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Abstract: The phase stability and elastic properties of paramagnetic (PM), ferromagnetic (FM) and
antiferromagnetic (AFM) phases in L12-(Ni,Cu)3(Al,Fe,Cr) alloy are first investigated using the
exact muffin-tin orbitals (EMTO) method in combination with the coherent potential approximation
(CPA). The result shows the AFM structure phase of the three is the most stable in the ground state.
Calculated elastic constants show that all the phases are mechanically stable, and have uncovered that
L12-(Ni,Cu)3(Al,Fe,Cr) can achieve good strength and ductility simultaneously. Then, crucial thermal
properties are described satisfactorily using the Debye–Grüneisen model, showing heat capacity,
Gibbs free energy G, the competitive contribution of entropy−TS and enthalpy H exhibiting significant
temperature dependences. Moreover, the magnetic phase transition thermodynamics was studied,
which suggests that−TS has a primary contribution to Gibbs free energy and may play a key role in the
phase transition. The present results can benefit the understanding of the mechanical, thermodynamic
and magnetic properties of the L12 structure phase in 3d high-entropy alloys.

Keywords: L12 structure; high-entropy alloys; elastic properties; thermodynamic properties; magnetic
phase transition

1. Introduction

High-entropy alloys (HEAs), near-equiatomic solid solutions of five or more elements, represent a
new strategy for the design of materials with properties superior to those of conventional alloys. [1,2].
With multiple principal components, they inherently possess unique microstructures and many
impressive properties, such as high strength and hardness, excellent magnetic property, thermal stability,
wear-resistance and corrosion resistance [3–5]. Although HEAs often form single-phase alloys
because of a high configuration entropy of mixing, such as a simple face-centered cubic (FCC)
or body-centered cubic (BCC) structure [6,7], intermetallic compound precipitates with B2, L12 or
L21 structures are observed in HEAs through X-ray diffraction (XRD) and transmission electron
microscopes (TEM) measurements [8–10]. These phases are beneficial to the mechanical behavior of
HEAs. For instance, the ordered L12-(Ni,Cu)3(Al,Fe,Cr) phase (γ′ phase), which has been obtained by
annealing of Al0.3CuCrFeNi2 at 550–700 ◦C, could improve the mechanical strength, grain refinement,
microstructures and coarsening behavior of HEAs [8]. These favorable properties seem to originate
from the γ′ precipitates uniformly distributed within a disordered FCC solid solution matrix of HEAs,
mimicking typicalγ+γ′microstructures observed in the case of many Ni-super alloy and forms the basis
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of the excellent high temperature mechanical properties of these alloys. Therefore, the investigations
of L12 precipitates are crucial for designing potential high temperature 3d-HEAs. However, up to now,
little is known about phase stability, elastic and thermodynamic properties for L12-(Ni,Cu)3(Al,Fe,Cr)
precipitate. Moreover, the L12-(Ni,Cu)3(Al,Fe,Cr) phase includes magnetic transition elements Ni, Cu,
Cr and Fe, the investigation of magnetism in the (Ni,Cu)3(Al,Fe,Cr) phase is also significant.

In the present work, the exact muffin-tin orbitals (EMTO) method [11,12] in combination with
coherent potentials approximation (CPA) [13] are employed to investigate the phase stability and
elastic properties of the paramagnetic (PM), ferromagnetic (FM) and antiferromagnetic (AFM) phases
in L12-(Ni,Cu)3(Al,Fe,Cr). The quasi-harmonic Debye–Grüneisen approach [14] has turned out to be
valid in describing the temperature-dependent thermodynamic properties. Specially, magnetic phase
transition is predicted by Gibbs free energy G and the competitive contribution of entropy −TS and
enthalpy H, simultaneously.

2. Computational Details

The EMTO–CPA method [11–13] within the framework of density functional theory (DFT), is used
for total energies calculations, as this method has proved to be very useful to study the equilibrium
properties of HEAs [15–17]. Within the EMTO theory, the single-electron equations were solved for the
optimized overlapping muffin-tin potential and the full charge density technique [18] was used to
compute the total energy. Generalized gradient approximation (GGA) of Perdew–Burke–Ernzerhof
(PBE) was used for the exchange correlation functional [19], and the Brillouin zone integrations were
performed on 17 × 17 × 17 k-points mesh. The electrostatic correction to the single-site CPA was
described using the screened impurity model with a screening parameter 0.9 [20]. In our calculations,
the atomic proportions of Ni, Cu, Al, Fe and Cr in (Ni,Cu)3(Al,Fe,Cr) were designed as 37.50%, 37.50%,
8.33%, 8.33% and 8.34%, respectively. Here we employed the disordered local magnetic moment (DLM)
model [21–23] to describe the magnetic states of HEAs. According to the model, an alloy component
M of concentration m is presented by its spin-up (↑) and spin-down (↓) counterparts assumed to
be distributed randomly on the underlying sublattice; i.e., each magnetic alloy component could be
treated as M↑m/2M↑m/2 (FM) and M↓m/2M↓m/2 (AFM).

