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Abstract: The beta-Al2O3 solid electrolyte doped with Chromium was synthesized via a citrate-nitrate
combustion method, which started with NaNO3, LiNO3, Cr(NO3)3·9H2O, and Al(NO3)3·9H2O as the
raw materials in this paper. The thermal behavior analysis, structure, and ionic conductivity of the
beta-Al2O3 solid electrolyte were studied by the thermogravimetry/differential scanning calorimetry
(TG/DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical
impedance spectroscopy (EIS). Meanwhile, the relative density and bending strength of the samples
were also measured. The results showed that with the appropriate Chromium doping, the calcining
temperature of the precursor powders was only 1100 ◦C, the β′′-Al2O3 phase content, bending
strength, relative density, and ionic conductivity were all improved with a compact and uniform
cross section micrograph. The optimized sample contained 94% of β′′-Al2O3 phase and exhibited
a relative density up to 98.13% of the theoretical density. In addition, it showed a good bending
strength (215 MPa) and a satisficed ionic conductivity (0.110 S cm−1 at 350 ◦C).

Keywords: sodium-sulfur battery; beta-Al2O3 solid electrolyte; citrate-nitrate combustion method;
chromium; electrochemical properties; mechanical properties

1. Introduction

The beta-Al2O3 solid electrolyte has a high ionic conductivity between 300 ◦C and 350 ◦C [1–3].
It possesses the good prospects for the application of the electrolyte materials in the secondary batteries,
such as sodium sulfur battery, sodium-nickel chloride battery, and other new types of Na+ conductor
battery [4–7]. The applications in other devices include gas sensors [8,9], sodium heat engine for direct
thermoelectric energy conversion [10], and galvanic cells for measurement of thermodynamic data [11].
So, it is crucial to prepare the electrolyte material with uniform composition, high density, and good
ionic conductivity for the preparation of battery.

Doping oxides in the ceramic materials had been indicated to improve the properties of the final
samples. For example, some reports showed that an appropriate addition of Li2O or MgO could
improve the sodium ionic conductivity of the beta-Al2O3 solid electrolyte [12–16]. But the mechanical
properties were not satisfactory. S. Shan et al. [17] reported that the beta-Al2O3 solid electrolyte
with TiO2 doping exhibited a bending strength up to 180 MPa compared to about 100 MPa without
doping. But an excess TiO2 doping enhanced the formation of β phase and caused a partially sintered
microstructure with large pores. Z. Wang et al. [18] synthesized the beta-Al2O3 ceramic material doped
with CoO and the relative density reached a maximum of 97.98%, compared to only 95.55% of the
non-doping sample. The conductivity of the material increased the most from 0.022 S cm–1 for the
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undoped sample to 0.061 S cm–1 with CoO added. D. Xu et al. [19] found that a small amount of
Y2O3 could improve the mechanical strength and electrical conductivity by doubling zeta process
to prepare the beta-Al2O3 solid electrolyte. When the amount of doping was 0.5 wt%, the bending
strength (204 MPa) and conductivity (0.035 S cm–1 at 300 ◦C) were approximately 16% and 52% higher
compared to the un-doped samples, respectively.

There were many reports that the properties of ceramics with Cr elements doping were
optimized. For example, S. Ma et al. [20] studied the effect of Cr2O3 doping on the properties
of the ZnO-Bi2O3-MnO2-based varistor. The study showed that Cr2O3 additive could promote the
grain-growth of samples at a relatively low sintering temperature, and the final varistor ceramics met
low breakdown voltages with low leakage current. S. Zhang et al. [21] prepared sapphirine glass
ceramics with small quantities of Cr2O3 additive. The crystallization exothermic temperature of the
parent glass decreased with addition of Cr2O3, it can also promote grain refinement of the sapphirine
phase. M. Khodael et al. [22] studied the effect of Cr2O3 additions on liquid-phase sintered SiC ceramics,
the results showed that Cr2O3 nanoparticles improved the densification of samples. However, we had
not found any report on the effect of Cr doping on the performance of beta-Al2O3 solid electrolyte.
So, in this paper, we investigated the structure and performances of the beta-Al2O3 solid electrolyte
with different contents of Cr2O3 doping by X-ray diffraction (XRD), scan electron microscopy (SEM),
and electrochemical impedance spectroscopy (EIS).

