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Abstract: A new liquid crystalline, optical material-based Schiff base core with a near to
room-temperature mesophase, (4-methoxybenzylideneamino)phenyl oleate (I), was prepared from a
natural fatty acid derivative, and its physical and chemical properties investigated by experimental
and theoretical approaches. The molecular structure was confirmed by elemental analysis, FT-IR
(Fourier-Transform-Infrared Spectroscopy) and NMR (nuclear magnetic resonance) spectroscopy.
Optical and mesomorphic activities were characterized by differential scanning calorimetry (DSC) and
polarized optical microscopy (POM). The results show that compound (I) exhibits an enantiotropic
monomorphic phase comprising a smectic A phase within the near to room-temperature range.
Ordinary and extraordinary refractive indices as well as birefringence with changeable temperatures
were analyzed. Microscopic and macroscopic order parameters were also calculated. Theoretical
density functional theory (DFT) calculations were carried out to estimate the geometrical molecular
structures of the prepared compounds, and the DFT results were used to illustrate the mesomorphic
results and optical characteristics in terms of their predicted data. Three geometrical isomers of the
prepared compound were investigated to predict the most stable isomer. Many parameters were
affected by the geometrical isomerism such as aspect ratio, planarity, and dipole moment. Thermal
parameters of the theoretical calculations revealed that the highest co-planar aromatic core is the most
stable conformer.

Keywords: near to room-temperature mesophase; optical properties; refractive index; birefringence;
geometrical parameters; DFT calculations

1. Introduction

Liquid crystals (LCs) of low melting temperatures are important materials for a wide range of
applications, including temperature sensors and electro-optical displays [1–6]. These materials require
certain characteristics to be manageable in device applications [1,2,7]. The applicable liquid crystalline
compounds depend on various parameters, such as optical transmittance, absorption coefficient,
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order parameter, dielectric constant, and birefringence, amongst others. In addition, mesomorphic
type and stability also contribute essential characteristics. Color change with temperature is also a
valuable phenomenon in the liquid crystals field [8]. Thus, in thermotropic LCs, the transmittance has
been investigated in different LC mesophases [9]. Many liquid crystalline derivatives possess one or
more distinct phases depending on the molecular order of the mesophase [10–12].

The thermal stability of mesomorphic molecules is mainly affected by the character of the bonds in
the molecule, particularly the types of end groups [13–15]. It is also a sensible parameter allowing for
the evaluation of the stability of liquid crystalline compounds because heating some chemical species
can reveal those that can conduct electric currents [16]. Most investigations have focused on Schiff’s
bases since the discovery of 4-methoxybenzylidene-4′-butylaniline (MBBA), which possesses a room
temperature nematic phase [17].

The refractive index and birefringence measurements can be obtained using an Abbe
refractometer and the wedge method, and Newton’s ring technique for the N and Sm A
phases [11,18–20]. Yildiz et al. [21] measured the ordinary and extraordinary refractive indices
of the 4-butyloxyphenyl-4′-decyloxybenzoate (10O4) liquid crystal in the nematic phase. The refractive
index dependence of temperature in the isotropic, nematic and smectic A phases were obtained.
Moreover, the optical birefringence based on a rotating-analyzer method has been investigated [18,22].
Moreover, the temperature dependence of the ordinary (no) and extraordinary (ne) refractive indices,
and birefringence (∆n) for thermotropic LCs mesogens have been reported [23]. Recently, ordinary
and extraordinary refractive indices and birefringence at variable temperatures have been estimated
for azopyridine-based supramolecular complexes and their individuals, as well as the evaluation
of microscopic and macroscopic order parameters [24]. Elsewhere, the orientation effect of two
laterally fluorine atoms in difluorophenylazophenyl Benzoate compounds on the refractive indices
and birefringence order parameters were investigated using an Abbe refractometer and modified
spectrophotometer techniques [25,26].

