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Abstract: The one-dimensional extended Hubbard model with lattice dimerization and alternated
site potentials is analyzed using the renormalization group method. The coupling of electrons to
structural degrees of freedom such as the anion lattice and acoustic phonons is investigated to obtain
the possible instabilities against the formation of lattice superstructures. Applications of the theory to
anionic and spin-Peierls instabilities in the Fabre and Bechgaard salts series of organic conductors
and ordered alloys are presented and discussed.
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1. Introduction

The discovery of the amazing variety of electronic and structural phases in the Bechgaard and
Fabre charge transfer salts series (TMTSF)2X and (TMTTF)2X over the last four decades or so continues
to arouse great interest in the field of organic conductors [1–13]. This research paper is devoted to
explore some theoretical aspects about the role played by lattice commensurability in the origin and
the development of these phases.

The part played by lattice commensurability was very early suspected to be among the
determinant factors behind the occurence of electronic and lattice instabilities found in the phase
diagram of these charge transfer salts. This is the case of the importance attributed to the weak but
finite dimerization of the organic stacks. It is characterized by a lattice periodicity of wave vector
4kF (kF being the Fermi wave vector along the stacks) that coincides with the one of the anion lattice
X [14,15]. This superstructure superimposes to the basic quarter-filled commensurability of the
hole band structure, which is fixed by the complete charge transfer and stoichiometry of the salts.
This introduces half-filling type of Coulomb Umklapp scattering along the organic stacks, known to
have a strong impact on low energy electron correlations in one spatial dimension (1D) [16–18].
Its magnitude was shown to be a key element in controlling the strength of magnetism and Mott
insulating behavior across the whole phase diagram of both series of materials [15,19–21].

Another source of lattice periodicity for charge carriers of organic stacks comes from degrees
of freedom associated to the anion X lattice, whose 4kF periodicity is intrinsically linked to that of
dimerization [15]. Non-centro-symmetrical anions like X = ReO−4 , ClO−4 , BF−4 , .... and to a certain
extend centrosymmetric ones like X = PF−6 , AsF−6 ... can order and form lattice superstructures also
called anion orderings (AO) [9,10,22–24]. The coupling between anion degrees of freedom and charge
carriers makes AO inevitably entangled to various electronic instabilities of organic stacks [10,25].

The interplay between superimposed lattice periodicities and electronic instabilities has been
further revealed by chemistry. A notable example that we will focus on in the present work
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combines both families of compounds in the form of the alloys [(TMTSF)1−x(TMTTF)x]2ReO4 with the
asymmetrical anion ReO−4 . Remarkably, in the case where x∼0.5, the alloy is found to be ordered [26].
The alternation of different organic molecules along the stacks then acts as a distinct site potential with
the same 4kF periodicity found for the bond centered dimerization [26–29]. Transport and structural
studies have showed that these superimposed types of commensurability have a strong impact on
both the Mott insulating state and the staggered ReO−4 AO found in the pure limits [26].

An alternating site periodicity can also be generated dynamically in pure systems of the
(TMTTF)2X salts. This occurs for the charge ordering (CO) phase transition [30–32], which introduces
a charge disproportionation in the dimerized unit cell that breaks the inversion symmetry and
gives rise to a ferroelectric state [29]. The importance of Coulomb interaction between carriers of
different molecular units in the unit cell has pointed to the key role of underlying quarter-filling
commensurability component of Umklapp scattering in the electronic origin of this phase [33–36].

The existence of a CO state in the (TMTTF)2X series has been found to interfere with the formation
of another ordered state involving both spin and lattice degrees of freedom. This the case of the
spin-Peierls (SP) instability which corresponds to a 2kF bond like tetramerization of the organic stacks
that opens a gap in the spin sector [37,38]. On experimental grounds [39], the presence of the CO state
is found to particularly weaken the strength of the SP order, an effect as we will see that results from
the interplay between different types of commensurability [35,40–43].

In the present paper we shall address theoretically the combined influence of different types of
lattice commensurability in the framework of a generalized extended Hubbard model. This will be
examined in the 1D regime that characterizes both series of materials at relatively high temperature.
The combined influence of site and bond dimerization lattice potentials together with the respective
modulation of Coulomb interaction terms are considered. Their impact on excitation gaps and singular
correlations of the phase diagram is analyzed using a two-loop renormalization group (RG) method in
the electron gas limit. The 2kF bond and site density-wave correlations with their phase relation to the
underlying alternated lattice are determined. The model is integrated to the one proposed by Riera and
Poilblanc for the mechanism of anion ordering in the (TMTSF)2X and (TMTTF)2X salts. The coupling
of anions displacement to charge carriers in systems like the alloys [(TMTSF)1−x(TMTTF)x]2ReO4

is derived and the reduction (magnification) of the staggered anion ordering (Mott temperature
scale) is obtained and shown to compare favorably with previous experiments performed on these
materials [26]. Finally, the model is also applied to the influence of CO state on the pressure profile of
the spin-Peierls instability occurring in (TMTTF)2X with centrosymmetric anions. By modeling CO in
terms of a site lattice potential, it is found that lattice coupling responsible for the SP tetramerization is
strongly altered by the presence of CO which mainly governs the variation of the temperature scale of
the SP instability observed under pressure.

2. Alternating Extended Hubbard Model

The Model and Its Continuum Limit

We consider a 1D model of interacting electrons on a bipartite lattice. The Hamiltonian
H = H0 + HI consists of the one-body term

H0 = −∑
r,σ

[
(t + δt)a†

r,σbr,σ + (t− δt)a†
r,σbr−1,σ + H.c.

]
+ ε0 ∑

r,σ
(mr,σ − nr,σ) (1)
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and the interaction term,

HI =
1
2 ∑

r,σ

[
(U + δU)mr,σmr,−σ + (U − δU)nr,σnr,−σ

]
+ ∑

r,σ1,2

(V + δV)mr,σ1 nr,σ2 + (V − δV)mr,σ1 nr−1,σ2 . (2)

Here, a(†)rσ and b(†)rσ are the annihilation (creation) operators of electrons of spin σ at even and
odd sites of a bipartite lattice; mrσ = a†

rσarσ and nrσ = b†
rσbrσ stand for the number operators on the

corresponding sites. At quarter-filling, we have 〈mrσ〉 = 〈nrσ〉 = 1
2 . The standard extended Hubbard

part of H is described by the hopping integral t, and the intra- and inter-site interaction terms U and
V. The model includes the influence of two different alternating potentials. We have first a small
lattice dimerization which modulates the hopping integral by δt [14,15] and the nearest-neighbor
interaction V by a corresponding positive δV, whether the electrons interact on shorter or longer bonds
as expected from quantum chemistry calculations on dimerized chains materials like the Fabre and the
Bechgaard salts [44]. The second potential to be examined is an alternating site potential of amplitude
ε0 [27]. The latter can be found in practice in quasi-1D organic ordered alloys in which the molecular
species alternates from site to site [26], or as a result of charge ordering which in systems like the
Fabre salts introduces a charge disproportionation modulated along the stacks [31,32]. Besides the
modulation of site energy, a molecular alternation is expected to modify Coulomb integral U from
site to site, which is taken into account by adding (substracting) a negative δU when the site energy is
increased (reduced) by ε0 (see Figure 1).

´ ´ ´ ´

´ ´ ´ ´

t + δt

t− δt

ǫ0

−ǫ0

U + δU

U − δU

V − δV

V + δV

Figure 1. One dimensional alternating extended Hubbard model. The small and big full circles
depict higher and lower potential energies, and crosses refer to the positions of anions in systems like
(TMTSF)2X, (TMTTF)2X and their alloys.

