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Abstract: This study mainly observed the Cr2N (chromium nitride) nucleation and growth in SAF
2507 duplex stainless steel. However, the investigation revealed that Cr2N has a complex substructure
separated into many regions. In SAF 2507 duplex stainless steel, Cr2N nucleated at the dislocations
and the precipitates were composed of many Cr2N flakes gathered together when aged at 600 ◦C.
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1. Introductions

Duplex stainless steels (DSS) have been widely used as structural materials in the power, chemical
and oil industries [1–3]. The beneficial mixture of austenitic (γ) and ferritic (δ) properties in the duplex
microstructure (δ + γ) results in high strength with desirable toughness [4], combined with a good
corrosion resistance, especially against chloride-induced pitting and crevice corrosion, as well as
stress corrosion cracking [5–7]. The heat treated SAF 2507 DSS can lead to a series of transformations
in the ferrite matrix or at the interphase boundaries, in addition to the martensite forms from the
austenite [8,9]. In a previous study [10], the different new phases and precipitates of the δ-ferrite matrix
decomposition were characterized in the temperature range of 400–1050 ◦C. The phase transformation
in DSS always takes place in ferrite rather than in austenite for two reasons. First, the atomic density is
lower in the lattice of ferrite than in the lattice of austenite; second, the enriched chromium (Cr) and
molybdenum (Mo) in the ferrite phase is favorable for interphase nucleation [10]. The characterization
of the phase precipitates is best performed on isothermally heat-treated samples with a fully δ-ferrite
microstructure retained by water quenching to room temperature. This isothermal treatment induces
the decomposition of the supersaturated δ-ferrite and produces various phases: M23C6 and M7C3

carbides [8], secondary austenite formed as Widmannstätten precipitates [11], δ-ferrite decomposed to
secondary austenite (γ2) with σ phases via the eutectoid reaction [12,13], τ phase [14], R phase [15],
σ phase [16,17] and chi (χ) [17,18] phase. The intermetallic χ-phase, whose characterization is reported
in the present paper, is a tetrahedral close-packed (TCP) phase.

The presence of this phase was reported for the first time by Andrews and Brookes [19] in a steel
containing Cr, Ni and Mo. McMullin et al. [20] have also found the presence of an equilibrium phase
of this intermetallic compound in the temperature range of 815–900 ◦C as isothermal sections of the
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ternary diagram for Fe-Cr-Mo. Intermetallic phases (χ and σ) and Cr2N precipitate in grains or at
phase boundaries during slow cooling in the critical temperature range of 1000 ◦C (1273 K) to 700 ◦C
(973 K). Another aspect is that a high density of chromium nitrides is generated in the interior of the
ferrite grains as a result of super-saturation with nitrogen by rapid cooling from high temperatures by
quenching [21]. As the nitrogen solubility in ferrite is quite low, it leads a super-saturation of nitrogen
in ferrite [22].

A stimulating effect on sigma phase precipitation in DSS can be achieved by cold working prior
to aging. The microstructures in deformed steels, similar to the un-deformed steels, exhibit the
transformation of ferrite phase into a mixture of secondary austenite and sigma phase [23,24]. In the
meantime, its amount is increased by the nitrogen content [25]. The nucleation sites of sigma are the
incoherent twin boundaries, grain boundaries and the intra-granular dislocations [26]. Accidentally,
it also nucleates at coherent twin boundaries [23]. A key point to point out is that Cr2N is found in
the range of 700–900 ◦C, somewhat lower temperatures, whereas σ phase forms essentially in the
temperature range of 800–1010 ◦C. Another remarkable feature is the intermetallic R phase precipitates
after aging at 700 ◦C for 3 h, but dissolves after longer aging times, the intermetallic R phase was not
observed after 72 h and no evidence of any carbides of any different type was found [26]. The substantial
amounts of N caused the grain boundary Cr2N, which often formed in cooperation with secondary
austenite [26]. As δ-ferrite decomposes to σ and γ2 phases, Cr migrates to the σ phase and N is
absorbed by the γ2 phase via the eutectoid decomposition process. After a certain duration of aging,
the δ-ferrite completely decomposes, causing the growth of σ phase to stop. Finally, the positions of
primary δ-ferrite are collectively occupied by the σ and γ2 phases [27].

The Cr2N epsilon phase co-exists along with secondary austenite and the sigma phase at
temperatures below 950 ◦C. The literature of TEM studies have revealed the two morphologies of
inter-granular and intra-granular Cr2N precipitates. Ductility deteriorates with a rise in yield strength
simultaneously as the aging time increases [28]. In the meantime, it has a reduction in the toughness
and corrosion properties too [29]. Particularly at 475 ◦C, with aging times greater than 17 h, this aging
treatment at low temperature can cause a significant reduction in the impact strength and toughness of
DSS 2205 [30]. Precipitates of Cr2N exist at δ/δ, δ/γ phase boundaries and within the δ ferrite matrix
after water quenching from a high solution temperature. Nevertheless, these Cr2Ns in the form of
lath-shaped crystals are distributed at the δ ferrite sub-grain boundaries [31].

From the preceding welding study [32], there were many Cr2N precipitates found in the δ ferrite
of super DSS. This gives rise to the motivation to investigate the nucleation and growth of the Cr2N
microstructural evolution in its early stage for this super DSS during aging. At present, no report
discloses details of the mechanism of Cr2N nucleation and growth.

2. Materials and Methods

Fe-0.01C-0.37Si-0.65Mn-23.9Cr-6.53Ni-0.19Co-3.74Mo-0.31Cu-0.03N in wt.% is the chemical
composition of SAF 2507 DSS as determined with a glow discharge spectrometer (GDS). The samples
were heated at 750 ◦C with a holding time of 5 h, or at 600 ◦C with holding times in a series of 5, 10, 30,
60, 90 min, and 7 h, respectively, then they were water quenched after aging.