The molecular structure and its associated geometrical properties could also be helpful tools to
design an essential material for an innovative device with superior functions and applications. Several
reports show that the deformation of architectures of the molecules can affect the behavior of the
mesomorphic compounds [27–29]. In general, the changes of polarity and/or polarizability of the
central core can influence the stability of the mesophase of the prepared compound. In comparison with
our previously reported fatty acid liquid crystals [2,30], the terminal substituents that are either small
polar compact groups or flexible long chains affect the molecular structure of the LC materials [31].

It has been reported that the low molar mass calamitic LCs comprising two aromatic rings and one
or more terminal substituent, i.e., 4-methoxybenzylidene-4′-butylaniline, are able to form a nematic
phase at room temperature [17,32–34]. Moreover, attachment polar groups between the two isomeric
molecules could lead to a further decrease in the melting points of their mixed systems. Thus, for the
synthesis of thermotropic LCs for certain applications, we have been focusing on the selection of
terminal wings, flexible alkyl/alkoxy chains, and the mesogenic core [2,30,35].

Schiff base linkage offers a stepped core geometry while retaining molecular linearity, thereby
providing improved mesomorphic stability and induced mesophase formation [36]. Therefore,
it can play an important role as a spacer unit in the depression of melting temperature with a
required range of applications. The new design of functional materials with novel architectures is an
important area of interest in geometrical approaches [27,37,38]. Our recent studies are focused on the
correlation between the mesomorphic transition data and the evaluated computational calculations for
synthesized materials.

In order to better understand the structural effect relationship of natural fatty alkenyl terminals,
the mesophase characteristics of new groups of azobenzene liquid crystalline derivatives based on
naturally occurring fatty acids were reported [2]. In a recent study, the optical isomeric geometrical
characterizations of new non-symmetric azomethine natural fatty acid derivatives were investigated [30].
It was found that the mesomorphic properties and geometrical expectations were impacted in a different
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way by exchanging the mesogenic core. These findings encouraged us to study the synthesis and
analysis of another calamitic molecule with an inverted azomethine linkage core.

Based on the above consideration, and in order to achieve low melting temperatures near to
room temperature, a new two-ring calamitic compound with an azomethine central linkage, namely
(4-methoxyphenylimino)methyl)phenyl oleate (I), was synthesized, and its mesomorphic and optical
behaviour investigated using experimental and theoretical approaches. Additionally, the ordinary
and extraordinary refractive indices, birefringence, thermal stability and order parameters were
measured. The optical activity data were correlated to geometrical results from simulated DFT
modeling calculations.

2. Experimental

2.1. Materials

4-methoxyaniline, oleic acid natural fatty acid, and 4-hydroxybenzaldehyde were
obtained from Sigma-Aldrich (Hamburg, Germany). N,N′-dicyclohexylcarbodiimide (DCC),
4-dimethylaminopyridine (DMAP), dichloromethane ethanol and methanol were purchased from
Aldrich (Wisconsin, USA). All chemicals were used without further purification.

2.2. Synthesis of (4-methoxybenzylideneamino)phenyl oleate, I

I was prepared according to the following Scheme 1:
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2.3. Synthesis

2.3.1. Synthesis of 4-methoxybenzylideneamino)phenol A:

Equimolars of 4-methoxybenzaldehyde (4.1 mmol) and 4-aminophenol (4.1 mmol) in ethanol
(10 mL) were refluxed for 2 h. The reaction mixture was allowed to cool, and the separated product
filtered. The obtained solid was recrystallized from ethanol.

2.3.2. Synthesis of (4-methoxybenzylideneamino)phenyl oleate, I

Equimolar equivalents of (4-methoxybenzylideneamino)phenol A (4.1 mmol) and 4-aleic acid
(4.1 mmol) were dissolved in 25 mL dry methylene chloride. N,N′-dicyclohexylcarbodiimide
(DCC, 0.02 mole) and a few crystals of 4-dimethylaminopyridine (DMAP) as a catalyst were added.
The mixture was left to stand for 72 h at room temperature with continuous stirring. The solid residue
obtained was recrystallized twice from ethanol.