Using the Fourier transforms of each sublattice operator,

ar,σ =

√
2
N ∑

k
akσeikr, (3)

br,σ =

√
2
N ∑

k
bkσeikr, (4)

the one-body part of the Hamiltonian is diagonalized in the form

H0 = −∑
k,σ

Ekd†
k,σdk,σ + ∑

k,σ
Ek f †

k,σ fk,σ, (5)

which is written in terms of the new operators d(†)k,σ and f (†)k,σ for the lower and upper bands following
the transformations

a†
k,σ = e−i( k

4−
νk
2 )
(

sin
γk
2

d†
k,σ + cos

γk
2

f †
k,σ

)
, (6)

b†
k,σ = ei( k

4−
νk
2 )
(

cos
γk
2

d†
k,σ − sin

γk
2

f †
k,σ

)
, (7)
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where the phase factors obey the relations

ε0 = Ek cos γk, (8)

2t cos
k
2
= Ek sin γk cos νk, (9)

2δt sin
k
2
= Ek sin γk sin νk. (10)

The amplitude of the spectrum for each band is given by

Ek = 2

√
t2 cos2 k

2
+ δt2 sin2 k

2
+
( ε0

2

)2
. (11)

At quarter filling the lower band is occupied up to the Fermi points ±kF = ±π/2, corresponding
to the Fermi level −EkF ≡ −EF where

EF =
√

2t2 + 2δt2 + ε2
0, (12)

is the Fermi energy. The lower and upper bands in Figure 2 are separated by a gap ∆ = 2Eπ =

2
√

4δt2 + ε2
0.

E

↔Δ

F

−π π−kF +kF0

Figure 2. Electron spectrum of the one-dimensional extended alternated Hubbard model.

For the interacting part of the Hamiltonian, we shall focus on the weak coupling case by
considering only low energy scattering processes taking place within the lower ‘d’ band (perturbative
corrections coming from the upper f band at higher energy have been considered by Penc and
Mila [27]). This yields

HI =
1

2N ∑
{k,σ}

g(k1, k2, k3, k4)δk4+k3,k1+k2+G

× d†
k4,σ4

d†
k3,σ3

dk2,σ2 dk1,σ1 + . . . . (13)

where G = 0 (G = ±2π) stands for normal (Umklapp) scattering processes. The interaction
amplitude reads

g(k1, k2, k3, k4) = (U + δU)ei(2ν[3]− G
4 )

4

∏
i=1

sin
γki

2

+ (U − δU)e−i(2ν[3]− G
4 )

4

∏
i=1

cos
γki

2
(14)

+ (2V cos
k4 − k1

2
− 2iδV sin

k4 − k1
2

)ei( G
4 +2ν[1]) sin

γk4

2
cos

γk3

2
cos

γk2

2
sin

γk1

2
+ (2V cos

k4 − k1
2

+ 2iδV sin
k4 − k1

2
)e−i( G

4 +2ν[1]) cos
γk4

2
sin

γk3

2
sin

γk2

2
cos

γk1

2
,
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where

ν[1,3] =
νk4 ∓ νk3 ± νk2 − νk1

4
. (15)

In weak coupling, the lattice model can be transposed into the continuum limit of the electron gas
model. This standard procedure first consists in the linearization of the spectrum around the Fermi
points pkF = ±kF,

EF − Ek ≈ Ep(k) = vF(pk− kF), (16)

where

vF =
t2 − δt2√

2t2 + 2δt2 + ε2
0

, (17)

is the Fermi velocity (h̄ = 1 throughout). The operators for left and right moving electrons become
d±,k,σ (d†

±,k,σ). The linearized spectrum is limited by an energy cut-off E0/2 = EF on either side of the
Fermi level, where E0 is the total width of the lower band. The interaction is defined with respect to
the Fermi points giving rise to four possible coupling constants, commonly noted as gi=1−4 [16,17,45].
Together with the one-electron part, this leads to the usual form for the Hamiltonian of the electron gas
model. For the lower band, one gets

H = ∑
k,p,σ

Ep(k)d†
p,kσdp,kσ +

1
N ∑
{k,q,σ}

g1 d†
+,k1+q,σ1

d†
−,k2−q,σ2

d+,k2,σ2 d−,k1,σ1

+ g2 d†
+,k1+q,σ1

d†
−,k2−q,σ2

d−,k2,σ2 d+,k1,σ1

+
1
2
(g+3 d†

+,k1+q,σ1
d†
+,k2−q+G,σ2

d−,k2,σ2 d−,k1,σ1 + H.c.)

+
1
2

g4 d†
+,k1+q,σ1

d†
+,k2−q,σ2

d+,k2,σ2 d+,k1,σ1

+
1
2

g4 d†
−,k1+q,σ1

d†
−,k2−q,σ2

d−,k2,σ2 d−,k1,σ1 , (18)

where the scattering amplitudes in the standard terminology [16,17], are g1 ≡ g(+kF,−kF,+kF,−kF),
g2 ≡ g(+kF,−kF,−kF,+kF), g±3 ≡ g(±kF,±kF,∓kF,∓kF) and g4 ≡ g(±kF,±kF,±kF,±kF), which in
order stand for backward, forward, half-filling Umklapp, and inner branch forward scattering
processes. According to the expression (14) for the lattice model, the bare gi amplitudes are given by

g1 = U(1 + ε2
0/E2

F)− 2δUε0/EF + 4tδVδt/E2
F (19)

g2 = U(1 + ε2
0/E2

F)− 2δUε0/EF + 2V(1− ε2
0/E2

F) (20)

gp
3 = [U(1 + ε2

0/E2
F)− 2δUε0/EF]

2tδt
t2 + δt2

+ 2δV(1− ε2
0/E2

F)

+ ip[2Uε0/EF − δU(1 + ε2
0/E2

F)]
t2 − δt2

t2 + δt2

≡ |g3|eipθ (21)

g4 = g2. (22)

From these expressions, we first observe that alongside the bond alternation of hopping
δt and the modulation of on-site energy ε0, both local (δU < 0) and intersite (δV > 0)
modulations of interactions contribute to an increase of backscattering and half-filling Umklapp.
Furthermore, the local components of the modulation contribute to an imaginary part of gp

3 = |g3|eipθ ,
Ref. [28] whose argument θ plays an important role for the relative phase of charge/spin density-wave
correlations with respect to the lattice. This will be analyzed in Section 3.2.
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3. Renormalization Group Results

3.1. Formulation and Coupling Constants

We apply the renormalization group approach to our effective electron gas model described
above. In the following, we sketch out only the main steps of the procedure that will be useful later
on for applications [17,46,47]. We follow Ref. [46] and write the partition function in the functional
integral form,

Z =
∫∫

Dψ∗Dψ eS[ψ∗ ,ψ], (23)

over a set anticommuting fermion variables {ψ∗, ψ}, where the measure is

Dψ∗Dψ = ∏
k̄,p,σ

dψ∗p,σ(k̄)dψp,σ(k̄),

and k̄ =
(
k, ωn = (2n + 1)πT

)
(kB = 1 throughout). The action S = S0 + SI splits into

a free-quadratic-(S0) and an interacting-quartic-(SI) parts,

S[ψ∗, ψ] = ∑
k̄,p,σ

z−1[G0
p(k̄)]

−1ψ∗p,σ(k̄)ψp,σ(k̄)

− T
N ∑

k̄1,k̄′1,k̄2,k̄′2

∑
σ,σ′

δk̄1+k̄2,k̄′1+k̄′2(±Ḡ)

×
{

z1g1ψ∗+,σ(k̄
′
1)ψ
∗
−,σ′(k̄

′
2)ψ+,σ′(k̄2)ψ−,σ(k̄1)

+ z2g2ψ∗+,σ(k̄
′
1)ψ
∗
−,σ′(k̄

′
2)ψ−,σ′(k̄2)ψ+,σ(k̄1)

+
1
2

z3[g+3 ψ∗+,σ(k̄
′
1)ψ
∗
+,σ′(k̄

′
2)ψ−,σ′(k̄2)ψ−,σ(k̄1) + “c.c.”]

