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Abstract: (E)-1-(1H-Benzo[d]imidazol-2-yl)-3-(dimethylamino)prop-2-en-1-one 2 was synthesized by
one-pot synthesis protocol of 2-acetyl benzo[d]imidazole with dimethylformamide dimethylacetal
(DMF-DMA) in xylene at 140 ◦C for 8 h. Reaction of enaminone derivative 1 with acetylacetone in the
presence of AcOH/NH4OAc under reflux afforded the cyclized pyridino-benzo[d]imidazole derivative
3. The latter compound was converted into the corresponding β-enaminone 4 with DMF-DMA.
The single crystal X-ray diffraction technique eventually confirmed the assigned chemical structure
of the N-alkyl-β-enaminone 2 and pyridino-benzo[d]imidazole derivative 3. N-alkyl-β-enaminone
2 crystallized in the monoclinic space group P21/n with unit cell parameters of a = 9.8953(3) Å,
b = 5.7545(2) Å, c = 21.7891(7) Å, and β =100.627(2)◦, and with one molecule per asymmetric unit.
On the other hand, compound 3 crystallized in the orthorhombic crystal system and space group
P212121 with unit cell parameters of a = 6.82950(10) Å, b = 8.00540(10) Å, c = 22.4779(2) Å, and
also with one molecule per asymmetric unit. Based on Hirshfeld analysis, the H...H (51.3%), O...H
(10.0%), N...H (10.3%), and C...H (27.6%) contacts in 2 and the H...H (46.8%), O...H (9.9%), N...H
(13.0%), and C...H (21.6%) in addition to the C . . . C (6.7%) interactions in 3 are the most important
towards crystal stability via molecular packing. The main difference is the presence of π–π interaction
among the molecular units of 3 but not in 2. The calculated 1H and 13C NMR chemical shifts showed
good agreements with experimental data. Electronic properties and reactivity parameters of both
compounds are also calculated and compared.

Keywords: benzo[d]imidazole; β-enaminone; DMF-DMA; Hirshfeld analysis; DFT

1. Introduction

Fused heterocycles based on benzimidazoles scaffold have been found in many biologically
active natural products and pharmaceutical drugs [1]. This extraordinary benzimidazole privileged
structure showed pharmacological features like antiviral [2–4], antimicrobial [5], antioxidant [6],
antidiabetic [7], antihelmintics [8], antiparasitic [9], antiproliferative [6], anticancer activity [10,11],
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anti-inflammatory [12], anticonvulsant, central nervous system (CNS) depressant, proton pump
inhibitor, antihypertensive, antineoplastic, and antitrichinellosis [13].

Polydentate enaminone reagents have gained more attention in the last decade due to their
utilization as synthons in organic synthesis transformation [14–16]. These building blocks have dual
electronic attitude and can be employed as electrophilic enones or act as nucleophilic enones in many
chemical transformations for the construction of many cyclic compounds with interesting biological
activities as antibacterial, antitumor, anti-convulsant, and anti-glycating agents, as well as enzyme
inhibitors [17–22]. The structural features of the pharmacophore play a crucial role for the biological
activity of the compound. Combining two pharmacophores in one hybrid is a challenge.

Pyridine scaffold is a very important skeleton of the heterocyclic family which exists as core
structure in many divergent natural products such as alkaloids, coenzymes, and vitamins. Furthermore,
it is used in a large scale in industrial chemistry for the synthesis of many products such as herbicide,
bactericide, and insecticide. Additionally, in biological sciences, it has been approved to have a high
pharmacological importance [23,24].

In this text and the continuation of our research program towards the synthesis of new heterocyclic
hybrids [25–30], we explored the synthesis of two β-enaminones based on benzo[d]imidazole scaffolds
by mixing 2-acetyl benzo[d]imidazole with dimethylformamide dimethylacetal (DMF-DMA) in xylene
under thermal conditions.