The foils examined under the transmission electron microscope (TEM) in a model of FEI Tecnai G2
F30 were prepared using the following procedure: the specimens were thinned to a thickness of 0.2 mm
with #400 sandpaper and further thinned to 0.1 mm with #800 sandpaper before being electro-polished
with a twin jet at 45 V in a solution of 5% perchlorate, 25% glycerin, and 70% ethyl alcohol at −5 to
−10 ◦C. Punched 3-mm diameter disks were further thinned to 0.05 mm with #1200 sandpaper.
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3. Results and Discussion

3.1. Cr2N Transformation at 600 ◦C under 7 h Holding in SAF 2507

The microstructural details of Cr2N precipitation in δ ferrite were investigated by transmission
electron microscopy (TEM). Two typical shapes of coarse Cr2N precipitates were revealed in Figure 1,
the precipitates at the phase boundary were mostly needle shapes with a particular crystal orientation
relationship (OR) to the matrix and the others were within the grains after the relatively long time of
aging of 7 h at 600 ◦C. Cr2N dispersedly precipitated within the δ ferrite in specimens aged at 600 ◦C for
7 h. The selected-area diffraction patterns, which were obtained from the interfacial regions of the Cr2N
and δ phase, as shown in Figure 1, indicated a characteristic orientation relationship between Cr2N
and the δ phase. A dispersion of finer precipitates of Cr2N existed within the δ ferrite grain, although
coarser nitrides are distributed mainly as stacks along the ferrite sub-grain boundaries. It seemed that
the favored heterogeneous nucleation at sub-grain boundaries or dislocations determined the variation
in nitride size [33].
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(c) interpretation of (b); (d) Cr2N formed at phase boundary.

3.2. The Detailed Substructure of Cr2N

Figure 2a is a micrograph of Cr2N precipitated at 600 ◦C after 7 h holding, and Figure 2b presents a
high magnification image of Figure 2a. Figure 2c is the micrograph of Cr2N precipitated at 750 ◦C after
5 h holding, and Figure 2d presents a high magnification image of Figure 2c. What is interesting is that
Cr2N in the high magnification images has many fringes in it (Figure 2b), and even two fringe directions
can be observed (Figure 2d). The substructure within Cr2N is visible. Furthermore, the further high
magnification of Cr2N precipitated at 750 ◦C after 5 h of holding shows that Cr2N is not as simple
as we have seen. The fact is that Cr2N is composed of many different domains (Figure 3a), which
are further separated into different regions, as illustrated by the HRTEM or HREM (High-resolution
transmission electron microscopy) image (Figure 3b).
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3.3. Nucleation and Growth Mechanism of Cr2N at 600 ◦C

Although the metastable Cr2N exhibited a needle-like shape in Figure 1, a detailed examination
showed that the nucleation of the Cr2N at 600 ◦C consisted of several small flakes in a particular
arrangement in Figure 3. In order to display Cr2N nucleation very clearly, the dark-field images (DFI)
in Figure 4c–h were utilized by tilting the sample until it satisfied the invisible condition of g vector
dot burger vector b equal to zero (g · b = 0), to eliminate the most dislocations, as the size of nucleated
Cr2N was too small and thin to obtain diffraction spots. The sequence of Cr2N nucleation, growth and
coalescence is shown in Figure 4a–i. Cr2N nucleated at the dislocations appeared as stacks of several
small flakes in parallel (Figure 4g,h) or two mutually perpendicular flakes (Figure 4f). To clarify the
mechanism of Cr2N nucleation and growth in the δ phase of DSS, SAF 2507 was heated to 600 ◦C
for different aging times. At 600 ◦C, the dislocations appeared in the δ phase after 5 min (Figure 4a).
The tiny Cr2N nucleated at the dislocations after 10 min (Figure 4b,c). After 30 min of holding, Cr2N
gradually grew into flakes, and a large amount of Cr2N flakes were distributed within the α matrix
(Figure 4d–h). Finally, after 7 h, Cr2N flakes stacked together to form needle-like Cr2N (Figure 4i).
It is notable that the two directions of Cr2N flake growth were along the

(
020

)
plane and the

(
002

)
plane, and the Burgers vector of the dislocation loops, which were tangled with the Cr2N flakes, was
1/2 < 111 >, as shown in Figure 4e. During rapid cooling from the δ ferrite field, the microstructure
consisted of large ferrite grains with a low amount of allotriomorphic and Widmanstätten austenite
and abundant intra-granular nitrides [34]. These Cr2N rods or CrN plates followed a kinetic “C” curve
to precipitate from the ferrite by nucleation and growth [34]. Dislocations, inclusions, grain boundaries
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(δ/δ), and interphase interfaces (δ/γ) were the locations for nucleation of Cr2N rods. The corrosion
resistance and toughness of DSSs were sacrificed severely by the Cr2N precipitation [34].
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4. Conclusions

There are two morphologies for Cr2N nucleation and growth. One precipitation occurs at grain or
phase boundary and forms the micrometric size Cr2N that are mostly needle shapes with a particular
crystal orientation relationship (OR) to the matrix. Another precipitation occurs within the matrix
and forms the nanometric size Cr2N composed of flakes, or of many orientation domains. Cr2N first
nucleated in multiple positions at dislocations and gradually grew into many flakes, which grew in
perpendicular or in parallel. Furthermore, the Cr2N flakes interacted with dislocation loops. At longer
holding times, dislocations were discharged and the Cr2N finally coalesced and eventually grew into
complete needle-like Cr2N with many domains.
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