+
1
2

g4ψ∗+,σ(k̄
′
1)ψ
∗
+,σ′(k̄

′
2)ψ+,σ′(k̄2)ψ+,σ(k̄1)

+
1
2

g4ψ∗−,σ(k̄
′
1)ψ
∗
−,σ′(k̄

′
2)ψ−,σ′(k̄2)ψ−,σ(k̄1)

}
, (24)

where z and z1,2,3 are in order the renormalization factors for the one-particle propagator

G0
p(k̄) = [iωn − Ep(k)]−1 (25)

and the four-points electron-electron vertices Γ1,2,3. The zi are combined to z to give the renormalization
factors z2zi for each coupling gi=1,2,3. At the bare level, the couplings gi are defined at the band edge
energy cutoff Λ0(≡ EF) above and below the Fermi level where both z and the zi’s equal unity.

The RG transformation is standard and consists in the succesive integrations of electronic degrees
of freedom, denoted by ψ̄(∗), in outer energy shell of thickness Λ(`)d` on both sides of the Femi level
of the lower band, where Λ(`) = Λ0e−` is the cutoff at the step ` of the RG procedure. The integration
of degrees of freedom from step ` to `+ d` is achieved perturbatively. This recursive transformation
can be written in the form

Z ∼
∫∫

[Dψ∗Dψ]`+d` eS[ψ∗ ,ψ]`
∫∫

[Dψ̄∗Dψ̄]d` eS0[ψ̄
∗ ,ψ̄]d`

× eSI [ψ
∗ ,ψ,ψ̄∗ ,ψ̄]d`

∼
∫∫

[Dψ∗Dψ]`+d`eS[ψ∗ ,ψ]` e∑n
1
n! 〈Sn

I [ψ
∗ ,ψ,ψ̄∗ ,ψ̄]d`〉0,d`

∝
∫∫

[Dψ∗Dψ]`+d`eS[ψ∗ ,ψ]`+d` , (26)
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where 〈Sn
I 〉0,d` are outer shell free (loop) averages with external fermion legs in the inner energy

shells at Λ ≤ Λ(`+ d`). The effective-renormalized-action S[ψ∗, ψ]`+d` at `+ d` leads to the recursion
transformation for the z′s.

Thus for the one-particle propagator, z(`+ d`) = z(`)z(d`), which leads to the familiar result at
the two-loop level [17,46,47],

d ln z
d`

= − 1
16

(πvF)
−2[(2g2 − g1)

2 + 3g2
1 + 2g+3 g−3 ], (27)

which is independent of the phase of the Umklapp term. The recursion relations
gi(`+ d`) = zi(d`)z2(d`)gi(`) for the coupling constants lead to the two-loop flow equations

d
d`

ḡ1 = −ḡ2
1 −

1
2

ḡ3
1, (28)

d
d`

(2ḡ2 − ḡ1) = ḡ+3 ḡ−3 −
1
2

ḡ+3 ḡ−3 (2ḡ2 − ḡ1), (29)

d
d`

ḡp
3 = ḡp

3 (2ḡ2 − ḡ1)

− 1
4

ḡp
3 [(2ḡ2 − ḡ1)

2 + ḡ+3 ḡ−3 ], (30)

dθ

d`
= 0. (31)

The first equation for ḡ1 is connected to spin degrees of freedom and is decoupled from
(2ḡ2 − ḡ1, ḡp

3 ), which is connected to the charge. These extend the known flow equations of the
electron gas model [17,46,47] to the case of a complex gp

3 . Note that only the amplitude of Umklapp
|g3| renormalizes, whereas its phase θ remains scale invariant [Im(d` ln gp

3 ) = 0] and is then fixed at the
bare level by the expression (21). The renormalization of g4 is here neglected. However the influence
of this coupling has been incorporated through the normalization ḡ1 = g1/πvσ and (2ḡ2 − ḡ1, ḡp

3 )

= (2g2 − g1, gp
3 )/πvρ for the decoupled spin (σ) and charge (ρ) interactions, respectively [17],

where vσ,ρ = vF ∓ g4/2π are the spin and charge velocities.
The properties of the above flow equations are standard [17,47] and can be summarized as follows.

In the spin sector for instance, the negative (positive) sign of g1 determines the conditions for the flow
to strong (weak) attractive coupling, ḡ∗1 → −2 (ḡ∗1 → 0), as `→ ∞. In the attractive case, this indicates
the emergence of a spin gap ∆σ, whose scale is of the order of the cutoff energy 2Λ(`σ) at which the
flow of ḡ1 in (28) becomes singular at the one-loop O(ḡ2

1) level, namely ∆σ ∼ 2EFe−1/|ḡ1|.
If we now consider the charge sector, the magnitude of 2ḡ2 − ḡ1 with respect to |ḡ3| at

the bare level determines the conditions for strong coupling or a charge gap ∆ρ. Thus for
ḡ1 − 2ḡ2 ≥ |ḡ3|, charge degrees of freedom remain gapless since |ḡ∗3 | → 0 and ḡ∗1 − 2ḡ∗2 is
non universal as ` → ∞. In the whole region where ḡ1 − 2ḡ2 < |ḡ3|, both 2ḡ∗2 − ḡ∗1 → 2
and |ḡ∗3 | → 2 are marginally relevant and scale to strong coupling when ` → ∞. An order
of magnitude for the charge gap ∆ρ can be readily given by the singularities encountered at
a finite `ρ in (29) and (30) at the one-loop, O(ḡ2), level [16]. For −|ḡ3| < ḡ1 − 2ḡ2 < |ḡ3|,
one has ∆ρ ∼ 2Λ(`ρ) = 2EF exp[−c/

√
|ḡ3|2 − (2ḡ2 − ḡ1)2], where c = arccos[(2ḡ2 − ḡ1)/|ḡ3|];

for ḡ1 − 2ḡ2 = −|ḡ3|, ∆ρ = 2EF exp[−(1/|ḡ3|)]; and finally for ḡ1 − 2ḡ2 < −|ḡ3|, one has
∆ρ = 2EF exp[−c′/

√
(2ḡ2 − ḡ1)2 − |ḡ3|2], where c′ = cosh−1[(2ḡ2 − ḡ1)/|ḡ3|].