The conventional synthesis of beta-Al2O3 solid electrolyte was carried out by solid-state
reaction [23–26]. But the transition from β”-Al2O3 to β-Al2O3 at high temperature would lead to a
decrease in conductivity [27]. The soft-chemical methods had been reported as more suitable routes for
ceramic systems. The resulting powders with higher purity and surface area could be sintered at relatively
low temperatures [12,28–32]. So, we used a citrate-nitrate combustion method to study in this article.

2. Experimental

2.1. Synthesis

In this work, the beta-Al2O3 solid electrolytes with Chromium additions were synthesized
via a citrate-nitrate combustion method. NaNO3(AR), LiNO3(AR), Cr(NO3)3·9H2O(AR), and
Al(NO3)3·9H2O(AR) were dissolved in de-ionized water, where Li+ was a conventional stabilizer
forβ′′-Al2O3 [13]. Among them, Na2O was 9.5 wt%, Li2O was 0.7 wt%, Cr2O3 was 0 wt%, 0.05 wt%,
0.1 wt%, 0.15 wt%, 0.25 wt%, 0.5 wt%, 0.75 wt%, and 1 wt%, respectively, and the rest was Al2O3.
The citric acid (CA) was added to the solution above as chelating agent with the mole amount equal to
the total metal cations. The mixed solution was stirred at 80 ◦C for several hours to obtain a yellowish
gel. Then, the resulting gel was dried at 120 ◦C for 24 h and ball-milled to get the dry gel powders.
The dry gel was first slowly heated to 600 ◦C for 2 h and then calcined at different temperatures from
700 ◦C to 1200 ◦C for 2 h in the box resistance furnace in air. The precursor powders were ball-milled
for 10 h with anhydrous ethanol for 10 h, and dried. Rectangular and cylindrical samples were pressed
at 300 MPa with precursor powders and an appropriate amount of 5 wt% polyvinyl alcohols, the
sizes were height (3 mm) ×width (4 mm) × length (40 mm) and diameter (16 mm) × height (2 mm),
respectively. Finally, it was fired at 1600 ◦C for 10 min and cooled at 1450 ◦C for 2 h to accelerate the
formation of β′′-Al2O3 phases.

2.2. Characterization

In order to determine the thermal stabilities of the dry gel powders, the thermogravimetry/differential
scanning calorimetry (TG-DSC) analyses were carried out by a TG–DSC analyzer (STA449C, Netzsch,
Germany) from room temperature (20 ◦C) to 1400 ◦C in air atmosphere, with a heating rate of 10 ◦C min−1.

The crystal structure of the powders calcined at different temperatures was performed by X-ray
diffraction (XRD, Rigaku, Japan) with Cu Kα radiation (λ = 1.5406 Å) at a scanning speed of 10◦ min−1
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in the 2θ range of 5◦–80◦. The relative ratios of β-Al2O3 and β′′-Al2O3 were quantitatively calculated
by the following equation [33].

f (β′′)% = 1− f (β′)% = 1−
Iβ

Iβ + 0.85Iβ′′
× 100% (1)

where Iβ and Iβ′′ were the peak intensities at 44.50◦ and 45.90◦, respectively.
The surface microstructures of the sinters were characterized by a scanning electron microscope

(SEM, JEOL, JSM5900, Japan).
The bending strength of the samples were performed by the Electronic Universal Testing Machine

(CMT6203, MTS, USA) with three-point bending method (span 30 mm) on rectangular samples with a
cross-section of 3 mm × 4 mm.

The densities of the sintered samples were measured using Archimedean principle under the
room temperature (20 ◦C). The measured density, Db (g cm−3) was calculated using Equation (2) [18].
Each data was taken from five samples.

