1v), (3)

dρv
d

da
=

1
Λpb

−
2b
.
ara
ρv

d(c2vQ2v + ciQi + c1vQ1v) (4)

dρi
d

da
=

1
Λpb

−
2b
.
ara
ρi

d(c2vQ2v + ciQi + c1vQ1v), (5)

dci
da

= q
τdyn

G
−

ci
.
a
[((1 − ωs)ρm + ρp + ρd)b

2Qi + Q1vc1v + Q2vc2v + Qi(c1v + c2v)], (6)

dc1v
da =

qτdyn
6G −

1.
a
[(((1 − ωs)ρm + ρp + ρd)b2 + ci + c1v) Q1vc1v +

+Qicic1v − (Q2v + Qi)ci c2v],
(7)
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dc2v

da
=

5qτdyn

6G
−

1
.
a
[(((1 − ωs)ρm + ρp + ρd)b

2 + ci ) Q2vc2v + Qicic2v − Q1vc1v
2], (8)

.
a = 8

π

τ3(((1 − βr)ρm + ρp + ρd)(τ − τa))
1/3

G4/3b1/3(τ2 − G2b2ξβrρm)ρm
1/2 ×

×
vDBβ1/2

r
ξ1/6F(1 − βr)

exp[ − 0.2Gb3
− (τ − τa)Λb2

kT ].
(9)

Here, a is the shear deformation;
.
a is the strain rate; b is the Burgers vector module; F is a

dimensionless geometric parameter which characterizes the shape of the shear zone and connects
its diameter, perimeter and area; D is the diameter of the shear zone; Pas is the probable annihilation
of screw dislocations; τdyn is the excess stress over static resistance to the dislocation movement;

Q j = Z jνD exp(−U(m)
j /kT) is the kinetic coefficient; U(m)

j is the activation energy of the j-th type point
defect migration; Zj is the number of places for the j-th type point defect jump (j = i, v); νD is the Debye
frequency; k is the Boltzmann constant; T is the temperature of deformation; ωs is the fraction of screw
dislocations; <χ> is the ratio of the average length of dislocations accumulated on the particles to the
particle size; Λp is the distance between hardening particles; δ is the particle diameter; q is the intensity
of point defect generation; G is the shear modulus; ρ is the dislocations density; α is the coefficient of
the interaction between dislocations; ξ is the forest dislocation fraction;ρp = ρi

p + ρ
v
p is the density of

prismatic dislocation loops; ρd = ρi
d + ρ

v
d is the dislocation density in dipole configurations; βr is the

reacting dislocation fraction; Λ is the average length of free dislocation segment and ra is the effective
capture radius:

ra =
Gb

4πτ f

(2− ν)
(1− ν)

Here, τ f is the friction stress; ν is the Poisson’s ratio.
The athermal resistance (τa) to the dislocation movement in the disperse-hardened alloy with

incoherent particles is the sum of the friction stress, τ f , the interaction between forest dislocations, τd,
and the stress of particle bypass, τOr, i.e., τa = τ f + τd + τOr.

The intensity of the processes of annihilation of linear defects is determined by the strain rate,
which is related to the applied stress and dislocation density by relation, Equation (9). The investigation
was conducted for deformation with a constant strain rate. Therefore, Equation (9) is not differential.
This is a transcendental equation that allows us to find the value of the applied stress.

It is necessary to set the initial values of the point defect concentrations and dislocation densities
for solution of the system of ordinary differential equations that describe the balance of linear and point
deformation defects. The former corresponds to a concentration of thermodynamically balanced point
defects at a given temperature, whereas the latter corresponds to the unstrained state of the crystal.
Under the condition a = 0, it is assumed that there are no dislocation prismatic loops and dipole
configurations in the crystal, i.e., c(0)i = exp

(
−U f

i /kT
)
, c(0)v = exp

(
−U f

v /kT
)
, c(0)2v = exp

(
−U f

2v/kT
)
,

ρ
(0)
m = 1012 m−2 and ρ(0)p = ρ

(0)
d = 0.