We display in Figure 3 the contour plot of the scale for the charge gap e−`ρ = ∆ρ/2EF at the
one-loop level in the (ε0, δt) plane of alternating potentials and for repulsive (U, V) interactions and
smaller modulations (δU, δV). In the first quadrant where both δt and ε0 are positive, the variation
of ∆ρ is not monotonous; it first increases with δt and ε0 and then undergoes a smooth decreases.
According to (21), both the real and imaginary parts of Umklapp increase at relatively small δt and ε0;
this is responsible for the increase of ∆ρ. At sufficiently large δt, however, a reduction of the imaginary
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part of gp
3 becomes apparent and leads to the decrease of ∆ρ. A similar variation of charge gap has

been obtained in the bosonization approach to the alternating Hubbard model with positive U [28].
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ǫ0
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δt
t

Figure 3. Contour plot of the normalized one-loop charge gap ∆ρ/2EF(≡ e−`ρ ) as a function of the
alternating site (ε0) and bond (δt) potentials. The calculations are done for repulsive interactions
U/t = V/t = 0.5 and δU/t = δV/t = 0.1.

Interestingly, if we broaden the analysis situation where positive δU > 0 and δV > 0 are
considered, the competition between a positive ε0 and negative δt can bring both the real and imaginary
parts of gp

3 and in turn ∆ρ to zero, as shown in the second quadrant of Figure 3. Around this point,
the behavior of Equations (29) and (30), as `→ `ρ at the one-loop level shows that the gap vanishes
following the power law ∆ρ/2EF ∼ [ 1

2 |ḡ3|/(2ḡ2 − ḡ1)]
1/(2ḡ2−ḡ1).

3.2. Response Functions and Phase Diagram

In order to analyze the nature of correlations and the possible phases of the above model,
we proceed to the calculation of susceptibilities. To do so, we follow Ref. [46] and add to the action
a linear coupling to a set of infinitesimal source fields {h} to fermion pair fields. These are associated
to susceptibilities that can become singular in the 2kF density-wave and superconducting channels.
As infinitesimal terms, they can be combined at the bare level to the interaction term SI and treated as
a perturbation. The action becomes

S[ψ∗, ψ, {h}] = S0[ψ
∗, ψ] + SI [ψ

∗, ψ] + Sh[ψ
∗, ψ, {h}], (32)

where

Sh[ψ
∗, ψ, {h}] = ∑̄

q

[
∑
µ

zs
µhs∗

µ (q̄)∆µ(q̄)

+ ∑
µ=±

zc
θµ

hc∗
µ (q̄)Oθµ

(q̄)

+ ∑
µ=±

zσ
θµ
~hσ∗

µ (q̄) · ~Sθµ
(q̄) + “c.c.”

]
. (33)

In the superconducting channel, the pair fields are

∆µ(q̄) =

√
T
N ∑

k̄,α,β

αψ−,−α(−k̄)σαβ
µ ψ+,β(k̄ + q̄) (34)

for µ = 0 singlet (SS) and µ = 1, 2, 3 triplet (TS) superconductivity. Here σ0 = 1, σ1,2,3 are the Pauli
matrices, and q̄ = (q, ωm = 2πmT). The initial pair renormalization factors at ` = 0 are zs

µ = 1.
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In the 2kF density-wave channel, the presence of a complex Umklapp interaction term gp
3

in (21), which can be written as g±3 = ±|g3|eiθ± , where θ+ = θ and θ− = θ − π, introduces spin
and charge density-wave correlations with a particular phase relation with respect to the lattice.
For 2kF charge-density-wave (CDW), the pair field can be written in terms of two independent
stationary waves,

Oθ±(q̄) = eiθ±O∗(q̄) + O(q̄), (35)

where

O(q̄) =

√
T
N ∑̄

k,α

ψ∗−,α(k̄− q̄)ψ+,α(k̄)

for q̄ = (q, ωm). The phase relation of CDWθ± maxima and minima with respect to the lattice is shown
in Figure 4 at q = 2kF. In the absence of ε0 and δU, for instance, the imaginary part of gp

3 vanishes and
θ− = π and CDWθ− correlations are centered on bonds between dimers, whereas θ+ = 0 refers to
CDWθ+ whose maxima are centered on dimers. In the presence of a finite site potential ε0 and/or δU,
the inversion symmetry within the dimers is broken and the position of maxima for CDWθ± move
accordingly (see Figure 4).

´ ´ ´ ´ ´

´ ´ ´ ´ ´

2Π

Θ+
0

CDWθ+

´ ´ ´ ´ ´

´ ´ ´ ´ ´

2Π

Θ-
0

CDWθ−

Figure 4. Site (+) and bond (−) 2kF charge-density-wave and their respective phase (θ±) relative to
the alternated lattice.

A similar decomposition can be made for 2kF spin-density-wave (SDWθ± ) by introducing

~Sθ±(q̄) = eiθ±~S∗(q̄) + ~S(q̄) (36)

for SDWθ± , where

~S(q̄) =

√
T
N ∑

k̄,α,β

ψ∗−,α(k̄− q̄)~σαβψ+,α(k̄) (37)

is the spin field at q̄ = (q, ωm). When ε0 and δU are absent, gp
3 is real and θ± = 0(π), so that ~Sθ±

describe 2kF SDW with spin maxima centered on (between) the dimers, as shown in Figure 5. In the
same Figure, for finite and positive ε0 and/or δU, θ± moves away from 0(π) alongside the maxima of
spin density that move in (between) the unit cell.
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´ ´ ´ ´ ´

´ ´ ´ ´ ´

2Π

Θ+
0

SDWθ+

´ ´ ´ ´ ´

´ ´ ´ ´ ´

2Π

Θ-
0

SDWθ−

Figure 5. Site (+) and bond (−) 2kF spin-density-wave and their respective phase (θ±) relative to the
alternated lattice.

Making the substitution SI → SI + Sh in the RG transformation (26), the renormalized action at
Λ(`) reads

S[ψ∗, ψ, {h}]` = S0[ψ
∗, ψ]` + SI [ψ

∗, ψ]` + Sh[ψ
∗, ψ, {h}]`

+ ∑
µ,r

χr
µ(q̄µ, `)hr∗

µ (q̄µ)hr
µ(q̄µ) + . . . .

(38)

Here, the flows of renormalization factors in S0 and SI coincide with those obtained previously
in (27)–(30), whereas the zr

µ’s associated to the pair vertices in (33) are governed at the two-loop level
by an equation of the form [17,46,47]

d ln zr
µ

d`
=

1
2πvF

gr
µ −

1
4π2v2

F
[g2

1 + g2
2 − g1g2 + g+3 g−3 /2], (39)

where for superconducting correlations (r = s) the combinations of couplings gr
µ are gs

SS = −g1 − g2

and gs
TS = g1 − g2 for singlet and triplet superconductivity; for density-wave correlations, one has

gc
θ± = g2 − 2g1 ∓ |g3| for CDWθ± in the charge sector (r = c); and gσ

θ± = g2 ± |g3| for SDWθ± in the
spin sector (r = σ). The second term of (39), which is common to all pair vertices, refers to the
self-energy corrections of Equation (27). According to (39), the behavior of zr

µ is well known and
follows the power law

zr
µ ∼ [Λ(`)]−

1
2 γr∗

µ , (40)

at large `. It signals a singularity when the exponent γr∗
µ > 0. The expression for 1

2 γr∗
µ coincides with

the right side expression of (39) evaluated at the fixed points values of scaling Equations (28)–(30).
A singular behavior will also be found in the corresponding expressions for susceptibilities, which are
given by the quadratic field terms of (38). These are generated by the RG transformation (26) and take
the form,

χr
µ(q̄µ) = (πvF)

−1
∫ `

0
[zr

µ(`)]
2d`, (41)
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which are defined positive and evaluated in the static limit q̄µ = (qµ, 0), for qSS,TS = 0 and
qCDW,SDW = 2kF. At large `, the susceptibilities will be governed by a power law

πvFχr
µ(q̄µ) ≈ Ar

µ(`)[Λ(`)]−γr∗
µ + cr

µ. (42)

where cr
µ is a positive constant.