Yield = 94.7%, m.p. = 41.9 ◦C, 1H NMR (600 MHz, DMSO) δ 8.37 (s, 1H CH=N), 7.85 (d,
J = 8.7 Hz, 2H, Ar-H), 7.20 (d, J = 8.6 Hz, 2H, Ar-H), 7.09 (d, J = 8.6 Hz, 2H, Ar-H), 6.99 (d, J = 8.7 Hz,
2H, Ar-H), 5.98 (m, 1H, CH=), 5.96 (m, 1H, CH=), 3.87 (s, 3H, OCH3), 2.55 (t, J = 7.5 Hz, 2H),
2.11–1.95 (m, 4H), 1.78–1.69 (m, 2H), 1.53–1.07 (m, 22H), 0.87 (t, J = 6.9 Hz, 3H, CH3). 13C NMR
(151 MHz, DMSO) δ = 169.24 (C=O), 158.86 (C=N), 156.44 (C-Ar), 146.42 (C-Ar), 145.04 (C-Ar), 127.24
(CH-Ar), 126.76 (CH=), 126.46 (C-Ar), 125.70 (C-Ar), 118.93 (CH-Ar), 118.35 (CH-Ar), 110.91 (CH-Ar),
52.25 (OCH3), 30.99 (CH2), 30.56 (CH2), 28.55 (CH2), 26.42 (CH2), 26.34 (CH2), 26.18 (CH2), 25.98 (CH2),
25.81 (CH2), 25.75 (CH2), 25.72(CH2), 23.84(CH2), 22.27 (CH2), 21.62 (CH2), 19.38 (CH3).

3. Results and Discussion

Nuclear magnetic resonance (NMR) spectroscopy is a versatile analytical tool that has been
extensively used in chemistry and in the identification of liquid crystals [39]. The great strength
of NMR is the ability to distinguish the unique magnetic environments of the same type of nuclei
(e.g., 1H and 13C) in different positions of the same molecule, enabling researchers to investigate
molecules at the atomic level. Thus, NMR is a powerful tool to study molecular dynamics, and can be
used to elucidate different structures of the same molecule, and to monitor the associated kinetics [40]
and thermodynamics of the changes that could be caused by changing sample temperature. Molecular
dynamics of the antiferroelectric liquid crystal can be investigated using different nuclear magnetic
resonance (NMR) techniques.

The molecular formula of the prepared compound I was confirmed via its elemental analysis, FT-IR
data and NMR spectroscopy. The results were consistent with the projected structure. The 1H-NMR
and 13C-NMR for the methoxy group appeared at δ = 3.87 and 52.25 ppm, respectively. However,
the alkenyl protons appeared at δ = 5.96 and 5.89 ppm as two multiplets. The signal 8.60 was assigned
to the CH=N proton, and the corresponding carbon appeared at 158.8 ppm. The NMR peaks between
7–7.4 ppm were assigned to the 1H aromatic resonances frequencies, while 13C peaks were observed at
158–110 ppm.

Schiff bases as well as azo derivatives are the kind of compounds that can be present in two forms,
E and Z isomers, but these compounds present only in the E form in the solid state [41,42]. The Z
form could be obtained either by UV irradiation or thermal heating. In this study, the NMR spectra
were recorded at different temperatures to investigate the molecular dynamics and to probe any
conformational or structural changes in response to temperature variations (Supplementary Material).
The NMR was recorded at different temperatures (see Figure S1) and the chemical shifts associated with
each signal are presented in Table S1. The results of the NMR at various temperatures revealed that
there is no significant effect on the chemical shifts of the recorded signals, indicating that compound I
is thermally stable. As shown in Figure 1, the thermal heating at 365 K of the DMSO solution of the
prepared compound resulted in a new peak observed at (δ = 9.9 of the CH=N). These results provide
clear evidence of the formation of the Z isomer. The percentage of E and Z isomers is calculated from
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the ratio of integral intensities of the CH=N protons of both signals. The ratio between the Z:E isomers
ranged between 1 and 89 at a temperature range of 345–365 K.Crystals 2020, 10, x 6 of 24 

 

 

Figure 1. 1H-NMR of (4-methoxybenzylideneamino)phenyl oleate at 305 K (a) and 365 K (b). 