The calculations are carried out at the following parameter values for disperse-hardened Al-based
alloys [43,45]: F = 4, <χ> = 4, α = 0.5, βr = 0.14, ξ = 0.5, ωs = 0.3,τ f = 10 MPa, U f

v = 1.26 eV, U f
2v = 2.16

eV, U f
i = 3.28 eV, Um

v = 0.88 eV, Um
2v = 0.69 eV, Um

i = 0.117 eV and b = 2.5·10−10 m.

2.2. Elastoplastic Material Properties

Aluminum alloys are known for their good specific strength and corrosion resistance.
Dispersion-hardened aluminum alloys consist of a coarse-grained aluminum matrix containing
populations of particle Al2O3. Incoherent dispersoids distributed within a metallic matrix provide
high strength at ambient and elevated temperatures, as they impede dislocation glide. Use of
coarsening-resistant submicron dispersoids such as Al2O3 allows for dispersion-strengthened
aluminum with creep resistance at high temperatures (500 ◦C and above).
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Experimental studies [46] show that hardening of aluminum alloys with dispersed particles
weakly affects the moduli of elasticity and shear. However, alloy properties depend on temperature.
To describe the temperature dependence of the shear modulus, Bell’s formula can be used [46–48]:

G =

 G0 at T < 0.06Tm

G1
(
1− T

2Tm

)
at 0.06Tm < T < 0.57Tm.

(10)

In Equation (10), Tm = 933 K is the melting temperature; G0 = 35.017 GPa and G1 = 36.1 GPa are
parameters that characterize the elastic properties of aluminum.

The results of an investigation based on the solution of Equations (1)–(9) show that strain
hardening of Al-based materials with an incoherent strengthening phase for the same volume
fraction increases with decreasing particle size and the distance between them at all deformation
temperatures. An investigation of the effect of the scale characteristics of the strengthening phase on
the strain hardening of aluminum-based materials with an incoherent strengthening phase showed that
dislocation dipoles are not formed throughout the entire process of plastic deformation in a material
with nanosized particles. There is a decrease of shear-forming dislocation density and dislocation
density in the prismatic loops (both vacancy and interstitial type) with an increase of deformation
temperature (Figure 1).

Figure 2 presents dependences between the flow stresses, τ, and plastic deformation, apl = a−τ0/G,
of the aluminum-based alloy strengthened with incoherent nanoparticles Al2O3.

Plastic deformation starts when the stress intensity in the material is equal to the yield shear stress.
Hardening curves are characterized by a monotonic dependence between flow stress and deformation
(Figure 2). At low values of plastic deformation, apl, a significant increase of flow stress values occur. At
high apl values, the stress–strain curve has a horizontal asymptote matching the yield point at τ = τ∞.
The simulation results predict that hardening of the material by nanoparticles significantly changes
the strength characteristics of the material. A decrease of the distance between particles for the same
volume fraction of the hardening phase at the same temperature leads to increasing of the flow stress
(see curves 1 and 4, 2 and 5, and 3 and 6), which means hardening of the material. With increasing
temperature, the material becomes more plastic, which is accompanied by decreasing of the flow stress
(see curves 1–3 and 4–6).

Approximation of the obtained balance between the elements of deformation defects and
dependence of the flow stress on the deformation degree allows us to obtain the function of τ(a) with
an error not exceeding 0.1%:

τ = τ0 + τ1
a− τ0/G

a∗ + a
, (11)

where τ0 is the yield stress, τ1 = τ∞ − τ0 is the hardening stress, which characterizes the maximum
increase of flow stress during plastic deformation, and a∗ is an empirical parameter that determines the
rate at which the flow curve reaches the asymptote.
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Figure 1. Dependencies of the density of shear-forming dislocations, dislocation density in the prismatic
loops of vacancy and interstitial types from deformation. Diameter of particles (δ), nm: 1–10, 2–20;
distance between particles (Λp), nm: 1–100, 2–200; (a) temperature: 293 K, (b) temperature: 393 K and
(c) temperature: 493 K.
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Figure 2. Stress–strain curves for an aluminum-based alloy at various temperatures. Red curves (1–3)
correspond to the diameter of strengthening particles, δ = 10 nm, and distances between the particles,
Λp = 100 nm; blue curves (4–6) correspond to the diameter of strengthening particles, δ = 20 nm,
and distances between the particles, Λp = 200 nm. Temperature of deformation on the curves 1 and 4
is T = 293 K, on curves 2 and 5 it is T = 393 K and on curves 3 and 6 it is T = 493 K.