The phase diagram determined by the dominant and subdominant singularities in the
susceptibilities χr

µ is shown in Figure 6, as a function of initial gi. Its structure necessarily presents
many similarities with the known two-loop RG results of the electron gas model [17,47], but also
some differences due to the presence of a complex gp

3 . In Figure 6 the massive (∆ρ 6= 0) charge sector,
delimited by the separatrix g1 − 2g2 = |g3|, is enlarged with δt, ε0, δV and negative δU, which is
detrimental to the region of singular superconducting correlations on the left of this line. At g1 > 0,
this is also concomitant with the strengthening of dominant dimer or site like SDWθ+ , and subdominant
interdimer or bond like CDWθ− singular correlations. In the attractive region where g1 < 0, only the
reinforcement of CDWθ− singular correlations is found on the right-hand side of the separatrix,
where a gap in both spin and charge degrees of freedom occurs.

SDW
CDW

θ+
θ_

TS
SS

g
1

g
20

SS
CDWθ±

CDWθ_

Δρ

Δρ,σΔσ

g - 2g  = |g  |  
2 31

Figure 6. Phase diagram of the 1D alternated extended Hubbard model in the continuum electron
gas limit.

4. Applications

4.1. Anion Ordering in [(TMTSF)1−xTMTTFx]ReO4

As a first application of the above model, we analyze the role of CDW correlations in
the mechanism of anion ordering (AO) in the concrete case of the ReO4 sulfur-selenide alloys
[(TMTSF)1−xTMTTFx]ReO4.

4.1.1. Experimental Features

In both (TMTTF)2X and (TMTSF)2X series of hole 1/4-filled and dimerized compounds, with non
centrosymmetric anions like X = ReO4, NO3, BF4 . . . , the possibility arises for the anion lattice to
form superstructures below the ordering temperature T0

qA
[22,23]. These superstructures superimpose

displacement and orientation of the anions [10]. In the high-1D-temperature domain, the most frequent
staggered anion ordering wave vectors are qA1 = ( 1

2 , 1
2 ) and qA2 = ( 1

2 , 0), expressed in units of the
reciprocal lattice vector (a∗, b∗) in the ab plane of the materials (here the longitudinal part 1

2 a∗ = 2kF).
In the case of the Bechgaard salt (TMTSF)2ReO4, for instance, ( 1

2 , 1
2 ) AO takes place at

T0
1
2 , 1

2
' 177 K [22], which also coincides with a metal-insulator transition [48]. A similar AO

superstructure is found for the Fabre salt (TMTTF)2ReO4 at T0
1
2 , 1

2
' 154 K, a slightly lower temperature

that falls within the Mott insulating state found below Tρ ' 230 K [30,49].
An interesting situation is found for the alloys [(TMTSF)1−x(TMTTF)x]2ReO4 in solid solution [26].

At x = 0.55, the salt is ordered with TMTSF and TMTTF molecules alternating along the stacking a axis.
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Remarkably, the AO transition temperature drops and reaches the minimum, T0
1
2 , 1

2
' 82 K, a value

significantly lower than the pure limits at x = 0 and x = 1, as shown in Figure 7 [26]. By contrast,
the Mott scale reaches instead a maximum at Tρ > 325 K in the x = 0.55 alloy [26], a value significantly
higher than the two pure limits. It is worthwhile to note that the variation of AO temperature in the
alloys differs from the one found in the hybrid salt (TMDTDSF)2ReO4, in which each organic molecule
is composed of two sulfur and two selenium atoms [50–52]. For the latter, T0

1
2 , 1

2
' 165 K, an ordering

temperature which for this salt essentially falls on the midpoint between the two limits. As to the Mott
scale Tρ ' 210 K, it lies below the one found in the pure sulfur limit (x = 1).

Figure 7. Anion ordering critical temperature for the ReO4 salt in different families of organic
conductors and their alloys. After Ilakovac et al. [26] and references there cited.

4.1.2. Electron–Anion Interaction

To examine the interplay between electronic and translational anionic degrees of freedom, we add
an electron–anion interaction HA to the purely electron part (18). Following Riera and Poilblanc [25],
this interaction can be written in the form

Ha =
1
2 ∑

r,j
Kaδ2

r,j + ∑
r,j,σ

[
(δr,j − λδr,j−1)mr,σ

+(λδr,j − δr,j−1)nr,σ
]
, (43)

where the electron charge on even and odd sites in the dimer at r and chain j is coupled to the anionic
displacement δr,j, as shown in Figure 8. The constant λ takes into account the two inequivalent distances
between the anions and the molecular sites in the strength of the coupling strength (0 ≤ λ ≤ 1).
Here the anion displacements are treated in the classical harmonic approximation for which the
spring constant Ka has been rescaled Ka/g2 → Ka in order to incorporate the anion-electron coupling
strength g. By using the transformations (6) and (7), the expression of Ha for the lower band electrons,
when coupled to the relevant anionic distortions δ 1

2 ,q⊥
in Fourier space, is given by

Ha =
1
2 ∑

q⊥
Ka δ2

1
2 ,q⊥

+
1√
N

∑
p,k,q⊥ ,σ

ξ
p
q⊥δ 1

2 ,q⊥
d†

p,k,σd−p,k−2pkF ,σ. (44)
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The form factors for the electron–anion interaction read

ξ
p
0 = (λ− 1)

(t + δt)ε0/EF + ip(t− δt)√
2t2 + 2δt2

, (45)

and

ξ
p
1
2
= (λ + 1)

(t + δt) + ip(t− δt)ε0/EF√
2t2 + 2δt2

, (46)

for the ( 1
2 , 0) and ( 1

2 , 1
2 ) anion orderings. One observes that due to the parity of the electron–anion

coupling and the site potential, both factors have a real and an imaginary parts. This will then introduce
a phase dependent coupling to CDW.

x

x

x

x

x

x

x

x
↑

↓↓

↑

↓

(↑)

(↓)

↑

↓

(↑)↑

(↓)

−λδr,j
−δr,j

δr,j λδr,j

−λδr,j−1
−δr,j−1

Figure 8. Electron–anion (×) interaction of the Riera-Poilblanc model [25] in systems like (TMTSF)2X,
(TMTTF)2X and their alloys. The arrows depict anion displacements for the ( 1

2 , 1
2 ) [(

1
2 , 0)] ordering.

When the anionic part of the Hamiltonian is incorporated into the action S, it becomes

S = S0 + SI −
β

2 ∑
q⊥

Ka δ2
1
2 ,q⊥

+ Sea. (47)

The electron–anion coupling can be recast in the form

Sea = −
√

β ∑
q⊥

δ 1
2 ,q⊥

e−i θ+
2

{
zc

θ+
Oθ+Re

[
ξ+q⊥ e−i θ+

2
]

+ izc
θ−Oθ−Re

[
ξ+q⊥ e−i θ−

2
]}

(48)

where the renormalization factors zθ± = 1 at ` = 0.
Therefore in the presence of a site potential ε0, which breaks the inversion symmetry within the

dimer, the anion order parameter δ 1
2 ,q⊥

is coupled to the two independent CDWθ± of the electron gas,
as shown in Figure 4. However, there is a definite form factor for each CDW which in the end plays
an important role in the type of AO stabilized. This is examined next.