The molecular structure of the synthesized β-enaminones was elucidated by spectrophotometric
tools including NMR spectra. The structural features of β-enaminone 2 and 3 were assigned eventually
by X-ray single crystal analysis combined with density functional theory (DFT) calculations and
Hirshfeld analysis.

2. Materials and Methods

General:

The 1H-and 13C-NMR spectra of bothβ-enaminones were recorded on a JEOL 400MHz spectrometer
(JEOL, Ltd., Tokyo, Japan) at ambient temperature. The solvent used was DMSO-d6; the chemical
shifts (δ) are given in ppm. The topology analyses were performed using the Crystal Explorer 17.5
program [31]. All DFT calculations were performed using the Gaussian 09 software package [32,33]
utilizing the B3LYP/6-31G(d,p) method. Natural population analysis was performed using the NBO 3.1
program as implemented in the Gaussian 09W package [34]. The self-consistent reaction filed (SCRF)
method [35,36] was used to model the solvent effects when calculating the optimized geometries in
solution. Then, the NMR chemical shifts for the protons and carbons were computed using the GIAO
method in the same solvent (DMSO) [37].

2.1. (E)-1-(1H-Benzo[d]imidazol-2-yl)-3-(dimethylamino)prop-2-en-1-one 1

The reaction mixture of 2-acetyl benzimidazole (1.60 g, 10 mmol) and DMF-DMA (1.19 g, 10 mmol)
in xylene (40 mL) was refluxed for 3 h, then the reaction mixture was allowed to cool at room
temperature. The precipitated solid product was isolated by simple filtration and subsequently washed
with petroleum ether to afford compound 2 in a pure form as yellowish brown crystals.

Yield (1.98 g, 92%), mp 226–228 ◦C. 1H NMR (400 MHz, DMSO-d6) δ: 2.9 6(s, 3H, CH3), 3.2(s, 3H,
CH3), 6.26 (d, 1H, CH, J = 7.2 Hz), 7.13–7.26 (m, 2H, imidazole-H), 7.61 (brs, 2H, imidazole-H), 7.88(d,
1H, CH, J = 7.2 Hz), 12.95(s, 1H, NH); 13C NMR (100MHz, DMSO-d6): 177.96(C O), 154.62 (=CN),
151.76,(122.85, 123.11, aromatic carbons), 91.16 (=C), 45.28 (NCH3), 37.81 (NCH3); [Anal. Calcd. for
C12H13N3O; Calcd.: C, 66.96; H, 6.09; N, 19.52; Found: C, 67.01; H, 6.00; N, 19.42].
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2.2. (E)-3-(Dimethylamino)-1-(1-methyl-1H-benzo[d]imidazol-2-yl)prop-2-en-1-one 2

The reaction mixture of 2-acetyl benzimidazole (1.60 g, 10 mmol) and DMF-DMA (1.55 g, 13 mmol)
in xylene (40 mL) was refluxed at 140 ◦C for 8 h. The reaction mixture was cooled down to room
temperature and left for a period of time to give product 2 in a pure form as yellowish brown crystals.

Yield 71%, mp 228–230 ◦C. 1H NMR (400 MHz, DMSO-d6) δ: 2.93 (s, 3H, CH3), 3.18 (s, 3H, CH3),
4.11 (s, 3H, NCH3), 6.27 (d, 1H, CH, J = 12.4 Hz), 7.28 (t, 1H, J = 8.0Hz, imidazole-H), 7.34 (t, 1H,
J = 8.0 Hz, imidazole-H), 7.59 (d, 1H, J = 8.0 Hz, imidazole-H), 7.75 (d, 1H, J = 8.0 Hz, imidazole-H),
7.83 (d, 1H, CH, J = 12.4 Hz); 13C NMR (100 MHz, DMSO-d6): 179.85 (CO), 154.49 (=CN), 149.53,
141.76, 137.22, 124.42, 123.16, 120.93, 120.57, 111.51, 93.69 (=C), 45.22 (NCH3), 37.77 (NCH3), 32.53
(N-CH3); Figures S1 and S2 (Supplementary Materials). [Anal. Calcd. for C13H15N3O; Calcd.: C, 68.10;
H, 6.59; N, 18.33; Found: C, 68.29; H, 6.62; N, 18.10].

