Supplementary

The Detection of Monoclinic Zirconia and Non-Uniform 3D Crystallographic Strain in a Re-Oxidized Ni-YSZ Solid Oxide Fuel Cell Anode

Thomas M. M. Heenan ^{1,2,*}, Antonis Vamvakeros ^{3,4,*}, Chun Tan ^{1,2}, Donal P. Finegan ⁵, Sohrab R. Daemi ¹, Simon D. M. Jacques ³, Andrew M. Beale ^{3,4,6}, Marco Di Michiel ⁷, Dan J. L. Brett ^{1,2} and Paul R. Shearing ^{1,2,*}

Figure S1. Full profile analysis using the Rietveld method for the mean diffraction pattern extracted from the 3D-XRD-CT dataset.

Figure S2. Simulated diffraction patterns for NiO, YSZ, ZrO2 and Ni.

Figure S3. Composition by weight calculated from XRD.

Figure S4. Correlation of transmission X-ray microscopy (TXM) and diffraction computed tomography (XRD-CT).

It should be noted that the 2D and 3D data cannot be directly compared as the regions of interest differed slightly. The 3D data was obtained from a volume encompassing the entire top of the sample, whereas the 2D data was collected as a line-scan raster through the sample height.