4.1.3. Anion Ordering

The linear coupling (48) between the anion order parameter and the CDWθ± composite field is
similar to the one encountered in Section 3.2 for the coupling of electrons to external source fields in
calculation of susceptibilities χµ. This can be exploited to generate a Landau free energy expansion
of the anion order parameter. Thus considering Sea as a weak perturbation besides SI , the successive
partial integrations of electron degrees of freedom by the RG yield the effective action at the scale Λ(`):

S[ψ∗, ψ]` = S0[ψ
∗, ψ]` + SI [ψ

∗, ψ]` + Sea[ψ
∗, ψ]`

− βF[δ]`. (49)
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This procedure then generates the Landau free energy F[δ]` of the anionic order parameter. Up to
the quadratic level it takes the form

F[δ]` = ∑
q⊥

[
Ka/2− χ 1

2 ,q⊥
(`)
]
δ2

1
2 ,q⊥

+O(δ4), (50)

where
χ 1

2 ,q⊥
(`) = ∑

µ=±
Re
[
ξ+q⊥ e−i

θµ
2
]
χc

θµ
(`) (51)

is the effective susceptibility involved in the AO at ( 1
2 , q⊥). Relating the loop variable ` = ln EF/T to

temperature, the zero of the quadratic coefficient leads to the following condition for the AO critical
temperature T0

1
2 ,q⊥

,

Ka

2
= χ 1

2 ,q⊥
(T0

1
2 ,q⊥

). (52)

The strongest anion susceptibility will lead to the highest T0
1
2 ,q⊥

. For repulsive interactions

U = 2V > 0 and non zero Ka, the regions of stability of both ( 1
2 , 1

2 ) and ( 1
2 , 0) AO in the (δt, ε0) plane

are shown in Figure 9 for different values of λ.

0.1
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0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

(1

2
_ 1

2
_, ) (1

2
_ , )0

λ =

0.9

ǫ0

t

δt
t

Figure 9. Iso−λ phase boundaries between ( 1
2 , 1

2 ) and ( 1
2 , 0) anion orderings, as a function of the

normalized site potential and dimerization.

It is useful to first consider limiting cases for the asymmetry parameter λ related to the position
of the anions in the unit cell. Thus for λ → 1, each anion is aligned with the center of a dimer and
ξ+0 → 0, so that only the ( 1

2 , 1
2 ) ordering is stabilized through a coupling to both CDWθ± . Interestingly,

the most important coupling is to the CDWθ+ correlations which according to Figure 6 are not singular,
at variance with CDWθ− . This indicates that the driving force of the ( 1

2 , 1
2 ) AO is not the result of a 2kF

instability of the electron gas, as it is for the ordinary Peierls mechanism.
In the opposite decentered limit, where λ → 0, both anion couplings are finite. At δt = 0,

they becomes equal in amplitude and couple identically to both CDWθ± . The phase boundary then
merges with the ε0 axis at δt = 0, where θ+ = π/2 and θ− = −π/2 (or 3π/2) and anions are coupled
to completely site centered CDW (see Figure 4). It follows that for such a λ, the ( 1

2 , 0) phase is stable
over the whole (δt > 0, ε0) plane. In this case, the singular CDWθ− correlations are the main driving
force of AO.

When λ grows from zero in Figure 9, the region of stability of ( 1
2 , 1

2 ) phase starts to increase
against that of ( 1

2 , 0). According to (45) and (46), this is the consequence of a reinforcement (weakening)
of the effective anion coupling Re [ξ+1

2
e−iθ±/2] (Re [ξ+0 e−iθ±/2]) to the CDWθ± . For the whole range of λ,
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the ( 1
2 , 1

2 ) AO is essentially due to the coupling to the non singular CDWθ+ , whereas the ( 1
2 , 0) AO is

mainly coupled to the singular CDWθ− .

4.1.4. Theory and Experiment

One can proceed to the application of the above model to the variation of anion ordering T1
2 , 1

2
and

Mott insulating scale Tρ in the alloys [(TMTTF)1−xTMTSFx]ReO4. First, we fix the various parameters
of the model. The average longitudinal hopping t of the model can be set from the results of band
calculations [53,54], t = [364(1− x) + 200x] meV, interpolating between the pure Fabre (x = 1) and
the Bechgaard (x = 0) limits. From these results, one can also determine the modulation of the
hopping, δt = [26(1 − x) + 14.5x] meV. From photoemission experiments [55], the difference in
ionization energy between the TMTSF and TMTTF organic molecules leads to a site modulation
energy of ε0 ' 200 meV, in order to use ε0(x) = 4x(1− x)200 meV, as the effective alternating site
potential as a function of x (this amplitude for the site potential ε0 does not include the contribution
coming from charge ordering, which is observed in (TMTTF)2ReO4 at x = 1 [30,49] and should be
present at finite x. Although this contribution is not known in the alloy, its input in the calculations
would further suppress anion ordering transition in Figure 10). Regarding interactions, we shall take
U = [200(1− x) + 268x] meV giving a stronger (weaker) site repulsive in the Fabre (Bechgaard) case.
According to quantum chemistry calculations [44], the value of the nearest-neighbor interaction can be
fixed at V = U/2 for all x. Finally, we shall link the small modulations of interactions, δU = − ε0

EF
U
3

and δV = tδt
E2

F

U
3 , to those of ε0, U and δt. In this way for instance, the values U ± δU and V ± δV at

x = 0.5 corresponds to the interaction values in the Bechgaard (+) and Fabre (−) cases.

0.0 0.2 0.4 0.6 0.8 1.0

100

200

300

400

500

T[K]

Tρ

T0
1
2 , 1

2

x

Figure 10. Calculated critical temperature for the ( 1
2 , 1

2 ) anion ordering (green) and Mott scale (blue),
as a function of TMTTF concentration x in [(TMTSF)1−x(TMTTF)x]2ReO4 alloys.

With the above figures, the ( 1
2 , 1

2 ) AO will dominate for not too small λ and essentially arbitrary
values of anion lattice stiffness Ka. We shall fix Ka/[2(1 + λ)2] = 1.75 (eV)−1 to give from (52),
the experimental value T0

1
2 , 1

2
' 180 K in the Bechgaard x = 0 limit [22]. Thus when the site potential

ε0(x) grows with x, alongside the effect of dimerization δt/t, T0
1
2 , 1

2
decreases due to the weakening of the

coupling to non singular CDWθ+ correlations in (51) and (52); it reaches a minimum at x = 0.5, namely
where ε0 is maximum, in qualitative agreement with the results of Figure 7. As x grows further, ε0

goes down and T0
1
2 , 1

2
starts to increase and evolve toward the limiting value of 190 K in the x = 1 Fabre

case. This value is nearly the same than for x = 0, but higher than the experimental value [30,49,56].
The minimum value T0

1
2 , 1

2
' 105 K at x = 0.5 corresponds to a decrease of 40% or so from the pure

x = 0 value, compared with nearly 55% for experiments in Figure 7, showing a qualitative agreement
(see the above note in Section 4.1.4).

In contrast to T0
1
2 , 1

2
, the value of the Mott scale Tρ in Figure 10 reaches a maximum at more

than twice its value found in the x = 1 Fabre limit. This is a consequence of positive ε0 and δt/t
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alternating potentials, whose influences add in quadrature in the g3 expression in (19) and the value of
Tρ. This conclusion for Tρ agrees with those previous works [26–29].