Db =
m1 ·D1

m3 −m2
× 100% (2)

where m1 (g) was the weight of the dry sample, m2 (g) was the weight of the saturated sample
suspended in the anhydrous ethanol, m3 (g) was the weight of the saturated sample in the air, and D1

was the density of the anhydrous ethanol at 20 ◦C (0.7903 g cm−3).
The ionic conductivities of the sintered samples were investigated via AC impedance analysis on

an electrochemical working station (Solartron 1260 + 1287, Ametek, UK) at the temperature from 50 ◦C
to 400 ◦C with 50 ◦C interval. The frequency range was from 107 Hz to 0.1 Hz and the signal amplitude
of 20 mV. The sintered cylindrical samples for ionic conductivity measurements were covered with
silver paste on their parallel surfaces and then fired to ensure good bonding and to obtain silver
electrode as the current collector.

3. Results

3.1. Analysis of The Dry Gel Precursor Powders

The XRD spectra of the dry gel with different amounts of Cr2O3 had been measured and showed
almost the same. In order to enlarge the spectra for comparison, we chose three of them for drawing,
as shown in Figure 1. The dry gel precursor powders exhibited an amorphous pattern and no crystal
diffraction peaks. So, the metal ions had been fully complexed by CA.
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Figure 1. X-ray diffraction (XRD) spectra of the dry gel with different amounts of Cr2O3 doping. Figure 1. X-ray diffraction (XRD) spectra of the dry gel with different amounts of Cr2O3 doping.

Figure 2 displayed the TG and DSC curves of the dry gel containing 0 wt% and 0.15 wt% Cr2O3,
respectively. Due to a small amount of doping, we only chose 0.15 wt% doping experiment for
thermal analysis. As in Figure 2a, there was an endothermic peak at 214 ◦C, and the mass loss
was about 30.81%, which corresponded to the melting point of CA and could be explained as an
autocatalytic anionic oxidation–reduction reaction between the nitrates and CA in conjunction with
moisture and CA evaporation [34]. The endothermic peak could be explained by a competing reaction
among oxidation–reduction reaction, vaporization, and decomposition of the gel, as shown in other
systems [35,36]. The exothermic peak at 401 ◦C was the decomposition of the metal CA compounds and
the formation of the oxide solid solution. The other exothermic peak at 526 ◦C was the decomposition
of the unreacted nitrate. After 600 ◦C, the quality of the sample tended to be constant, which indicated
that the thermal decomposition process was basically completed. There was an endothermic peak
at about 900 ◦C and an exothermic peak at 1100 ◦C, which corresponded to the crystal transition
temperatures [12,37]. According to Figure 2, there was a little influence on the reaction temperature
with 0.15 wt% Cr2O3 doping before 600 ◦C. However, the reaction temperature reduced about 50 ◦C
after 600 ◦C. It indicated that the 0.15 wt% Cr2O3 doping could reduce the phase transition temperature
at high temperature and make the phase change process become easier.
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Figure 2. Thermogravimetry (TG) and differential scanning calorimetry (DSC) curves of the dry gel
with different amounts of Cr2O3 doping (a) 0 wt% Cr2O3; (b) 0.15 wt% Cr2O3.

Figure 3 presented the XRD spectra of the precursor powders with 0.15 wt% Cr2O3 doping
at different calcining temperatures. When the calcining temperature was 700 ◦C, the phase was
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Na2Al2xO3x+1 (The Powder Diffraction File (PDF) No. 29-1164), but the diffraction peaks of the phase
were weak. The phase of Al2Li3 was produced at the same time. When the calcining temperature
was up to 800 ◦C, the diffraction peaks of the phase became sharp and m-Al2O3 (PDF No. 12-593)
was produced. When the calcining temperature was 900 ◦C and 950 ◦C, the diffraction peaks of the
Na2Al2xO3x+1 phase were stronger, while Al2Li3 phase and m-Al2O3 phase disappeared. However,
when the calcining temperature was up to 1000 ◦C, the diffraction peaks of the Na2Al2xO3x+1 phase
were very weak and the diffraction peaks of the β′′/β-Al2O3 phases appeared. When the calcining
temperature was 1050 ◦C, there was no Na2Al2xO3x+1 phase and the diffraction peaks of the β′′/β-Al2O3

