Adding Size Exclusion Chromatography (SEC) and Light Scattering (LS) Devices to Obtain High-Quality Small Angle X-Ray Scattering (SAXS) Data

Melissa A. Graewert *, Stefano Da Vela, Tobias W. Gräwert, Dmitry S. Molodenskiy, Clément E. Blanchet, Dmitri I. Svergun * and Cy M. Jeffries *

The European Molecular Biology Laboratory (EMBL) Hamburg, Notkestr. 85, 22607 Hamburg, Germany; sdavela@embl-hamburg.de (S.D.V.); t.graewert@embl-hamburg.de (T.W.G.);

dmolodenskiy @embl-hamburg.de~(D.S.M.);~clement.blanchet @embl-hamburg.de~(C.E.B.)

* Correspondence: melissa.graewert@embl-hamburg.de (M.A.G.); svergun@embl-hamburg.de (D.I.S.); cy.jeffries@embl-hamburg.de (C.M.J.); +49-40-89902115 (M.A.G.); +49-40-89902125 (D.I.S.); +49-40-89902177 (C.M.J.)

Figure S1. Elution profile of CA from Superdex 75 increase 10/300 column at 0.5 mL/min collected in SEC-SAXS/MALLS mode. Data is accessible as SASBDB accession code SASDFP8 (**a**) SAXS derived chromatogram – integrated intensities vs elution volume. (**b**) MALLS derived chromatogram – Rayleigh Ratio vs elution volume. Profiles are normalized for better comparison. Note, the other four samples are shown in Figure 2.

Figure S2. Elution profile of aFER from Superdex 200 increase 10/300 column at 0.5 mL/min collected in SEC-SAXS/MALLS mode. UV absorbance is shown in red, differential refractive index in blue.

Figure S3. Autocorrelation functions (ACFs). Measured ACF in black, fitted nonlinear least squares algorithm. Fits shown in same colors as in Figure 5. Derived values for RH are indicated.

Figure S4. In detail characterization of CA. (**a**,**b**) MALLS derived chromatogram– Rayleigh Ratio vs elution volume in green with stable R_H (**a**) and MW_{MALLS} (**b**) across the elution peak. (**c**,**d**) SAXS derived chromatogram - integrated intensities vs elution volume produced by CHROMIXS (in orange) with stable R_G values across the elution peak (**c**) and Porod volume derived MW estimate (**d**).

Figure S5. In detail characterization of monomeric BSA. (**a**,**b**) MALLS derived chromatogram– Rayleigh Ratio vs elution volume in green with stable R_H (**a**) and MW_{MALLS} (**b**) across the elution peak. (**c**,**d**) SAXS derived chromatogram - integrated intensities vs elution volume produced by CHROMIXS (in orange) with stable R_G values across the elution peak (**c**) and Porod volume derived MW estimate (**d**).

Figure S6. In detail characterization of dimeric BSA. (**a**,**b**) MALLS derived chromatogram– Rayleigh Ratio vs elution volume in green with stable R_H (**a**) and MW_{MALLS} (**b**) across the elution peak. (**c**,**d**) SAXS derived chromatogram - integrated intensities vs elution volume produced by CHROMIXS (in orange) with stable R_G values across the elution peak (**c**) and Porod volume derived MW estimate (**d**).

Figure S7. In detail characterization of aFER. (**a**,**b**)MALLS derived chromatogram– Rayleigh Ratio vs elution volume in green with stable R_H (**a**) and MW_{MALLS} (**b**) across the elution peak. (**c**,**d**) SAXS derived chromatogram - integrated intensities vs elution volume produced by CHROMIXS (in orange) with stable R_G values across the elution peak (**c**) and Porod volume derived MW estimate (**d**).

	Frame#	Log plot	Kratky plot	Guinier plot	t R _g	p(r) plot	D _{max}	V _{Porod}	MW _{rel} kDa	DAM MW, kDa
				points q	uality nm					
BSA	1431 - 1541 1643 - 1697		compact	41 - 161	95% 2.8±0.0	A	8.4	98	<u>53</u> + 6	•
BSA dimer	541 - 661 1413 - 1472	oversubfracted	compact	40 - 109	24% 3.9 ±0.0	$\mathbf{\land}$	13.1	213	157 + 6 - 23	44
CA	1249 - 1353 1442 - 1493	-	compact-hollow	23 - 247	97% 1.8 ±0.0		5.1	37	<u>24</u> ⁺ ₋₂	
ADH	1321 - 1431 1487 - 1541	- Alexandream	compact	37 - 123	93% 3.3 ±0.0		9.2	202	<u>124</u> + 10	
aFER	631 - 757 1197 - 1259	Manager	compact-hollow	13 - 65	94% 5.3 ±0.0	<u> </u>	16.4	685	<u>434</u> + 22 - 61	•
	Frame#	Log plot	Kratky plot	Guinier plot	t Rg	p(r) plot	D_{max}	V_{Porod}	MW _{rel}	DAM
				points q	uality nm		nm	nm ³	kDa	MW, kDa

Figure S8. Automated output summary from SASFLOW/CHROMIXS. Key parameters and structural analysis are shown for all samples measured. Figure has been cropped for better visuality.

Figure S9. SASBDB entry. SASDFP8- Carbonic anhydrase from bovine erythrocytes SEC-SAXS coupled to multiangle laser and quasi-elastic light scattering (MALLS and QELS);

MWexperimental 28 kDa MWexpected 29 kDa Porodvolume 37 nm³

- (a) SAXS scattering plot in log-linear scale. Guinier analysis is shown as inlay.
- (b) Kratky plot
- (c) p(r) function

Figure S10. SASBDB entry. SASDFQ8- Bovine serum albumin, purified monomer SEC-SAXS coupled to multiangle laser and quasi-elastic light scattering (MALLS and QELS);

MW_{experimental} 63 kDa MW_{expected} 66 kDa Porod_{Volume} 98 nm³

- (a) SAXS scattering plot in log-liear scale. Guinier analysis is shown as inlay.
- (b) Kratky plot
- (c) p(r) function

Figure S11. SASBDB entry. SASDFR8- Bovine serum albumin, purified dimer SEC-SAXS coupled to multiangle laser and quasi-elastic light scattering (MALLS and QELS);

MW_{experimental} 126 kDa MW_{expected} 133 kDa Porodvolume 211 nm³

- (a) SAXS scattering plot in log-linear scale. Guinier analysis is shown as inlay.
- (b) Kratky plot
- (c) p(r) function

Figure S12. SASBDB entry. SASDFS8- Yeast alcohol dehydrogenase 1 SEC-SAXS coupled to multiangle laser and quasi-elastic light scattering (MALLS and QELS);

MW_{experimental} 142 kDa MW_{expected} 147 kDa Porodvolume 201 nm³

- (a) SAXS scattering plot in log-linear scale. Guinier analysis is shown as inlay.
- (b) Kratky plot
- (c) p(r) function

Figure S13. SASBDB entry. SASDFN8-Apoferrin horse spleen SEC-SAXS coupled to multiangle laser and quasi-elastic light scattering (MALLS and QELS); Apoferritin light chain.

MW_{experimental} 454 kDa MW_{expected} 479 kDa Porodvolume 679nm³

- (a) SAXS scattering plot in log-linear scale. Guinier analysis is shown as inlay.
- (b) Kratky plot
- (c) p(r) function