4.2. Interplay between the Spin-Peierls and Charge Ordered States

As a second application of our model, we examine the influence of charge ordering on the
spin-Peierls instability of weakly localized 1D Mott insulators of the Fabre salts series.

4.2.1. Experiments

The spin-Peierls instability is found in some members of the Fabre (TMTTF)2X series with
X = PF6 and AsF6. These quarter-filled band but weakly dimerized systems show a 1D Mott insulating
behavior below some temperature scale Tρ ' 220 K [57,58]. In (TMTTF)2AsF6, for instance, the Mott
insulating behavior is followed at lower temperature by a continuous transition toward the formation
of charge ordered (CO) state at TCO ' 103 K [29,31]. Below TCO, there is a charge disproportionation
in the dimer unit cell leading to a finite static alternated site potential ε0. Within the CO state,
there is an additional instability that involves both spins and lattice degrees of freedom. According to
x-ray diffuse scattering [37,39], the lattice becomes unstable with the onset of 1D lattice fluctuations
at the wave vector 2kF below the characteristic temperature scale T0

SP. For the AsF6 compound,
T0

SP ' 40 K [10,37]. Occurring well below the Mott scale Tρ, T0
SP takes place in the presence of strong

antiferromagnetic correlations and then refers to a spin-Peierls (SP) instability. A true 3D SP ordering,
however, occurs only at a much lower temperature, namely, TSP ' 11 K [37,39]. The latter obeys the
empirical rule TSP ∼ T0

SP/3 for the reduction of the ordering temperature by 1D fluctuations in weakly
coupled Peierls and spin-Peierls chains.

From NMR experiments under pressure [39], TSP is found to increase while TCO is steadily
decreasing. This indicates that a reduction of the charge disproportionation, that is the site alternated
potential ε0, enhances the SP ordering. The increase of TSP with pressure carries on until its amplitude
reaches TCO, defining a critical pressure above which TSP undergoes a steady decrease (see Figure 11).

Figure 11. Critical temperatures of spin-Peierls and charge ordered states as a function of applied
pressure in (TMTTF)2AsF6, as determined from NMR experiments. From Zamborszky et al. [39].

4.2.2. Electron–Lattice Coupling

The formation of a bond superstructure in the dimerized chains results from a coupling of the
lattice degrees of freedom to bond charge density-wave correlations of electrons. By analogy with
a Peierls electron–lattice coupling in a tight-binding band [59,60], the coupling develops from the
modulation of the interdimer hopping integral t2 = t− δt by the displacement φr of the dimer from its
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equilibrium position. The expansion of t2(φ) with respect to φ leads to an additional electron–lattice
part to the Hamiltonian (5) which is of the form,

Hep + H0
p =∑

r,σ
t′2[a

†
r,σbr−1,σ(φr−1 − φr) + H.c.]

+
KD
2 ∑

r
(φr−1 − φr)

2. (53)

Here t′2 = dt2/dφ and KD is the spring constant of the harmonic potential energy, H0
p, of interdimer

lattice modes in the static limit. From the canonical transformation (6) and (7), the Hamiltonian for the
coupling of the tetramerization order parameter, φ2kF , to electrons close to Fermi level is given by

Hep + H0
p =

1√
N

∑
k,σ

[gep(ε0) d†
+,k,σd−,k−2kF ,σφ2kF + H.c.]

+ 2KD|φ2kF |2 (54)

where

gep(ε0) = −2i t′2 sin γkF = −2i t′2

√
1− ε2

0
E2

F
(55)

is the electron–lattice coupling constant showing an explicit dependence on the potential amplitude ε0

of CO, which reduces the strength of the coupling.
Transposing this term into the action allows to write at ` = 0,

S = S0 + SI − 2βKD|φ2kF |2 + Sep (56)

where

Sep = −
√

β gep(ε0)
[(

zc
θ+

Oθ+ sin 1
2 θ+

−izc
θ−Oθ− sin 1

2 θ−
)
φ2kF + c.c.

]
, (57)

in which we have decomposed the BOW composite field in terms of the two independent CDW at
θ± = θg3 (θg3 ± π), and for q0 = (2kF, 0). Here the initial conditions for the pair vertex renormalization
factors at ` = 0 are zc

θ± = 1.

4.2.3. Spin-Peierls Instability

The presence of the SP order parameter φ2kF then linearly couples as an external field to the
two independent CDW for a complex g3. In weak coupling Sep can be taken as a perturbative term
alongside SI . Thus the successive partial integrations of the RG transformation following (26), down to
the energy distance Λ0(`) from the Fermi level will lead to the effective action at step `:

S[ψ∗, ψ]` = S0[ψ
∗, ψ]`+SI [ψ

∗, ψ]` + Sep[ψ
∗, ψ, φ]`

− βF[φ]`. (58)

The RG then generates a ` dependent Landau free energy F[φ]` of the SP order parameter. At the
quadratic level, it takes the form

F[φ]` =
[
2KD−|gep(ε0)|2 ∑

µ=±
(sin2 1

2 θµ)χ
c
θµ
(q0, `)

]
|φ2kF |2

+ O(φ4). (59)
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The mean field criteria for the SP ‘transition’ temperature at T0
SP is obtained from the zero of the

quadratic term at `0
SP = ln EF/T0

SP. This leads to

2KD

|gep(ε0)|2
= ∑

µ=±
(sin2 1

2 θµ)χ
c
θµ
(q0, T0

SP). (60)

The right-hand-side of this expression is essentially dominated by the CDWθ− susceptibility χc
θ−

which is more centered on bonds. It presents a power law divergence with decreasing temperature,
while χc

θ+
, which is more site-centered saturates at a small value. According to the results of Section 3.2,

the bond susceptibility takes the form

χc
θ−(q0, T) ∼ (πvF)

−1Cθ−(T/Tρ)
−γ∗ ,

where γ∗ = 3/2 for the fixed point behavior below the Mott scale Tρ [47]. Here Cθ− is a positive
constant that gives the contribution to the susceptibility from all energy scales above Tρ.

By singling out the dominant θ− part, we obtain the approximate result for the mean field
SP temperature

T0
SP ≈ [Cθ−(sin2 1

2 θ−)|ḡep(ε0)|2/2KD]
2
3 Tρ, (61)

where |ḡep(ε0)|2 = |gep(ε0)|2/πvF. Although from (21) an increase of the site potential ε0 raises the
value of |g3| and then Tρ, ε0 is a major source of reduction of the electron-phonon matrix element
ḡep(ε0), which together with the shift of CDWθ− off the bonds, leads to an overall decrease of T0

SP with
ε0. This is shown in Figure 12 (top). The charge imbalance between sites of neighbouring dimers is
therefore acting as the main source of reduction of the lattice coupling to 2kF bond correlations.
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Figure 12. (top): Calculated variation of the mean-field SP ordering temperature T0
SP and of the

Mott scale Tρ with the amplitude of site potential ε0 due to charge ordering; (bottom): Calculated
variations of the mean-field 1D (3D) spin-Peierls temperature T0

SP ( TSP ∼ T0
SP/3), as a function of the

tuning (pressure) parameter x. The dashed red line is a linear parametrization of the charge ordering
temperature TCO = ε0(x)/2. All temperature scales are normalized by the average hopping t along
the stacks.
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It is worth noticing that the mean-field prediction T0
SP does not coincide with a real transition

temperature, but refers to the temperature scale for the onset of strong 2kF 1D lattice SP
fluctuations [61,62], such as those seen for instance in diffuse x-ray scattering [37]. For a true 3D
transition to take place, interchain coupling V⊥ (e.g., electron–lattice, Coulomb, ...) is necessary to
stabilize long-range ordering for a one-component SP order parameter. The generalization of the
above approach to the case of weakly coupled Landau-Ginzburg chains is well known [63]; it leads to
the relation

TSP '
T0

SP

ln(T0
SP/V⊥)

∼ T0
SP/α, (62)

between the T0
SP and TSP scales. For V⊥ � T0

SP, fluctuations reduce T0
SP by a factor α, which is typically

around 3.