phases existed only. As the calcining temperature continued to increase, the intensity of diffraction
peaks gradually increased. Table 1 showed the β′′-Al2O3 phase contents of the precursor powders
with different calcining temperatures according to Equation (1). When the calcining temperature was
over 1100 ◦C, the β′′-Al2O3 phase contents decreased. This was because the β′′-Al2O3 phase could
transform to the β-Al2O3 phase at the high temperatures. So, the calcining temperature of the precursor
powders was 1100 ◦C, which was 150 ◦C lower than that of the solid-state method [24].Crystals 2020, 10, x 5 of 11 
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Table 1. The β′′-Al2O3 phase contents of the precursor powders at different calcining temperatures.

Calcining Temperature (◦C) 1000 1050 1100 1150 1200

β′′ phase content (%) 51 51 53 48 45

3.2. Analysis of The Sinters

3.2.1. Phase Analysis

Figure 4 displayed the XRD spectra of the sinters with different amounts of Cr2O3. Figure 4
showed that all the samples were composed of the β- and β′′-Al2O3 phases. The characteristic
diffraction peaks of the β′′-Al2O3 phase were very strong, while the intensity of the β-Al2O3 phase was
very weak. The β′′-Al2O3 phase contents of the sinters were calculated according to Equation (1) and
shown in Table 2. When the Cr2O3 doping content was 0.15 wt%, the β′′-Al2O3 phase content was up
to maximum (94%). It could be observed that the Cr2O3 doping improved effectively the stability of the
β′′-Al2O3 phase at high temperatures. According to Boilot and Thery′s theory [38], when the radius of
divalent metal ions was under 0.097 nm, the divalent metal ions were able to enter the spinel block to
stabilize the β′′-Al2O3 phase structure. Because the radius of element Cr was 0.0615 nm, the Cr3+ ions
occupied the vacancies of the Al3+ ions to improve the diffusion coefficients of aluminum ions and
stabilize the β′′-Al2O3 phase structure. However, due to the small doping amount of Cr, only 1 wt%,
there wasn’t an expected continuous shift in Figure 4 [39]. The irregular shift of the diffraction pattern
might be caused by the misalignment of the sample and the sample holder during the test.
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Table 2. The β′′-Al2O3 phase contents of the sinters for different amounts of Cr2O3 doping.

Cr2O3 wt%. 0 0.05 0.1 0.15 0.25 0.5 0.75 1

β′′ phase content (%) 83 92 93 94 93 91 90 90
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1450 ◦C).

3.2.2. Microstructure Analysis

Figure 5 showed the cross section micrographs of the sinters with different amounts of Cr2O3

doping. As shown in Figure 5a, the microstructure of the sample was lath-like grains with an average
size in the range of 2–10 µm and there were many large pores. When the Cr2O3 doping content was
0.05 wt%, the particles were cylindrical shape and the average size changed smaller. When the Cr2O3

doping content was 0.15 wt%, the size of the particle was uniform and the arrangement was regular.
But, there were also some tiny pores. When the Cr2O3 doping content was more than 0.15 wt%,
the cross section micrograph of the beta-Al2O3 sinters appeared the molten state and the microstructure
was massive exaggerated grains. Due to the increasing of Cr2O3 doping, the crystal nucleation of
the sample became easier. Therefore, the particles became more uniform and compact. While the
Cr2O3 doping contents continued to increase, the Cr ions tended to gather in the grain boundary or the
vicinity of the grain boundary to lead the size of the grain to become uneven and make the samples
more easily to appear the molten state [20,40,41].
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3.2.3. Volume Density Measurement

Figure 6 showed the measured densities and the relative densities of the sinters with different
amounts of Cr2O3. The relative density of the undoped sample was 95.93% (the measured density
was 3.0875 g cm−3). When the Cr2O3 doping content was 0.15 wt%, the relative density reached the
maximum 98.13% (3.1504 g cm3). With the analysis of Figure 5d, the particle size of the sample was
uniform and the microstructure had no obvious defects and compact. So, the relative density was large.
With the increasing of the Cr2O3 doping contents, the relative density of the samples reduced sharply.



