
crystals

Article

Synthesis, X-ray Structure, Hirshfeld Analysis of
Biologically Active Mn(II) Pincer Complexes Based
on s-Triazine Ligands

Saied M. Soliman 1,* , Hessa H. Al-Rasheed 2 and Ayman El-Faham 1,2,*
1 Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia,

Alexandria 21321, Egypt
2 Department of Chemistry, College of Science, King Saud University, P.O. Box 2455,

Riyadh 11451, Saudi Arabia; halbahli@ksu.edu.sa
* Correspondence: saied1soliman@yahoo.com or saeed.soliman@alexu.edu.eg (S.M.S.);

aelfaham@ksu.edu.sa (A.E.-F.)

Received: 20 September 2020; Accepted: 12 October 2020; Published: 13 October 2020
����������
�������

Abstract: Herein, the synthesis and antimicrobial activities of [Mn(MorphBPT)(H2O)2NO3]NO3;
(1) and [Mn(PipBPT)(H2O)2NO3]NO3; (2) complexes of the pincer-type tridentate ligands
MorphBPT; 4-(4,6-di(1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)morpholine and PipBPT; 2-(piperidin-1-yl)-4,
6-di(1H-pyrazol-1-yl)-1,3,5-triazine are presented. Both complexes have slightly distorted octahedral
coordination geometry. Their molecular packing depends on O–H···O, C–H···O hydrogen bonds
and anion–π stacking contacts. Hirshfeld analysis was used to quantify the different contacts.
Both complexes exhibited better anti-fungal activity than the standard Fluconazole and comparable
antibacterial activity to Gentamycin against Staphylococcus aureus and Escherichia coli microbes.
Moreover, complexes 1 and 2 are biologically more active than the free ligands against these microbes.
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1. Introduction

The use of transition metal complexes as antimicrobial agents, and for their potential applications as
inorganic pharmaceuticals and in medicine for diagnostics, has gained great interest from researchers [1–4].
In this regard, large and rising numbers of mono- and polynuclear complexes of different metals, and with
different classes of chelating ligands involving Schiff bases, bipyridine, and phenanthroline with different
anions, were presented in literature [5–14].

Of transition metals, manganese is considered an essential micronutrient in living organisms
and has an important role in a broad range of enzyme-catalyzed reactions. There is no doubt about
the potential use of Mn(II) complexes as catalytic scavengers for H2O2 against oxidative stress [7–15].
From this point of view, an increasing interest with the synthesis of more Mn(II) complexes in
order to investigate their catalytic and antimicrobial activities. Mn(II) complexes of bipyridine and
phenanthroline ligands were found to have promising antifungal activity comparable to the antifungal
drug ketoconazole [15,16]. Mn(II) plays a key role in biology as required enzyme activator, which is
responsible for metabolism and apoptosis [17,18]. In addition, a Mn(II) complex of the Schiff base
ligand derived from 1,4-diaminobutane and pyridoxal hydrochloride showed a great anticancer activity
against breast cancer [19]. More recently, a Mn(II) complex of a Schiff base derived from vitamin B6
was found as an apoptosis inducer in human MCF7 and HepG2 cancer cells [20].

In continuation to our interest with the s-triazine pincer complexes [21–24], and in light of the
interesting recently reported data in literature [25–31], we are presenting here the synthesis of two new
Mn(II) complexes with the s-triazine based NNN-pincer ligands shown in Figure 1. The structural
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features of both complexes are elucidated. In addition, their antimicrobial activities as antibacterial
and antifungal agents are presented.
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Figure 1. Structure of the pincer ligands [32]. 

2. Materials and Methods 

Chemicals, reagents, and solvents used in this work were purchased from their commercial 
suppliers. The CHN analyses were determined using Perkin-Elmer 2400 instrument (PerkinElmer, 
Inc. 940 Winter Street, Waltham, MA, USA). 

2.1. Preparation of the Organic Ligands 

The organic ligands were prepared using the method reported in literature [32] (Supplementary 
data, Method S1, Figures S1 and S2). 