 

Figure 1. 1H-NMR of (4-methoxybenzylideneamino)phenyl oleate at 305 K (a) and 365 K (b).

3.1. Mesomorphic Behavior Studies

Mesomorphic and optical activity of the synthesized oleic acid natural fatty acid derivative (I) were
investigated by differential scanning calorimetry (DSC), and textures were confirmed by polarizing
optical microscopy (POM). DSC thermograms of the present compound, I, during heating /cooling
scans are presented in Figure 2. These showed two endotherm peaks of the crystal–smectic A and
smectic A–isotropic transitions during heating and cooling scans. The POM showed a focal conic fan
characteristic of the SmA phase (Figure 3). Details of the transition temperatures and enthalpies as
well as the normalized entropy of transition, as derived from DSC measurements during heating and
cooling scans, are presented in Table 1. In order to ensure the stability of the synthesized compound,
DSC measurements were performed for two heating–cooling cycles. Thermal analyses of this derivative
(I) were recorded from the second heating scan. Moreover, DSC measurements were confirmed by
the POM texture observations. Figure 2; Figure 3 indicate that the prepared compound exhibits
enantiotropic monomorphic properties and possesses a smectogenic mesophase (SmA phase).
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Figure 3. Optical photomicrographs under polarized optical microscopy (POM) of the compound I
during the cooling scan. (a) Crystal phase at 20 ◦C and (b) SmA phase at 37.0 ◦C.

Table 1. Phase transition temperatures (◦C), enthalpy of transition ∆H (kJ/mol), and normalized entropy
of transition, ∆S/R for compound I upon heating/cooling cycles.

Heating Process TCr-SmA ∆HCr-SmA TSmA-I ∆HSmA-I ∆SSmA-I/R

41.9 35.78 62 2.98 1.07
Cooling Process TI-SmA ∆HI-SmA TSmA-Cr ∆HSmA-Cr ∆SI-SmA/R

60 2.41 33.5 31.9 0.87

Cr-I = transition from solid to isotropic phase. Cr-SmA = transition from solid to SmA phase. SmA-I = transition
from SmA to isotropic phase. I-SmA = transition from solid to SmA phase. SmA-Cr = transition from SmA to solid
phase. ∆S/R = normalized entropy of transition.

As shown from Table 1 and Figure 2; Figure 3, the oleic acid derivative (I) produces a mesomorphic
compound with low melting temperature near room temperature (41.9 ◦C upon heating) that was
augmented by the long length of the saturated alkenyl terminal chain. The terminal interactions participate
in an important role in the determination of the SmA-to-isotropic behavior, i.e., the enhancement of the
smectic molecular order is set by the fact that the terminal attractions become stronger, permitting the
simple arrangement of the layers due to the long alkenyl chain, enhancing the SmA-to-I transition.
Furthermore, the smectic phase formation may be due to the microphase separation between the
alkenyl chains and aromatic cores, which becomes more favorable as the length of the terminal
chain increases [43,44]. Moreover, the mesomorphic range of compound I is ≈ 20 ◦C upon heating
and ≈ 26.5 ◦C on cooling. Generally, the mesomorphic behavior of calamitic mesogens is impacted
by many parameters, such as the dipole moment, aspect ratio, polarizability and the competitive
interaction between terminal aggregations. Furthermore, the molecular geometry that is affected by the
mesomeric configurations also affects the molecular-molecular interactions. In our previous studies,
we concluded that the molecular aggregation of rod-like molecules by the lateral attraction of planar
molecules enforced with longer alkenyl-chains might play the main role in the mesophase activity
of LC compounds with two aromatic rings [2,30]. Another factor is the end-to-end association of
terminal flexible chains that differs according to mesomeric effects. These factors combine in different
ratios to affect the mesomorphic properties. From the viewpoint of entropy, a dominant role of the
alkenyl chains is their liability, and that they can easily make multi-conformational changes [45].
Thus, the lower values of estimated entropy changes for conventional low molar mass mesogens may
be attributed to the thermal cis-trans isomerization of the CH=N linkage, which is in agreement with
previous reports [33,46–48].
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3.2. Measurements of Refractive Index