2.3. 1-(6-(1H-Benzo[d]imidazol-2-yl)-2-methylpyridin-3-yl)ethan-1-one 3

A mixture of 1 (0.432 g, 2 mmol), acetylacetone (0.20 g, 2 mmol), and ammonium acetate (0.385 g,
5 mmol) in 15 mL of acetic acid was refluxed for 4–6 h. The progress of the reaction was monitored
by using thin layer chromatography (TLC). After completion, 50 mL ice-cold water was added to the
reaction mixture and neutralized with a solution of NaHCO3 leading to a pale brown precipitate of 3
which was filtered and dried.

Pale brown solid; yield (84%); mp: 191–193 ◦C; 1H NMR (DMSO–d6, 400 MHz): δ 13.01 (1H, s,
NH), 8.37 (1H, d, J = 8 Hz, Py-H), 8.25 (1H, d, J = 8 Hz, Py-H), 7.65 (2H, m, ArH), 7.24 (2H, m, ArH),
2.75 (3H, s, CH3), 2.60 (3H, s, COCH3); 13C NMR (DMSO–d6, 100 MHz): δ = 200.28, 157.32, 149.84,
149.23, 143.95, 138.68, 132.48, 123.38, 122.66, 119.33, 118.64, 112.33, 29.38, 24.46; Figures S3 and S4
(Supplementary Materials). [Anal. Calcd. for C15H13N3O; Calcd.: C, 71.70; H, 5.21; N, 16.72; Found: C,
71.68; H, 5.25; N, 16.70].

2.4. (E)-1-(6-(1H-benzo[d]imidazol-2-yl)-2-methylpyridin-3-yl)-3-(dimethylamino)prop-2-en-1-one 4

To 1-(6-(1H-benzo[d]imidazol-2-yl)-2-methylpyridin-3-yl)ethanone (0.251 g, 1 mmol) in xylene
(20 mL) was added dimethylformamide dimethylacetal DMF-DMA (1.31 g, 1.1 mmol). The reaction
was refluxed for 8 h, then allowed to cool. The resulting solid was filtered to afford the pure product.

White solid; yield (78%); mp: 225–227 ◦C; 1H NMR (DMSO–d6, 400 MHz): δ 12.87 (1H, s, NH),
8.12 (1H, d, J = 8 Hz, =CH), 7.80 (1H, m, ArH), 7.66 (1H, d, J = 7.5 Hz, Py-H), 7.55 (1H, d, J = 7.5 Hz,
Py-H), 7.21–7.17 (3H, m, ArH), 5.34 (1H, d, J = 8 Hz, =CH), 3.06 (3H, s, NCH3), 2.83 (3H, s, NCH3), 2.57
(3H, s, CH3); 13C NMR (DMSO–d6, 100 MHz): δ = 155.75, 150.99, 147.82, 144.35, 136.48, 135.38, 123.70,
122.50, 119.74, 119.01, 112.72, 45.07, 37.60, 23.41; Figures S5 and S6 (Supplementary Materials). [Anal.
Calcd. for C18H18N4O; Calcd.: C, 70.57; H, 5.92; N, 18.29; Found: C, 70.64; H, 5.88; N, 18.34].