2.2. Syntheses of [Mn(MorphBPT)(H2O)2NO3]NO3; (1) and [Mn(PipBPT)(H2O)2NO3]NO3; (2) 

In a 50 mL conical flask, the ligand solution (0.05 mmol) in 10 mL methanol was added to an 
aqueous solution of the Mn(NO3)2·4H2O (~0.126 g, 0.05 mmol) in 10 mL water. The resulting clear 
solution was kept at room temperature for slow evaporation. Colorless crystals of the titled 
complexes were obtained after three days and were collected by filtration. 
Yield:C17H26MnN10O9 (1) 80% with respect to the ligand. Anal. Calc. C, 35.86; H, 4.60; N, 24.60%. 
Found: C, 35.65; H, 4.52; N, 24.48%. 
Yield; C18H28MnN10O8 (2) 77% with respect to the ligand. Anal. Calc. C, 38.10; H, 4.97; N, 24.69%. 
Found: C, 37.91; H, 4.91; N, 24.46%. 

2.3. Crystal Structure Determination 

The crystal structures of complexes 1 and 2 were determined by using a Bruker D8 Quest 
(Bruker Corporation, Massachusetts, MA, USA) diffractometer employing SHELXTL and SADABS 
programs [33–35]. Table 1 illustrated the refinement and crystal details. Hirshfeld calculations were 
performed using the default parameters of the Crystal Explorer 17.5 program [36–40]. 
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2. Materials and Methods

Chemicals, reagents, and solvents used in this work were purchased from their commercial
suppliers. The CHN analyses were determined using Perkin-Elmer 2400 instrument (PerkinElmer, Inc.
940 Winter Street, Waltham, MA, USA).

2.1. Preparation of the Organic Ligands

The organic ligands were prepared using the method reported in literature [32] (Supplementary
data, Method S1, Figures S1 and S2).

2.2. Syntheses of [Mn(MorphBPT)(H2O)2NO3]NO3; (1) and [Mn(PipBPT)(H2O)2NO3]NO3; (2)

In a 50 mL conical flask, the ligand solution (0.05 mmol) in 10 mL methanol was added to an
aqueous solution of the Mn(NO3)2·4H2O (~0.126 g, 0.05 mmol) in 10 mL water. The resulting clear
solution was kept at room temperature for slow evaporation. Colorless crystals of the titled complexes
were obtained after three days and were collected by filtration.

Yield:C17H26MnN10O9 (1) 80% with respect to the ligand. Anal. Calc. C, 35.86; H, 4.60; N, 24.60%.
Found: C, 35.65; H, 4.52; N, 24.48%.

Yield; C18H28MnN10O8 (2) 77% with respect to the ligand. Anal. Calc. C, 38.10; H, 4.97; N, 24.69%.
Found: C, 37.91; H, 4.91; N, 24.46%.

2.3. Crystal Structure Determination

The crystal structures of complexes 1 and 2 were determined by using a Bruker D8 Quest
(Bruker Corporation, Massachusetts, MA, USA) diffractometer employing SHELXTL and SADABS
programs [33–35]. Table 1 illustrated the refinement and crystal details. Hirshfeld calculations were
performed using the default parameters of the Crystal Explorer 17.5 program [36–40].

2.4. Antimicrobial Studies

The bio-activities of the free MorphBPT and PipBPT ligands, as well as the corresponding Mn(II)
complexes against different microbes, were determined [32]. More details regarding the bio-experiments
are found in Supplementary data.
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Table 1. Crystal and refinement data of 1 and 2.

Compound 1 2

Empirical formula C17H26MnN10O9 C18H28MnN10O8
Formula weight (g/mol) 569.42 567.44
Temperature (K) 124(2) 117(2)
λ (Mo-Kα, Å) 0.71073 0.71073
Crystal system Triclinic Triclinic
Space group P-1 P-1
Unit cell dimensions a = 8.2794(5) Å a = 7.830(5) Å

b = 12.1167(7) Å b = 12.951(7) Å
c = 12.1738(7) Å c = 13.990(7) Å
α = 88.3660(19)◦ α = 116.533(10)◦