Abbe refractometer, made by Bellingham, England, with a heating control unit thermostat
within ±0.1 ◦C around the prisms, was used for measuring the refractive index at certain degrees of
temperature. The compound was exposed to a sodium lamp (589.3 nm). In order to measure the
ordinary and extraordinary refractive indices (no and ne) of the liquid crystalline sample, the prisms of
Abbe refractometer were modulated in planar and homeotropic alignments, respectively. The values
of no and ne for the compound (I) were taken during the cooling process with the accuracy of ±0.0005,
as shown in Figure 4. It was clear that as the temperature increases, the no values increase and the ne
values decrease.
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Figure 4. Temperature dependence of refractive indices no and ne for compound I at 589.3 nm.

The effective geometry αeg is the dispersion of light in liquid crystals that can be obtained by the
following equation [49–51]:

αeg =
no

ne
(1)

Figure 5 shows that for compound I, the αeg values increase with increasing mesomorphic
temperature. The αeg values reach unity in the isotropic phase because the molecular orientation order
in the sample used vanished [52,53].

3.3. Measurements for Birefringence

3.3.1. Birefringence Measurement using the Abbe Refractometer

One of the critical parameters that affects the operation of electro-optic devices is the birefringence
of the liquid crystal [50,53,54]. Figure 6 describes the values of birefringence (∆), which is the difference
between the measuring ne and no for compound I at different temperatures using a sodium lamp 589.3 nm.
It has been noted that as the temperature increases, ∆n gradually decreases [50–57]. Figure 6 describes
the best curve fitting of ∆n values using the Cauchy dispersion relationship.
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3.3.2. Birefringence Measurement by a Modified Spectrophotometer

The phase transition temperature and birefringence for mesomorphic materials can be obtained
during heating and cooling from the transmission spectrum by the modified spectrophotometer (MS)
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method as in Figure 7 [56,57]. The setup consists of the diffraction grating D, rotating disc R, mirror M,
beam splitter B, and P1 and P2 as a polarizer and analyzer. The sample S was placed between two
glass slices with two polarizers and positioned in the electric oven with a heating control unit of rate
1 ◦C/min, as in Figure 7. The transmitted light intensity was measured as a function of the wavelength
(200–900 nm) at a specific temperature using the MS technique.
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Figure 7. Optical set-up of spectrophotometry for measuring the transition temperatures of liquid
crystalline materials, where D: diffraction grating; R: rotating disc (Sample, blank, shutter); M: mirror;
B: beam splitter; P1 and P2 are polarizer and analyzer respectively; S: sample inside the electric oven.

Figure 8 shows the difference of light transmittance with wavelength at certain temperatures
through the cooling action of the sample I placed between two crossed polarizers. The transmittance
change occurs due to the compound mesogens orientation. Using the MS method, the transition
temperatures were determined, and the results obtained were compatible with those determined by
DSC and POM techniques.Crystals 2020, 10, x 12 of 24 
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Birefringence (∆n) was measured in the LC phase from the light transmission of the sample as
follows [56–59]:

∆n =
λ
πt

sin−1

√
T⊥(λ)
T‖(λ)

(2)

where T⊥ and T‖ represent the transmittance of light in crossed and parallel polarizers, respectively.
Using the MS method, the T⊥ and T‖ values at specific wavelength and temperature were determined
for compound I. A traveling microscope was used to determine the thickness t of a sample and was
equivalent to 30 µm.