3. Results and Discussion

3.1. Phase Stability

In order to check for the structural stability in paramagnetic (PM), ferromagnetic (FM) and
antiferromagnetic (AFM) phases for L12-(Ni,Cu)3(Al,Fe,Cr), the total energies are calculated as
a function of unit cell volume and fitted to Birch Murnaghan equation of state (BM3-EOS) [24].
The obtained energy versus volume curves are shown in Figure 1. It can be clearly seen that the
L12-(Ni,Cu)3(Al,Fe,Cr) is stable in the AFM phase in the ground state because it shows the lowest
total energy of the AFM configuration corresponding to the equilibrium lattice constant. Interestingly,
the curves have three intersection in the figure, implying that magnetic phase transition among PM,
FM and AFM phases for L12-(Ni,Cu)3(Al,Fe,Cr) would probably happen under high temperature and
high pressure, which are discussed in Section 3.3.
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Figure 1. The energy versus volume curves of paramagnetic (PM), ferromagnetic (FM) and
antiferromagnetic (AFM) phases for L12-(Ni,Cu)3(Al,Fe,Cr).

To further determine the phase stability, the mixing energies (Emix) against the different magnetic
configurations HEAs are also calculated from the following equation:

Emix = (Etot −
∑

i
NiEi

solid)/
∑

i
Ni (1)

where Etot is the total energy per atom of the HEAs and Ei
solid is the energy per atom of ith composition

in fcc structure, Ni refers to the atom number of ith composition in the HEAs. The calculation
mixing energies Emix are, respectively, −8.95, −8.97 and −8.98 ev for PM, FM and AFM structures
(Ni,Cu)3(Al,Fe,Cr). The negative mixing energies Emix prove that of all the phases of HEAs are
stable at zero temperature and zero pressure. Moreover, the values of Emix demonstrate the order
of PM > FM > AFM, suggesting the AFM structure phase is the energetically favorable phase at
low temperature, while PM structure phase is the most instable. Additionally, the magnetic phase
transition may easily occur due to the small difference in Emix for the different magnetic structures
(Ni,Cu)3(Al,Fe,Cr).

3.2. Elastic Properties

The elastic constants and moduli provide important parameters of mechanical properties, such as
stability, stiffness of materials and nature of interatomic forces. Hence, the study of the elastic properties
of different magnetic structures (Ni,Cu)3(Al,Fe,Cr) are necessary. The elastic constants (C11, C12 and
C44) are calculated through the small strains to the equilibrium unit cell and determined by the
corresponding variations in the total energy [25], and the elastic moduli (B, G, and E) are derived
by means of the Voigt–Reuss–Hill approximation [26]. As a result, the obtained elastic constants
and elastic moduli are summarized in Table 1. It is noted that all the elastic constants meet the
corresponding mechanical stability criteria [27,28]: C11 − C12 > 0, C11 > 0, C44 > 0, C11 + 2C12 > 0,
and C’ = (C11 − C12)/2 > 0. This implies all the structures (Ni,Cu)3(Al,Fe,Cr) are mechanically stable,
which agree with the conclusion obtained from the mixing energies above.

Generally, bulk modulus B indicates the compressibility of the solid under hydrostatic pressure,
which can be also used to describe the strength of materials. Calculated bulk modulus B shows that all
phases of L12-(Ni,Cu)3(Al,Fe,Cr) are stronger due to large bulk modulus. Close comparison shows
that the B of the PM structure (Ni,Cu)3(Al,Fe,Cr) is the highest, indicating strongest compression
resistance compared to the FM and AFM structure HEAs. Moreover, shear modulus G is more
relevant to hardness compared to B, which is defined as the force that resists shape change under
shear stress [29,30]. The order of G is as follows: PM < FM < AFM, indicating that the hardness of the
PM and AFM structure phases are the lowest and highest in these HEAs, respectively. In addition,
the Young’s modulus E is regarded as a standard of solid stiffness, and the higher Young’s modulus
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corresponds to the stiffer solid. As seen in Table 1, the AFM structure HEA has the largest E among
these HEAs, which means that the AFM structure phase is the stiffest compound.

It is well known that the ductility and brittleness of alloys are related to the values of Pugh’s
modulus ratio G/B Cauchy pressure C12 − C44 and Poisson ratio ν. If a material exhibits ductility,
the alloy should meet the following requirements: G/B < 0.57, C12 − C44 > 0 and ν > 0.26 [27,31,32].
Generally, the larger the C12 − C44 and v and the smaller the G/B, the more ductile the material is [31].
The calculated G/B, C12 − C44 and v of different magnetic structures (Ni,Cu)3(Al,Fe,Cr) are also shown
in Table 1. It is obvious that, for all magnetic structures (Ni,Cu)3(Al,Fe,Cr), their G/B, C12 − C44 and v
values obey the ductile conditions, indicating that these HEAs are ductile. Moreover, PM structures
(Ni,Cu)3(Al,Fe,Cr) are the most ductile due to the largest C12 − C44 and ν and the smallest G/B.