β = 89.605(2)◦ β = 94.832(14)◦

γ = 79.184(2)◦ γ = 101.694(16)◦

Volume (Å3) 1199.08(12) 1217.9(12)
Z 2 2
Density (calc. g/cm3) 1.577 1.547
Absorption coefficient (mm−1) 0.621 0.608
F(000) 590 590
Crystal size (mm3) 0.29 × 0.21 × 0.11 0.31 × 0.23 × 0.19
θ range for data collection 2.36 to 26.34◦ 2.71 to 25.31◦

Index ranges −10 ≤ h ≤ 10, −15 ≤ k ≤ 15, −15 ≤ l ≤ 15 −9 ≤ h ≤ 9, −15 ≤ k ≤ 15, −16 ≤ l ≤ 16
Reflections collected 21,451 19,570
Independent reflections 4863 [R(int) = 0.0315] 4437 [R(int) = 0.0554]
Completeness to θ 99.30% 99.80%
Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 4863/0/385 4437/0/351
Goodness-of-fit on F2 0.894 1.06
Final R indices [I>2sigma(I)] R1 = 0.0275, wR2 = 0.0671 R1 = 0.0298, wR2 = 0.0732
R indices (all data) R1 = 0.0341, wR2 = 0.0721 R1 = 0.0371, wR2 = 0.0775
Extinction coefficient 0.0100(8) 0.0157(17)
Largest diff. peak and hole 0.371 and −0.318 0.409 and −0.308

CCDC 2025609 2025610

2.5. Density Functional Theory (DFT) Calculations

Gaussian 09 (Wallingford, CT, USA) [41] built in MPW1PW91/TZVP method [42] were used for
doing charge population [43] and atoms in molecules (AIM) [44] analyses, as previously described [2,21].

3. Results and Discussion

3.1. X-ray Crystal Structure Description

The structure with atomic numbering of [Mn(MorphBPT)(H2O)2NO3]NO3 complex (1) are shown
in Figure 2 and list of the most important geometric parameters are given in Table 2. It crystallized in the
triclinic crystal system and P-1 space group, and Z = 2. This cationic complex has a hexa-coordinated
Mn(II) with one tridentate pincer ligand, one monodentate nitrate ion, and two water molecules in its
inner sphere while the outer sphere comprised two halves of nitrate ions. The manganese to nitrogen
distance is significantly shorter with s-triazine (2.2170(14) Å) than the corresponding Mn–N(pyrazole)
bonds (2.3187(15)–2.3269(14) Å). Moreover, the equatorial Mn–O bond is the shortest (2.1419(13) Å)
where the length of the manganese to oxygen distances is in the order of Mn–O(equatorial water)
< Mn–O(nitrate) < Mn–O(axial water). The two bite angles of the tridentate chelate are 69.49(5)
and 69.09(5)◦ for N5–Mn1–N1 and N5–Mn1–N7, respectively while the angle between the two trans
Mn–N(pyrazole) bonds is 138.55(5)◦ for N1–Mn1–N7. The O2–Mn1–O3 and O2–Mn1–O1 bond angles
of these cis bonds are 90.33(5) and 80.66(6)◦, respectively while the O3–Mn1–O1 trans bond angle is
167.72(5)◦. The hexa-coordinated Mn(II) has a distorted octahedral configuration with a distorted square
comprised the N1N5N7O2 atoms while the O1 and O3 atoms are located at the apexes. Using Shape
2.1 software (Barcelona, Spain), the continuous shape measure (CShM) values of 4.1 and 11.8 relative
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to perfect octahedron and trigonal prism, respectively were computed. The CShM values revealed
slightly distorted octahedral coordination geometry.
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Figure 2. Structure and atomic numbering of the symmetric unit of 1 and 2. Thermal ellipsoids were
drawn at 50% probability level. Moreover, the nitrate counter ions were omitted for better clarity.

Table 2. The most important bond distances and angles of 1 and 2.