The values of ∆n of compound I in the LC phase at specific temperature with wavelength 589.3 nm
were estimated and compared with that obtained using the Abbe refractometer as shown in Table 2.

Table 2. The birefringence ∆n by using the modified spectrophotometer (MS), Abbe refractometer and
interferometric techniques at 589.3 nm and temperature of 65 ◦C, ∆no is the birefringence at T = 0 ◦C
and the material constant β for the investigated compound.

Sample ∆n
(MS)

∆n
(Abbe Refractometer)

∆n
(Interferometric) ∆no β

I 0.018 ± 0.005 0.017 ± 0.005 0.022 ± 0.005 0.031 ± 0.005 0.01

3.3.3. Interferometric Method

The interferometric method was based on interference of linearly polarized light travelling through
birefringent medium and exploiting linear or circular polariscope [60–62].

The intensity I of the light leaving the polariscope after passing through the liquid crystal cell was
given as follows [63–66]:

I = 2IoT2
[
cos2

(
θp − θa

)
− sin

(
2θp

)
sin(2θa)sin2

(
πt∆n
λ

)]
(3)

where Io is the intensity of the incident monochromatic light of wavelength λ on the polariscope, T is
the transmission of a linear polariscope, θp and θa are the angles between axes of transmission of
polarizer and analyzer, which are measured in the plane of the principal section of the liquid crystal cell,
∆n is the birefringence, and t is the thickness of the sample.

When θp = +45◦ and θa = −45◦ or inversely θp = −45◦ and θa = +45◦, which means that the
polarizer and analyzer are perpendicular to each other, Equation (3) becomes:

I = 2IoT2sin2
(
πt∆n
λ

)
= Imsin2

(
πt∆n
λ

)
(4)

where Im = 2IoT2.
So that:

∆n =
λ
πt

sin−1

√
I

Im
(5)

By measuring the intensities, I and Im, the value of ∆n could be obtained by knowing the
wavelength λ and the thickness t as shown in Table 2.

3.4. Order Parameter Measurement

By applying the hypothesis of Vuks, the microscopic order parameter S was determined from the
measured values of ne and no for the investigated compound I as follows [67]:

S
(∆α
α

)
=

(
n2

e − n2
o

)
〈
n2〉− 1

(6)
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where ∆α and α are, respectively, the anisotropic and mean molecular polarizability, and ‹n2› is the
mean square value of the refractive index. By using the extrapolation method of Haller, the scaling
factor ∆α/α is obtained, and replacing it with Equation (6), the parameter S can be estimated for the
compound I [56,57,68].

In the crystalline and mesophase phase, the macroscopic order parameter Q was related to the
birefringence ∆n and ∆no, as follows [69,70]:

Q =
∆n
∆no

(7)

The Haller formula can be used to obtain the value of ∆no as follows [56–58]:

∆n = ∆no

(
1−

T
Tc

)β
(8)

where TC is the transition temperature from the smectic A to isotropic, and β is a constant of the
material. The values of ∆no and βwere determined from the relationship between ∆n and Ln (1 − T/TC),
as listed in Table 2. Figures 9 and 10 show that the relationship between S and Q for compound I with
temperature is inversely proportional; however, the relation with ∆n appears linearly. It was noted
that the S and Q values for compound I are nearly the same.
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3.5. Molecular Polarizability

Molecular polarizability for liquid crystal materials is a significant parameter. The ordinary (αo)
and extraordinary (αe) polarizability describe the electrical vector perpendicularly and parallel to
the optical axis of the mesomorphic compound I, and can be calculated by the method of Vuks as
follows [56]:

αe =
( 3

4πN

)( n2
e − 1〈

n2〉+ 2

)
(9)

αo =
( 3

4πN

)( n2
o − 1〈

n2〉+ 2

)
(10)

where N is the number of molecules per volume, and ‹n2› is the refractive index mean square value,
which is given as follows [56,71]:

〈n2
〉 =

n2
e + 2n2

o
3

(11)

The αe and αo values for the prepared compound I with variable temperature are presented in
Figure 11. Theαe values increase as the temperature decreases, whileαo values increase with increasing
temperature. This αe and αo temperature dependence shows the same behavior as birefringence.
Moreover, αe/αo values have linear dependency with temperature (Figure 12).
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3.6.1. Molecular Geometry

Three geometrical isomers of the prepared compound (I) were investigated to predict the most
stable isomer (Ia–c). These isomers were built according to the orientation of the -CH=N- with
respect to the –OCH3 and the carbonyl group of the –COO- linkage of the oleate moiety. The DFT
calculations were carried out to estimate the stability of the proposed isomers (Ia–c). The theoretical
DFT calculations were carried out in gas phase at B3LYP 6-311G(d,p) basis set. The absence of the
imaginary frequency for all suggested conformers is proof of their stability, Figure 14.

Table 3 shows selected structural parameters of the optimum geometries of the postulated isomers.
The twist angles between the two phenyl rings were estimated. The twist angle for all estimated isomers
are strongly affected by the orientation of the -CH=N- linkage with respect to the terminal groups.
The twist angle was 49.1, 48.5 and 55.4◦ for the isomers Ia, Ib and Ic, respectively. Isomer Ib showed
the most planar geometry with the least twist angle; however, Ic had the least planarity. Such planarity
could affect the degree of packing of the molecules in the condensed liquid crystalline phase. Moreover,
the co-planarity of the liquid crystals is an essential parameter affecting the mesophase behavior [38].
On the other hand, the estimated aspect ratio of the proposed compounds has been calculated from the
predicted dimensional parameters. It was clear that the orientation of the -CH=N- linkage does not
significantly affect the aspect ratio of the proposed isomers.
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Table 3. Dimensional parameters and aspect ratios of estimated geometrical isomers of I.

Parameter Ia Ib Ic

Dimensions Å
Width (D) 33.0 32.0 32.0

Length (L) 13.1 13.4 13.2

Aspect ratio (L/D) 2.5 2.4 2.4

Twist angle (Degree) 49.1 48.5 55.4

Dipole moment, (Debye) 3.4804 3.9182 2.1570

Polarizability, (Bohr3) 427.12 425.09 402.11

The dipole moment and polarizability of the investigated isomers were calculated using the same
method. Both the dipole moment as well as the polarizability of the isomers were significantly affected
by the geometrical orientation of the mesogenic group (C=N) with respect to the terminal groups.
The configurational structure greatly affected the polarity and highly impacted the polarizability of the
molecules. Isomers Ia and Ib showed almost the same dipole moment and polarizability; however,
the other isomer Ic differed by almost 20 Bohr3 in the polarizability and by 1.5 Debye in the dipole
moment. These results can be explained in terms of the co-planarity of the aromatic rings.

Thermal parameters calculated by the same method at the same base site are summarized in
Table 4. The results of the theoretical calculations for the three geometrical isomers, Ia–c, revealed that
the conformer Ia of the highest co-planar aromatic core is the most stable conformer; however, Ic of
the least co-planar isomer is the least stable, with an energy difference of 209 K cal mol-1. In contrast,
the energy difference between the Ia and Ib isomers is 0.3 K cal mol-1. The lower energy difference
between the more stable isomers Ia and Ib is evidence of their interconverting equilibrium. The high
stability of the conformer Ib could be attributed to the geometrical parameter results that may permit
the high degree of aromatic co-planarity.
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Table 4. Thermal parameters (Hartree/Particle) of estimated geometrical isomers, Ia–c.