Figure 3 shows the temperature dependence of the yield stress, τ0, and hardening stress, τ1,
calculated for various parameters of the strengthening phase. The simulation results show that with
increasing temperature the yield stress, τ0, decreases (see curves 1 and 2). This means that with
increasing temperature, the alloy becomes more plastic because plastic deformation occurs at lower
stresses. In addition, a decrease of the hardening stress, τ1, with increasing temperature (see curves
3 and 4) indicates a weakening of the ability of the material to plastic hardening. An increase in the
distance between the strengthening particles at the same volume fraction leads to a decrease of the
yield stress, τ0 (see curves 1 and 2), and hardening stress, τ1 (see curves 3 and 4).

Figure 3. Temperature dependencies of yield stress, τ0 (blue curves 1 and 2), and hardening stress,
τ1 (red curves 3 and 4). Particles diameter, δ, and distance between particles, Λp, on curves 1 and 3 are,
respectively, 10 and 100 nm, and on curve 2 they are 20 and 200 nm.

In the considered temperature range (293K ≤ T ≤ 493K), the dependences τ0 and τ1 can be
approximated by the correlations:

τ0

τ0∗
= C00 +

C01

T0
T +

C02

T2
0

T2, (12)
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τ1

τ1∗
= C10 +

C11

T0
T +

C12

T2
0

T2 (13)

In Equations (12) and (13) τ0∗ and τ1∗ are the yield stress and hardening stress at temperature,
T0 = 293 K. The approximation parameters have the following values: C00 = 0.8665, C01 = 0.3479,
C02 = −0.2144, C10 = 2.9817, C11 = −2.7000 and C12 = 0.7183.

The values of the material constants: τ0∗, τ1∗ and a∗ for various sizes, δ, of hardening particles and
the distances between the particles, Λp, are presented in Table 1.

Table 1. The material constants τ0∗, τ1∗ and a∗ (1).

Hardening Phase Parameters Material Constants

Λp = 100 nm τ0 = 81.08 MPa
δ = 10 nm τ1 = 143.1 MPa

a∗ = 0.011

Λp = 200 nm τ0 = 43.13 MPa
δ = 20 nm τ1 = 110.13 MPa

a∗ = 0.013

2.3. Verification of the Results

Verification of the results was carried out by comparison with experimental data presented
in previous work [49,50]. Table 2 presents the mechanical properties of the aluminum alloy A356
containing scandium fluoride particles.

Table 2. Properties of A356-based composites containing scandium fluoride particles.

Alloy
τ0 [MPa] τ1 [MPa]

Experiment [50] Results of Modeling Experiment [50] Results of Modeling

A356–0.2% ScF3 98 ± 6 102 92 ± 11 87

A356–1% ScF3 109 ± 8 114 141 ± 9 134

Table 2 shows both experimental results, which are presented in [50], and theoretical predictions
of the yield stress, τ0, and the hardening stress, τ1. By comparing the experimental and theoretical
values, one can see that, in general, the results of the predictions are fairly close to the experimental
data. The good correlation between the experimental measurements and simulations results proved
the correct methods and approaches for the simulation of processes of plastic deformation.

2.4. Temperature Distribution in the Tube Wall

To model the heat transfer, we will assume that the inner wall of the tube (r = Rin) has a constant
temperature, T = Tin, and the external wall (r = Rex), T = Tex. Note that if the end walls of the tube
are thermally insulated, then the temperature distribution will not depend on the axial coordinate z.
In addition, due to the axial symmetry of the problem under consideration, the temperature will not
depend on the angular coordinate ϕ. Thus, the heat transfer equation can be written as:

1
r
∂
∂r

(
r
∂T
∂r

)
= 0. (14)

The boundary conditions can be formulated as:

r = Rin: T = Tin; r = Rex: T = Tex (15)
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Integration of Equation (14) with boundary conditions, Equation (15), allows us to determine the
dependence of temperature on the radial coordinate

T = Tin + (Tex − Tin)
ln r− ln Rin

ln Rex − ln Rin
(16)