Atoms 1 2

Mn1–O2 2.1416(12) 2.1288(19)
Mn1–O3 2.1683(11) 2.1604(16)
Mn1–O1 2.2159(12) 2.2306(17)
Mn1–N5 2.2172(12) 2.1973(18)
Mn1–N1 2.3188(13) 2.3097(19)
Mn1–N7 2.3267(13) 2.3580(18)

O2–Mn1–O3 90.35(5) 96.78(6)
O2–Mn1–O1 80.70(5) 83.33(6)
O3–Mn1–O1 167.76(5) 172.64(5)
O2–Mn1–N5 170.23(5) 166.35(6)
O3–Mn1–N5 97.55(4) 94.69(6)
O1–Mn1–N5 90.62(5) 84.34(6)
O2–Mn1–N1 115.16(5) 116.12(6)
O3–Mn1–N1 98.37(5) 94.40(6)
O1–Mn1–N1 93.02(5) 92.13(6)
N5–Mn1–N1 69.49(4) 70.18(5)
O2–Mn1-N7 106.03(5) 103.93(6)
O3–Mn1–N7 85.47(4) 86.40(6)
O1–Mn1–N7 88.98(5) 86.44(6)
N5–Mn1–N7 69.09(4) 69.39(5)
N1–Mn1–N7 138.55(4) 139.49(6)

The three dimensional structure of 1 is built by O–H···O hydrogen bonds and C–H···O interactions as
shown in the left part of Figure 3. The donor-acceptor distances are generally shorter (2.662(3)–2.924(2) Å)
in the former than in the latter (3.271(3)–3.455(3) Å) (Table 3). The packing of 1 is shown in the upper
part of Figure 4. In addition, anion–π contacts play an important role in the packing of 1 (Figure S3
(Supplementary data) and Table 4).
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Figure 3. Important H–bond contacts in 1 and 2. The green and blue colored contacts refer to the
C–H···O and O–H···O interactions, respectively.

Table 3. The Geometric parameters of the H–bonds in 1 and 2.

Atoms D–H (Å) H···A (Å) D···A (Å) D–H···A (◦)

1
O2–H1···O11 0.82(2) 1.89(2) 2.662(3) 157(2)
O2–H1···O12 0.82(2) 1.95(2) 2.766(3) 175(2)
O1–H14···O9 0.83(2) 1.97(2) 2.728(3) 153(2)
O1–H14···O7i 0.83(2) 1.96(2) 2.758(3) 161(2)
O1–H16···O10 0.85(2) 2.07(2) 2.884(3) 161(2)
O1–H16···O11 0.85(2) 2.07(2) 2.831(4) 150(2)
O2–H21···O5 0.85(2) 2.54(2) 2.924(2) 109(2)

O2–H21···O4ii 0.85(2) 2.01(2) 2.816(2) 159(2)
C3–H3···O3iii 0.95 2.52 3.319(2) 142

C9–H9A···O7iv 0.98 2.49 3.455(3) 170
C11–H11···O7v 0.95 2.39 3.328(3) 171

C13–H13C···O10 0.98 2.49 3.271(3) 136
Symmetry Code: (i) 1-x,1-y,2-z; (ii) -x,2-y,1-z; (iii) 1+x,y,z; (iv) -1+x,y,z; (v) -x,1-y,2-z

2
O1–H1A···O7i 0.83(3) 2.04(3) 2.839(3) 162(3)
O1–H1B···O7 0.86(2) 1.89(2) 2.723(3) 163(2)
O2–H2A···O6 0.87(2) 1.92(2) 2.758(3) 161(2)
O2–H2B···O4ii 0.83(4) 1.99(4) 2.795(3) 162(4)
C3–H3···O3iii 0.95 2.53 3.240(3) 132

C9–H9C···O8iv 0.98 2.42 3.329(3) 154
Symmetry Code: (i) 1-x,1-y,-z; (ii) 1-x,1-y,1-z; (iii) 1+x,y,z; (iv) -x,1-y,-z

Table 4. Anion–π contacts in complexes 1 and 2.