Crystals 2020, 10, 987 8 of 12

According to Figure 5e,h, the cross section microstructure of the samples gradually had the molten
state and the pores indicated by arrows were bigger than before the relative density decreased.
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3.2.4. Bending Strength Analysis

The bending strengths of the sinters with different amounts of Cr2O3 were shown in Table 3.
The bending strength of the undoped sample was only 150 MPa. When the Cr2O3 doping content was
0.15 wt%, the bending strength was up to 215 MPa. The microstructure of the sample was uniform
and compact, so the binding force between the atoms was large. The bending strength was decreased
with the excessive Cr2O3 doping contents. It was attributed to the nonuniform microstructure and the
increase number of the pores.

Table 3. Some calculated parameters and measured properties of the sinters with different amounts of
Cr2O3 doping.

Cr2O3 wt%. 0 0.05 0.1 0.15 0.25 0.5 0.75 1

Bending strength (MPa) 150 167 183 215 180 157 138 112
σ at 350 ◦C

(S cm−1) 0.061 0.067 0.077 0.110 0.071 0.063 0.033 0.025

Ea (eV) 0.232 0.198 0.188 0.155 0.193 0.196 0.243 0.253

3.2.5. Ionic Conductivity Analysis

Figure 7 presented the AC impedance spectra of the sinters with different content of Cr2O3 doping
at 350 ◦C. Figure 7b,c showed the equivalent circuits of the beta-Al2O3 solid electrolytes at different
temperatures. Where Rg was the grain resistance, CPEg was the grain capacitance, Rgb was the
grain boundary resistance, CPEgb was the grain boundary capacitance, and CPEct was the interface
capacitance. As we know, the ionic conductivity was determined by the grain resistance and the grain
boundary resistance [18]. The total resistance was calculated by the following equation.

R = Rg + Rgb (3)
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The ionic conductivities of the sinters according to the equivalent circuit at 350 ◦C were shown in
Table 3. The conductivity of the undoped sample was only 0.061 S cm−1. The ionic conductivity reached
the maximum 0.110 S cm−1 when the Cr2O3 doping content was 0.15 wt%. It was because the β′′-Al2O3

phase content was the best and the cross section micrograph was compact and uniform. It would
destroy the microstructure of the samples by doping excessive Cr2O3 content. Then, the particles grew
without order and the size of grains became large. It made the structure abnormal and loose to increase
the resistance of the grain boundary; thereby, it deteriorated the ionic conductivity.

It was found that the plots of ln(σT) verses (1000 T−1) were linear over the temperature range.
Figure 8 showed the Arrhenius plot of resistivity data for the sinters with different amounts of Cr2O3.
The relationship conformed to Arrhenius equation.

σT = Aexp(−Ea/RT) (4)

where R was the gas constant, T was the absolute temperature.
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The corresponding values for Ea (activation energy) of all the samples were listed in Table 3.
The low Ea indicated that the Na ions migrated easily. The lowest Ea of all the samples was 0.155 eV
when the Cr2O3 doping content was 0.15 wt%.

4. Conclusions

In this paper, Chromium doped beta-Al2O3 solid electrolyte was synthesized via the citrate-nitrate
combustion method and the highly reactive precursors were obtained. The calcining temperature
of the precursor powders was as low as 1100 ◦C. The doping amount was the key factor to affect
the properties of the final samples. A small amount of Chromium doping could improve both the
mechanical properties and ionic conductivities of the beta-Al2O3 solid electrolyte. An excess Chromium
doping could destroy the microstructure and the performance of the samples. The optimal amount
of Cr2O3 doping was 0.15 wt%, the β′′-Al2O3 phase content was 94% with a uniform and compact
microstructure. The relative density was 98.13% of the theoretical density. In addition, it showed a
good bending strength (215 MPa) and a satisficed ionic conductivity (0.110 S cm−1 at 350 ◦C).
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