Figure 4 shows the temperature distribution over the tube wall thickness for various values of
Tin and Tex. As can be seen from the figures, this distribution is linear and can be approximated by
the dependence:

T = Tin +
∆T
h

(r−Rin), (17)

Figure 4. Temperature distribution in the tube wall: radius of the inner wall of the pipe Rin = 0.1 m,
radius of the outer wall of the pipe Rex = 0.105 m. The red curves (1 and 2) correspond to an inner
wall temperature of 293 K. On curve 1 the outer wall temperature is 393 K; on curve 2 it is 493 K.
The blue curves (3 and 4) correspond to an inner wall temperature of 393 K. On curve 3 the outer wall
temperature is 293 K; on curve 4 it is 493 K. The green curves (5 and 6) correspond to an inner wall
temperature of 493 K. On curve 5 the outer wall temperature is 293 K; on curve 6 it is 493 K.

The analysis showed that the approximation error of Equation (16) increases with an increase
in the absolute temperature difference between the external Tex and internal Tin walls, and with an
increase in the relative wall thickness (Rex −Rin)/Rin. However, in the considered range of temperature
changes, (Tex − Tin)/Tin < 0.7, the linear approximation error does not exceed 1.2%. Thus, to calculate
the stress–strain state of the tube walls, we will use dependence, Equation (17).

2.5. Stresses in Tube Walls

Let us consider the stress–strain state of the tube loaded by the internal pressure when the
temperature of its inner and outer walls has different values (Figure 5). A mathematical model of
the stress–strain state includes the equilibrium equations and relations between deformations and
displacements and also between stresses and deformations. According to Timoshenko and Goodier [40],
the balance of radial stresses can be described subject to axial symmetry and flat deformation [48,51]
by the following equation:

∂σrr

∂r
+
σrr − σϕϕ

r
= 0 (18)
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Figure 5. Cross-sectional view of tube deformation.

The boundary conditions for Equation (18) can be written as:

r = Rin: σrr = −pin; r = Rex: σrr = 0 (19)

The deformation of the tube walls is determined by the magnitude of the applied pressure, pin.
If pin has small values, then deformation of the tube walls is elastic. As pressure is increased, stresses in
the wall of the tube increase. According to the Tresca–Saint-Venant plasticity condition [51,52], a plastic
deformation occurs when the maximum tangential stress achieves its ultimate value in the material:

|σrr − σϕϕ| = τ0 (20)

If the value of the applied pressure becomes equal to the limit of elastic resistance, p = pel,
then plastic deformation occurs on the inner wall of the tube. At even greater pressure, the plastic
state covers an annular layer of radius, Rpl, adjacent to the inner surface of the tube. A region will
be adjacent to the outer boundary of this layer, in which the elastic state of the material will still be
preserved. When the value of the applied pressure reaches the limit of plastic resistance, p = ppl, all the
material in the thickness of the tube will go into a plastic state.

In this paper we will consider the case when the limit of plastic resistance is reached, that is,
the deformation of the entire tube wall is plastic. The analysis of the stress–strain state can be carried
out on the basis of equations of the deformational theory of plasticity.

2.6. Displacements and Strains in Tube Walls

The deformation theory of plasticity is based on the theory that volume changes due to plastic
deformations do not occur [40,51]. Volumetric deformation occurs only as a result of elastic and
temperature stresses. Thus, during plastic deformation in an inhomogeneous temperature field,
volumetric deformation is equal to:

εV = 3αT(T − Tin) (21)

With small tensile/compression and shear, the volumetric strain is equal to:

εV = εrr + εϕϕ + εzz (22)
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The components of the strain tensor are determined by the Cauchy relations and, in the presence
of axial symmetry and a plane deformed state, they have the form:

εrr =
dur

dr
, εϕϕ =

ur

r
, εzz = 0 (23)

In Equation (23), ur is the radial component of the displacement vector.
Taking into account dependences, Equations (21)–(23), the volumetric deformation can be found

from the solution of the equation:

∂ur

∂r
+

ur

r
= 3αT(T − Tin). (24)

The solution of this equation, taking into account the temperature dependence, Equation (17), has
the form:

ur = 3αT
∆T
h

(
r2

3
−

rRin
2

)
+

C∗
r

, (25)

where C∗ is the integration constant which should be determined.
Equation (25) allows us to determine the components of the strain tensor:

εrr =
∂ur

∂r
= 3αT

∆T
h

(2r
3
−

Rin
2

)
−

C∗
r2 , εϕϕ =

ur

r
= 3αT

∆T
h

( r
3
−

Rin
2

)
+

C∗
r2 , (26)

According to the Duhamel–von Neumann hypothesis, deformation can be represented as the sum
of deformations caused by a force load [51,53]

εσrr = −
C∗
r2 , εσϕϕ =

C∗
r2 (27)

and deformation caused by thermal expansion:

εT
rr = 3αT

∆T
h

(2r
3
−

Rin
2

)
, εT

ϕϕ = 3αT
∆T
h

( r
3
−

Rin
2

)
(28)

According to [40], strain intensity caused by a force load is equal to:

a =
√

2
(
(εσrr)

2 + (εσϕϕ)
2
)

(29)

Substitution of dependencies (27) in Equation (29) leads to the expression

a = 2
C∗
r2 (30)

Let us determine the integration constant, C∗, using the condition at the boundary of elastic and
plastic deformation areas.

τ0 = Ga
(
Rpl

)
= 2G

C∗
R2

pl

(31)

Thus, the strain intensity is equal:

a =
τ0

G

R2
pl

r2 (32)
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2.7. Numerical Method

The balance equations for elements of defect dislocation structure and mechanics of deformable
solids were solved numerically by using Runge–Kutta–Merson’s fifth order method [54]. Let us write
the set of Equations (1)–(8) and (18) in matrix form:

dY
dX

= F(X, Y) (33)

The calculation algorithm for the 5th order Runge–Kutta–Merson method is represented by
the equations:

Yi+1 = Yi +
1
6 (k0 + 4k3 + k4),

k0 = hF(Xi, Yi),
k1 = hF

(
Xi +

h
3 , Yi +

k0
3

)
,

k2 = hF
(
Xi +

h
3 , Yi +

k0+k1
6

)
,

k3 = hF
(
Xi +

h
2 , Yi +

k0+3k2
6

)
k4 = hF

(
Xi + h, Yi +

k0−3k2
6 + 2k3

)
(34)

The total error of the method is O (h5).
In the case of long-term calculations that require a large number of calculations, it is possible to

reduce the calculation time by using a variable step of the difference grid, h. When using a variable
step in the calculations, the difference between adjacent values of the grid function, ∆ =

∣∣∣Yi+1 −Yi
∣∣∣,

is controlled. If ∆ exceeds the specified error, ∆max, the grid step is halved; at small values of ∆, the step
is doubled. The conditions for automatic selection of the grid step are represented by Equation (35).

hi+1 =


1
2 hi if ∆max < ∆
hi if ∆max ≤ ∆ ≤ 2∆max

2hi if ∆ < 2∆max

, (35)

The conditions in Equation (35) make it possible to significantly reduce the computation time of
the problem while maintaining the accuracy of the solution.

3. Results and Discussion

Let us proceed to the analysis of the main results of the mathematical modeling. The mathematical
model of this tube assumes that its inner and outer radii are, respectively, Rin = 0.1 m and Rex = 0.105 m.

Figure 6 shows the dependences of the plastic resistance limit, ppl, of the tube on the temperature
of the outer wall. When the outer wall is heated, the material of the outer layers of the tube becomes
more plastic. As a result of this, the pressure required to achieve plastic deformation of the outer wall
decreases. In contrast, cooling of the outer wall leads to an increase in the limit of plastic resistance.
Note that at a fixed value, Tin, varying the temperature of the outer wall in the range of 200 K leads to
a significant change in the limit of plastic resistance (for the geometry under consideration, this change
is about 15%).
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Figure 6. Dependence of the plastic resistance limit on the temperature of the outer wall:Rin = 0.1 m,
Rex = 0.105 m. Curves 1–3: Λp = 100 nm, δ = 10 nm; curves 4–6: Λp = 200 nm, δ = 20 nm; curves 1
and 4–temperature of the inner wall of the pipe Tin = 293 K; curves 2 and 5–Tin = 393 K and curves 3
and 6–Tin = 493 K.