Table 1. Calculated ground state and elastic properties of PM, FM and AFM phases of (Ni,Cu)3(Al,Fe,Cr).

C11 C12 C44 B G E v G/B C12−C44

PM 213.7 166.4 118.3 182.2 80.5 210.4 0.308 0.44 48.1
FM 187.8 141.5 118.9 156.9 85.6 206.4 0.281 0.55 22.6

AFM 193.9 148.1 128.0 163.4 86.0 219.4 0.276 0.52 20.1

3.3. Thermodynamic Properties and Magnetic Phase Transition

The thermal property provides valuable information on the specific performance of solids under
the application of temperature, and it plays a very important role in helping understanding on phase
transition. In this paper, the quasi-harmonic Debye model [14] in the temperature range of 0 to
1200 K and pressure range of 0 to 60 GP is studied to derive thermodynamic properties of three
magnetic phases in L12-(Ni,Cu)3(Al,Fe,Cr), as this method has been successfully applied to various
thermodynamic calculations [33]. The knowledge of the heat capacity is one of the most important
thermodynamic properties which not only provides essential insight into its vibrational properties but
also is mandatory for many applications [33]. Figure 2 shows the heat capacities at a constant volume
(CV) of PM, FM and AFM phases for L12-(Ni,Cu)3(Al,Fe,Cr) as functions of the temperature under 0 GP.
As it can be seen, all magnetic configuration HEAs show the same changing trend with increasing
temperature: CV is proportional to T3 at low temperature and converges to the Dulong–Petit limit at
high temperature, which obeys the change law. It is should be noted that the concentration of magnetic
behavior has little influence on the heat capacity behavior, due to the values of CV of all phases for
(Ni,Cu)3(Al,Fe,Cr) being extremely similar. In other words, the CV is not sensitive to the presence of
magnetism as the temperature increases.
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In order to investigate magnetic phase transition of the L12-(Ni,Cu)3(Al,Fe,Cr), the Gibbs free
energy G as a function of temperature at constant pressures was calculated by the equation G = H − TS,
and the two components of enthalpy H and entropy contribution −TS were also studied, which are
shown in Figures 3 and 4. It is clear that from Figure 3, for all phases, the variation tendency of the
H and −TS at 20, 30 and 40 GPa are, to some extent, similar. The H increases as the temperature
increases, while the −TS monotonously decreases. As pressures rise, the values of H and −TS of all
phases for L12-(Ni,Cu)3(Al,Fe,Cr) are very close, this means the concentration of magnetic behavior has
little influence on the H and −TS at high pressure; this is because magnetism in 3d metals is typically
suppressed by the application of pressure [34,35]. Figure 4 shows that as the pressure increases, the G
values increase, demonstrating that high pressure significantly affects the system energy and reduces
the stability of HEAs. Moreover, upon comparison of the values of G, H and−TS, the variation tendency
of G is the same as the −TS, but contrary to the H, suggesting that −TS has a primary contribution
to Gibbs free energy, that is to say that the entropy may play a key role in the phase transition in the
annealing process.

Generally, the smaller the G, the more stable the material is. It should be noted that in Figure 4
there are two energetically favorable phases from 0 to 1200 K under 20 and 40 GPa, showing that the
magnetic phase transformation will occur from the AFM to FM phase in the temperature range of 900
to 1050 K at 20 GPa, and from the AFM to PM phase in the temperature range of 150 to 300 K at 40 GPa,
respectively. In particular, the tow phase transformation will occur under 30 GPa; the phase change
temperatures are 450~600 and 1050~1050 K, respectively.

Figure 3. The enthalpy H(T), entropy contribution to free energy −TS(T) of the PM, FM and AFM
phases for L12-(Ni,Cu)3(Al,Fe,Cr) at 20, 30 and 40 GPa.
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4. Conclusions

The phase stability, elastic and thermodynamic properties and magnetic phase transition of
L12-(Ni,Cu)3(Al,Fe,Cr) in 3d high-entropy alloys were investigated employing by EMTO–CPA in
combination with the quasi-harmonic Debye–Grüneisen model. The calculated total energies and
mixing energies show that all the magnetic structures of L12-(Ni,Cu)3(Al,Fe,Cr) are stable, and the AFM
structure phase is the energetically favorable phase in the ground state. The calculated elastic constants
satisfy the stability criteria, implying that all the structures (Ni,Cu)3(Al,Fe,Cr) are mechanically stable.
In particular, L12-(Ni,Cu)3(Al,Fe,Cr) shows both good strength and extensibility due to the large bulk
modulus B and Poisson ratio ν. The thermodynamic property investigation shows that the temperature
has a significant effect on heat capacity, Gibbs free energy G and the competitive contribution of entropy
−TS and enthalpy H. As pressures rise, the concentration of magnetic behavior has little influence on
the H and −TS at high pressure due to pressure-induced suppression magnetism in 3d HAEs. Evidently,
our present work may be valuable for understanding the mechanical, thermodynamic and magnetic
properties of the L12 structure phase in 3d high-entropy alloys.
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