3. Results and Discussion

3.1. Synthesis of β-enaminones

The synthesis of β-enaminones-based benzo[d]imidazole 1 and 2 have been reported before [38–42],
but a direct method to reach the final β-enaminone 2 from the starting material 2-acetyl
benzo[d]imidazole has not been reported to the best of our knowledge. The synthesis of N-alkyl-β-
enaminone-based benzo[d]imidazole scaffold 2 was achieved by a reaction of 2-acetyl benzo[d]imidazole
with DMF-DMA as outlined in Scheme 1. The formation of compound 1 was obtained at 125 ◦C
but was unprecedented. The N-methyl-β-enaminone 2 was obtained by restarting the reaction at
higher temperature of 140 ◦C. The plausible mechanism for N-alkylation transformation of 1 to 2 via
deprotonation of the NH of the imidazole ring to generate the more powerful nuclophile subsequently
attack the electrophilic center of the (methoxymethylene)dimethyl-azonium ion to form the final
compound 2. The chemical structure of the N-alkyl-β-enaminone-based benzo[d]imidazole scaffold 2,
eventually confirmed by X-ray single crystal analysis, is consistent with the one reported before [38–42].
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Further, the β-enaminones-based benzo[d]imidazole 1 was cyclized with the acetylacetone, and
ammonium acetate in acetic acid, and refluxed for 4–6 h to afford the substituted pyridine-β-
enaminones-based benzo[d]imidazole 3. Luckily, suitable single crystals were obtained for compounds
2 and 3, which support the 1H and 13C-NMR spectral analyses, and confirmed the chemical features of
these compounds. Finally, compound 3 was converted into substituted pyridine-β-enaminones-based
benzo[d]imidazole 4.Crystals 2020, 10, x 4 of 15 
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Scheme 1. Synthesis of β-enaminone based benzo[d]imidazole scaffolds 1, 2 and 4.

3.2. X-ray Structure

The β-enaminone 2 crystallized in the monoclinic space group P21/n with Z = 4 (Table 1). A list
of bond distances and angles are provided in Table S1 (Supplementary Materials). The asymmetric
unit comprised one perfectly planar molecule (Figure 1, upper part). Even the side chain and the
benzo[d]imidazole moiety are also coplanar with a maximum deviation of 0.335 Å of C13 from the
benzo[d]imidazole mean plane. The molecules are connected to form a three-dimensional network
by C-H . . . O and C-H . . . π interactions shown in Figure 2 (upper left part). Each two molecules are
interconnected by C12-H12 . . . O1 with a donor–acceptor distance of 3.347(3) Å, then the resulting
dimeric units are further connected by weak C-H . . . π interactions leading to the three-dimensional
packing structure shown in Figure 2 (lower left part).

The structure of 3 crystallized in the orthorhombic crystal system and space group P212121 with
Z = 4 (Table 1). List of bond distances and angles are provided in Table S2 (Supplementary Materials).
The asymmetric unit comprised one almost perfectly planar molecule (Figure 1, lower part). The
phenyl and the benzo[d]imidazole moieties are deviated only by 4.23◦. The molecules are connected
by strong N-H . . . O hydrogen bonds and weak C-H . . . O interactions shown in Figure 2 (right part).
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variations in the interaction distances as shown in Figures S9–S11 (Supplementary Materials). In 
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Figure 2. Intermolecular contacts (upper/left) and molecular packing (lower/left) of 2. H-bond:
C12-H12B: 0.98 Å, H12B· · ·O1#1: 2.39 Å, C12· · ·O1#1: 3.347(3) Å, C12-H12B· · ·O1#1: 164.4º (equivalent
position #1: 2-x,1-y,1-z). The C-H . . . π: C9 . . . H13A#2 (2.869 Å) and C8 . . . H11B#2 (2.816 Å), (equivalent
position #2: x,1+y,z). Intermolecular contacts (upper/right) and molecular packing (lower/right) of 3.
C10-H10: 0.95 Å, H10· · ·N1#1: 2.725 Å, C10· · ·N1#1: 3.370(2) Å, C10-H10· · ·N1#1: 125.78 (equivalent
position #1: -1/2+x,1.5-y,1-z). N2-H2: 0.88 Å, H2· · ·O1#2: 2.10 Å, N2· · ·O1#2: 2.916(2) Å, N2-H2· · ·O1#2:
153.9(2)º (equivalent position # 1-x,-1/2+y,1.5-z).
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Table 1. Single crystal data and structure refinement details.