Similar dependences characterizing the effect of the temperature of the inner wall on plastic
deformation of the tube are illustrated in Figure 7.

Figure 7. Dependence of the plastic resistance limit on the temperature of the inner wall: Rin = 0.1 m,
Rex = 0.105 m. Curves 1–3: Λp = 100 nm, δ = 10 nm; curves 4–6: Λp = 200 nm, δ = 20 nm; curves 1
and 4: temperature of the outer wall of the pipe Tex = 293 K; curves 2 and 5: Tex = 393 K; curves 3 and
6: Tex = 493 K.

An increase of the temperature of the inner wall at a fixed value of the outer wall temperature, Tex,
reduces the resistance to plastic deformation of the inner layers of the tube, which causes a decrease, ppl.

When cooling the inner wall of the tube, the limit of plastic resistance increases. The variation, ppl,
with variation of the inner wall temperature, Tin, in the range of 200 K for the considered tube sizes
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(Rin = 0.1 m, Rex = 0.105 m) is also 15%. Thus, to calculate the strength characteristics of the heat
exchanger, it is necessary to take into account temperature distribution in its walls.

The result of mathematical modeling demonstrates that in alloys with small distances between
the hardening particles with the same volume fraction of particles, significantly greater pressure is
required to achieve plastic deformation of the tube walls. Thus, a decrease in the distance between
particles with the same volume fraction of particles causes hardening of the material, leading to an
increase in the limit of plastic resistance. Note that for alloys with different parameters of the hardening
phase, the character of the dependences of the limit of plastic resistance on the temperature of the tube
wall does not change.

Figures 8 and 9 show the effect of tube dimensions on the value of the limit of plastic resistance.
As the wall thickness of the tube increases, its resistance to applied pressure increases. As a result,
as can be seen from Figure 8, with an increase of the wall thickness, the limits of the plastic resistance
of the tube increase.

Figure 8. The dependence of the limit of plastic resistance on the wall thickness of the tube h = Rex −Rin:
Tin = 293 K, Tex = 393 K, Λp = 100 nm, δ = 10 nm, curve 1–Rin = 0.1 m, curve 2–0.105 m and curve
3–0.11 m.

The dependence of the plastic resistance limit of a tube on its dimensions is shown in Figure 9.
An increase in the radius of the tube at a fixed wall thickness leads to a decrease of ppl.

The limit of plastic resistance also decreases with increasing temperature of the tube wall. For the
same absolute temperature difference between the outer and inner walls, the plastic resistance limit is
lower as the temperature of the inner wall of the tube increases.
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Figure 9. The dependence of the plastic resistance limit on the tube size. Λp = 100 nm, δ = 10 nm,
h = 0.05 m; curve 1–Tin = 293 K, Tex = 293 K; curve 2–293, 393; curve 3–393, 293; curve 4–293, 493 and
curve 5–493, 393.

4. Conclusions

During the investigation, the authors developed the mathematical model and obtained quantitative
data to determine the effect of the temperature difference between the outer and inner walls of the
tube on its stress–strain state. The results of mathematical modeling showed that with an increase
of the thickness of the tube wall, the plastic resistance limit increases. An increase of the tube radius
at a fixed wall thickness leads to a decrease of the plastic resistance limit. The material of the outer
layer of the tube becomes more plastic when heating of the outer wall occurs, so the pressure required
to achieve plastic deformation of the outer wall decreases. The cooling of the outer wall leads to an
increase of the plastic resistance limit. An increase of the temperature of the inner wall reduces the
resistance to plastic deformation of the inner layers of the tube. When the inner wall of the tube cools,
the plastic resistance limit increases. For the same absolute temperature difference between the outer
and inner walls, the plastic resistance limit is lower as the temperature of the inner wall of the tube
increases. To calculate the strength characteristics of the heat exchanger, it is necessary to take into
account the temperature distribution in its walls. The result of mathematical modeling demonstrates
that a decrease of the distance between particles with the same volume fraction leads to significantly
greater pressure being required to achieve plastic deformation of the tube walls and causes hardening
of the material. Investigation of the defect structure formation in the tube walls under conditions of
inhomogeneous temperature is planned in following publications.
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