Parameter Ia Ib Ic

Ecorr 0.706 0.706 0.710

ZPVE −1526.629 −1526.630 −1526.295

Etot −1526.589 −1526.590 −1526.255

H −1526.588 −1526.589 −1526.254

G −1526.713 −1526.714 −1526.378

∆E (Kcal/mole) 0.3 0.0 209.8

Abbreviations: ZPVE: Sum of electronic and zero-point energies; Etot: Sum of electronic and thermal energies;
H: Sum of electronic and thermal enthalpies; G: Sum of electronic and thermal free energies.

3.6.2. Frontier Molecular Orbitals (FMOs)

Table 5 and Figure 15 present the estimated plots of frontier molecular orbitals HOMO
(highest occupied) and LUMO (lowest unoccupied) of all postulated configurational isomers Ia–c of
the prepared compound, I. As shown in the figure, it is clear that the electron densities of the sites that
shared in the formation of the HOMOs and the LUMOs are localized on the aromatic rings. Moreover,
there was no obvious impact of the geometrical configuration of the mesogenic core or the terminal
chains on the location of the electron densities of the FMOs. However, the orientation of the groups
insignificantly affects the energy gap between the FMOs. The configuration of the investigated groups
of the isomer Ic increases the energy level of the FMOs. The predicted energy gap between the FMOs
could be used in the estimate of the capability of electron transfer between the FMOs during any
electronic excitation process. The global softness (S) = 1/∆E is the parameter that shows the degree of
polarizability of materials as well as their photoelectric sensitivity.Crystals 2020, 10, x 19 of 24 
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Table 5. Frontier molecular orbital (FMO) energies a.u., and softness of all isomers (Ia–c).

Parameter Ia Ia Ic

ELUMO −0.05920 −0.05897 −0.05128

EHOMO −0.21328 −0.21342 −0.20452

∆EHOMO-LUMO 0.154 0.154 0.153

S Softness 6.490 6.475 6.526

3.6.3. MEP Analysis

The charge distribution map for the proposed conformers Ia–c was calculated under the same
basis sets according to the molecular electrostatic potential (MEP, Figure 16). The red region (negatively
charged atomic sites) was distributed on the aromatic rings and the maximum was on the carbonyl
group of ester linkage for all isomers, while the methoxy groups are the least negatively charged atomic
sites (blue regions). As shown in Figure 16, there are significant effects of the orientation of the C=N
group compared to the C=O and OMe groups on the mapping of the charge destitution. Since the
stability of the enhanced mesophase and other mesomorphic properties are highly impacted by the
degree of packing of the compounds, which is affected by the geometrical structure, the orientation of
the charge distribution could have an impact on this property.Crystals 2020, 10, x 20 of 24 
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Figure 16. Molecular electrostatic potentials (MEP) for all investigated isomers, Ia–c.

4. Conclusions

Herein, thermotropic mono-azomethine liquid crystalline material based on a natural fatty acid
derivative, operating in region near to the room-temperature, has been synthesized and characterized
experimentally and theoretically. The mesomorphic and optical behavior were investigated and the
computational approaches were established to confirm the experimental data, which was produced
using DFT calculations. Moreover, ordinary/extraordinary refractive indices and the birefringence with
different temperatures were analyzed and briefly discussed. The results show that the investigated
material possesses an enantiotropic monomorphic phase comprising a smectic A phase within the
near to room-temperature range. The geometrical isomerism affects many thermal parameters such as
aspect ratio, planarity and dipole moment. Thermal parameters of the theoretical calculations revealed
that the highest co-planar aromatic core (Ia) is the most stable conformer. The same dipole moment
and polarizability were shown for isomers Ia and Ib; however, the other isomer Ic differed by almost
20 Bohr3 in the polarizability and by 1.5 Debye in the dipole moment.
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