Compound 2 3

CCDC code 1999582 2032100

Empirical formula C13H15N3O C15H13N3O

Formula weight 229.28 251.28

Temperature/K 104(2) 120(2)

Radiation CuKα (λ = 1.54178) CuKα (λ = 1.54178)

Crystal system monoclinic Orthorhombic

Space group P21/n P212121

a/Å 9.8953(3) 6.82950(10)

b/Å 5.7545(2) 8.00540(10)

c/Å 21.7891(7) 22.4779(2)

β/◦ 100.627(2)

Volume/Å3 1219.45(7) 1228.93(3)

Z 4 4

Crystal size/mm3 0.170 × 0.140 × 0.080 0.271 × 0.203 × 0.089

ρcalcg/cm3 1.249 1.358

µ/mm−1 0.657 0.710

F(000) 488 528

2Θ range for data collection/◦ 4.13 to 68.20 3.933 to 77.074.

Index ranges −11 ≤ h ≤ 11, −6 ≤ k ≤ 6, −25 ≤ l ≤ 26 −8 ≤ h ≤ 8, −10 ≤ k ≤ 10, −28 ≤ l ≤ 28

Reflections collected 8164 29119

Goodness-of-fit on F2 1.057 1.072

Data/restraints/parameters 2209/0/157 2597/0/178

Independent reflections 2209 [Rint = 0.0334] 2597 [Rint = 0.0313]

Final R indexes [all data] R1 = 0.0555, wR2 = 0.1352 R1 = 0.0283, wR2 = 0.0742

Final R indexes [I ≥ 2σ (I)] R1 = 0.0464, wR2 = 0.1268 R1 = 0.0288, wR2 = 0.0747

Largest diff. peak/hole/e Å−3 0.18/–0.20 0.137/–0.217

3.3. Hirshfeld Analysis

All Hirshfeld surfaces are given in Figures S7 and S8 (Supplementary Materials) while the
percentages of the important contacts in compound 2 are depicted in Figure 3. It shows the possible
contacts among molecular units and their percentage contributions. The H...H (51.3%), O...H (10.0%),
N...H (10.3%), and C...H (27.6%) are the most important. As shown in Figure 4, the O...H contacts
appeared as sharp red spots in the dnorm with intense spikes in the fingerprint plot indicating significant
and short contacts corresponding to the O1...H12B (2.294 Å) and O1...H10 (2.625 Å). The C...H contacts
manifested as fad red spots in the dnorm and relatively less intense spikes in the fingerprint, indicating
relatively weak interactions with a C8...H11B distance of 2.728 Å. The N...H contacts appeared as white
regions in the dnorm map and broad spikes in the fingerprint plot with a relatively longer N3...H11A
distance (2.692 Å) compared to the vdW radii sum of N and H atoms (2.64 Å). The common H...H
interactions are found as blue regions in the dnorm which reveal very weak interactions. It is worth to
note that the Hirshfeld calculations of the almost similar published structure (CCDC code: LILJEW;
297714) [40] returned with almost similar results with slight variations in the interaction distances as
shown in Figures S9–S11 (Supplementary Materials). In addition, the powder diffraction patterns of
both crystals are almost identical (Figure S12).
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On the other hand, compound 3 crystal packing depends on a large contribution of H...H (46.8%),
O...H (9.9%), N...H (13.0%), and C...H (21.6%) in addition to the C . . . C (6.7%) interactions (Figure 3).
Similar to compound 2, the O . . . H contacts are significant with the shortest O . . . H distance of 1.985
Å (O1 . . . H2) and the C . . . H interactions as well (Figure 5). The C7 . . . H15B (2.698 Å) and C2 . . . H3
(2.577) are the shortest C . . . H interactions. The major difference between the two compounds is the
presence of π–π interaction among the molecular units of 3. The shortest C . . . C distance is C4 . . . C8
(3.410 Å).
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3.4. DFT Studies