4.2.4. Theory and Experiment

We are now in a position to apply our model to the evolution of the SP instability in the presence
of CO for a compound like (TMTTF)2AsF6 under pressure (top of Figure 12). We consider the hopping
modulation δt(x) = 0.2− 0.5x (normalized by t = 1), tuned downward by the pressure parameter
x. Here, 0.2 is a typical band calculation value of δt for a compound like (TMTTF)2AsF6 at ambient
pressure (x = 0) [64]. We fix the interaction parameters U = 1 and V = 0.5 in order to obtain a Mott
temperature scale, Tρ ∼ 100 K (Tρ ∼ 0.09 in units of t), consistent with the range found in experiments
for a value of t = 1300 K at ambient pressure [64]. Charge ordering is responsible for the onset of
a static site potential, which we parametrize by the linear profile ε0(x) = ε0(0)(1− x/xc). Here we
shall use the relation ε0(0) = ∆CO ∼ 2TCO between the CO gap and the observed critical temperature
TCO ≈ 100 K at ambient pressure. Finally, we let the normalized small variations δU = −ε0(x)/EF
and δV = tδt(x)/E2

F evolving under pressure following ε0(x) and δt(x), respectively.
The solution of (60) for T0

SP from the use of (42) and (55) as a function of the tuning parameter x,
is displayed in the bottom panel of Figure 12. We see that to the fall of ε0(x) under pressure corresponds
an increase of T0

SP, the latter being a consequence of the boost in the electron lattice-coupling gph(ε0)

that overcomes the impact of the reduction of Tρ on T0
SP under pressure. A maximum of T0

SP is reached
at xc where ε0(xc) vanishes, leading to near 50% of increase of T0

SP from its ambient pressure value.
Beyond xc, ε0(x > xc) = 0 and T0

SP undergoes a monotonic decreases with x, which according to (60)
and (61) is governed by that of Tρ under pressure—when only bond order wave correlations with
θ− = π couple to the lattice (at sufficiently high but intermediate pressure, interchain antiferromagnetic
exchange coupling, which is present but not considered in the present high temperature calculations,
enters into play and introduces a competition between the SP and the magnetic Néel states, from which
the latter state ends up to be favored [20,21,61]. This competition is also documented on experimental
grounds in the similar compound (TMTTF)2PF6 − see for instance Refs. [65,66]. In the very high
pressure range, it is the turn of the Mott scale Tρ to become irrelevant in (TMTTF)2X, with the
Néel state merging into an itinerant SDW state when interchain exchange evolves towards coherent
interchain hopping, as found in (TMTSF)2X at low pressure [1,4]. In these conditions the absence of
a tetramerization-Peierls-instability, despite the absence of charge ordering, may take its origin from
the relatively weak amplitude of Umklapp scattering. This suppresses Tρ and strongly reduces the
growth of bond CDW correlations for the Peierls scale T0

P in (60). The long-range Peierls ordering is
likely to be preempted when conflicting sources of interchain coupling are added to the model such
as single electron hopping and Coulomb interactions, along with the emergence of SDW long-range
order [10]).

The results of the above model for T0
SP and by extension TSP fairly bear the comparison with

the experiments shown in Figure 11. The present model could also offer an explanation as to
the absence of a spin-Peierls transition in a compound like (TMTTF)2SbF6, which rather exhibits
a Néel transition around 7K [67]. The SbF6 Fabre salt is known to develop charge ordering at
a temperature TCO ≈ 160 K [29,30,68], which is sizably higher than for other SP salts like PF6 and
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AsF6. Following (55), a significantly larger TCO or ε0, together with a relatively weaker value of Tρ for
SbF6 [58], would further suppress the electron-phonon matrix element gep(ε0) and from (61) the scales
T0

SP and TSP. Including the influence of interchain exchange interaction between spins, which is present
in practice but has been disregarded in this work (see for instance Refs. [20,21,61]), will favor the
competition between the SP and the Néel states and may be responsible for the absence of long-range
SP ordering and the relatively small Néel temperature for this salt (see also the note in the preceding
paragraph). The observation of a reentrant SP state in (TMTTF)2SbF6 at higher pressure is consistent
with that view [67]. These results obtained above are also compatible with those using the bosonization
technique [40], and numerics [35,40].

5. Concluding Remarks

In the work developed above, we inquired into the properties of the one-dimensional extended
Hubbard model at quarter-filling with superimposed dimerization, site and anion alternating lattice
potentials, as they can be found in practice in low-dimensional charge transfer salts with a 2:1
stochiometry. The renormalization group method was applied to the continuum or electron gas
limit of the model in order to determine the influence of dimerization and site commensurability
potentials on low energy interactions, in particular effective half-filling type of Umklapp scattering
that emerges from the lattice. The impacts of Umklapp on singular correlations and different excitation
gaps of the model have been determined, along with spin and charge density-wave correlations and
their specific phase relations to the underlying alternated lattice.

By coupling electrons to anionic displacements in systems like the (TMTTF)2X and (TMTSF)2X
charge transfer salts, the mechanism of anion ordering in these materials has been investigated. It was
found that a site alternated potential can significantly reduce the coupling of charge density wave
correlations to anion displacements and in turn the critical temperature of staggered anion ordering.
This occurs while the Mott insulating character of electrons is on the contrary strongly enhanced by site
and bond commensurabilities. These opposed effects were found to be consistent with observations
about anionic order and Mott insulating state in [(TMTSF)1−x(TMTTF)x]2ReO4 alloys.

The influence of the charge ordered state on the spin-Peierls ordering has also been investigated
for members of the Fabre salts series at low applied pressure. Acting as alternate site commensurability,
charge order was found to mainly reduce the inter-dimer tight-binding electron-phonon matrix
element. The coupling of the lattice to bond density-wave correlations is then lessened by charge
disproportionation and a competition between the spin-Peierls and the charge ordered states takes
place. The interplay gives rise to a characteristic dome of the spin-Peierls ordering temperature as
a function of the suppression of charge order under pressure, a result congruent with observations
made in the Fabre salts series.

Allowing for anionic displacements besides lattice degrees of freedom would be an interesting
possible extension of the latter calculations. This could provide the opportunity to check if
the spin-Peierls lattice distortion is accompanied by staggered anion ordering, as suspected on
experimental grounds for spin-Peierls systems of the Fabre salts series [11].

It is worth mentioning another straightforward application of the model of anion ordering which
was not considered above. This concerns the anion displacement that goes with the charge ordering
transition in the (TMTTF)2X series. Such anion displacement is known to be uniform in character [10].
The corresponding order parameter δ0,0 will thus be linearly coupled to uniform charge density
of the stacks, in a way similar to the expression given in (48). Since uniform charge susceptibility
is a quantity proportional to the dielectric constant, as the latter is being singular at the charge
ordering transition [32,68], it will drive a collective shift of the anionic position as apparently found
experimentally [9,68,69].
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