The calculated geometries of the studied compounds match the experimental structures very well
(Figure 6). Furthermore, the calculated bond distances and angles (Tables S3 and S4) correlated very
well with the corresponding geometric parameters obtained from the X-ray structure with correlation
coefficients of 0.9696–0.9951 and 0.9866–0.9931, respectively (Figure 7). The distribution of the natural
charges and the molecular electrostatic potential mapped over electron density are shown in Figure 8.
It is clear that the carbonyl oxygen and carbon atoms have the highest negative and positive charge
in both molecules, respectively. As a result of this charge distribution, the calculated dipole moment
values are 3.1956 and 0.3833 Debye for 2 and 3, respectively. It is possible to suggest that the low dipole
moment of 3 could be attributed to the presence of almost similar electronegative atoms at both sides
of the molecule connected by the C-C bond. Such an almost symmetrical situation could be a main
reason for the low polarity of 3. The direction of the dipole moment vector is from the dimethylamine
group towards the imidazole moiety in 2 while it is almost passing through at the middle of the C-C
bond in 3.
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3.5. Reactivity Studies

The reactivity indices based on the frontier molecular orbital energies for the studied compounds
are calculated and compared [43–49]. The highest occupied (HOMO) and lowest unoccupied molecular
orbital (LUMO) energies are calculated to be −5.7022 and −1.6409 eV, respectively, for 2, while they
are generally lower (−6.2162 and −2.4090 eV, respectively) in 3. The reason could be related to the
presence of a more conjugated system in 3 compared to 2. As a result, electron affinity (A) and
ionization potential (I) are 1.6409 and 5.7022 eV, respectively. The hardness (η = 4.0613), electrophilicity
index (ω = 1.6596 eV), and chemical potential (µ = –3.6715 eV) were also computed using the frontier
molecular orbitals energies. On the other hand, the corresponding values in 3 are 2.4090, 6.2162, 3.8072,
2.4426, and –4.3126 eV, respectively. It is clear that the intramolecular charge transfer represented by
HOMO→ LUMO excitation is easier in 3 than 2. It is clear that both MOs are delocalized over the
π-system indicating π–π* charge transfer-based transition (Figure 9). Moreover, compound 3 has a
higher electrophilicity index indicating a higher ability to gain electron than 2 which agree very well
with the low energy of LUMO in the former compared to the latter. In contrast, 2 is a better electron
donor than 3. The presented descriptors have a strong relation to the chemical reactivity of compounds.
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3.6. NMR Spectra

The chemical shifts (C.S) of 1H and 13C were computed and the results are summarized in Tables
S5–S6 (SI) in comparison with the results obtained experimentally. It is clear from Figure 10 that there
is good correlation between the calculated and experimental C.S values. The correlation coefficients
are 0.9818 for 1H-NMR and 0.9906 for 13C-NNMR in 2. Similarly, for 3, the correlation coefficients are
0.9372 and 0.9938, respectively.
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4. Conclusions

The N-alkyl-β-enaminone-based benzo[d]imidazole scaffold 2 was obtained with a 72% yield at
higher temperature (140 ◦C), but with a lower temperature of 125 ◦C, the reaction afforded 1. Further,
the cyclized pyridine-based benzo[d]imidazole and the corresponding β-enaminone were successfully
achieved. The supramolecular structures of 2 and 3 were analyzed using Hirshfeld calculations.
DFT calculations were used to compute the electronic properties of both systems. Some reactivity
descriptors were also calculated based on the energies of the frontier molecular orbitals and then
compared. Moreover, calculated NMR spectra are in good agreement with the experimental data.
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