1 2

C7···O8i 2.940(3) C8···O7ii 3.090(2)
N3···O8i 3.077(3) C7···O8ii 2.982(2)
N4···O8i 2.995(3)
C8···O8i 3.044(3)
C6···O8i 3.141(3)
C6···O9i 3.052(3)
N5···O9i 2.831(3)
C8···O9i 2.889(3)
Symmetry Code: (i) x,y,z in 1 (ii) 1-x,1-y,-z in 2
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The structure of [Mn(PipBPT)(H2O)2NO3]NO3 complex 2 is very similar to 1. It also crystallized
in the primitive triclinic unit cell with P-1 space group and two of the molecular formula per unit
cell. In this case, the asymmetric unit comprised one cationic [Mn(PipBPT)(H2O)2NO3] and one NO3¯
counter anion. In general, the Mn–N and Mn–O bonds are slightly shorter in this complex than those
in 1 except one of the Mn–N(pyrazole) bonds as well as one Mn–O(water) bond, which is trans to the
Mn–O(nitrate). The hexa-coordinated Mn(II) coordination configuration is slightly less distorted than
that in 1 where the continuous shape measure values for 2 were computed to be 3.3 and 11.9 with
respect to the perfect octahedron and trigonal prism, respectively. The most important O–H···O and
C–H···O hydrogen bond contacts as well as the anion–π stacking contacts in 2 are shown in the right
part of Figure 3 and Figure S3, respectively. The packing of 2 could be considered as 1D hydrogen
bond polymer (Figure 4) while list of the hydrogen bonds is given in Table 3.

A slight structural difference between complexes 1 and 2 is the deviation of the Mn and coordinated
equatorial oxygen atoms from the s-triazine plane. The plane passing through the perfectly planar
aromatic s-triazine moiety is nearly passing through the center of Mn atom in complex 2 with only
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0.040(2) Å deviation from this mean plane. The corresponding distances in complex 1 is 0.142(2) Å.
The equatorial oxygen atom is deviated from this plane by a distance of 0.603(3) and 0.515(3) Å in
complexes 1 and 2, respectively. The reason could be simply attributed to the involvement of the
s-triazine in larger number of anion–π stacking contacts in 1 compared to 2.

There is another structural difference between complexes 1 and 2. It is the orientation of the
nitrate counter anion, with respect to the s-triazine moiety. In complex 1, the nitrate anion is nearly
perpendicular to the s-triazine mean plane where the angle between the two planes is 86.67(3)◦. It seems
that such situation allowed further anion–π stacking interactions in 1 compared to 2. The corresponding
angle between the two mean planes in complex 2 is only 26.64(3)◦.

3.2. Analysis of Molecular Packing

Hirshfeld surfaces for 1 and 2 are given in Figure S4 (Supplementary data) while all possible
contacts are shown in Figure 5. The decomposed dnorm maps of the short and most significant contacts
are collected in Figure 6. The H···H, O···H, N···H and C···H interactions are the most frequent in
both complexes. In complex 1, these contacts contributed by 38.4, 37.5, 9.9 and 6.1%, respectively
from the whole fingerprint area while the corresponding values in complex 2 are 45.2, 32.8, 8.8 and
5.2%, respectively. In addition, both complexes showed comparable amounts of anion–π stacking
interactions with net C(s-triazine)···O(nitrate) and N(s-triazine)···O(nitrate) contacts of 2.8 and 2.5% for
complexes 1 and 2, respectively. The latter is weaker in complex 2 and not showed the characteristics
of short contacts. The shortest C···O contact is C7···O8 (2.982(2) Å) in 2 while in 1 the shortest contact is
C8···O9 (2.889(3) Å). Regarding the N···O contacts in complexes 1 and 2, the shortest contact distances
are N5···O9 (2.831(3) Å) and N6···O7 (3.077(2) Å), respectively. The N···O interaction in 2 is slightly
longer than the vdW radii sum of nitrogen and oxygen indicating weaker interaction than 1. The O···H
contacts appeared strong in both complexes where the O11···H1 (1.742 Å) and O7···H1B (1.770 Å) are
the shortest in complexes 1 and 2, respectively. The values are different from those obtained from the
CIF data given in Table 3 because in the Hirshfeld analysis the X–H (X = C, O) distances are normalized
using the default criteria of Crystal Explorer 17.5 program. Many of the O···H contacts appeared as red
regions in the dnorm map indicated shorter distance than the vdW radii sum of hydrogen and oxygen.
In addition, complex 2 showed H···H and C–H···π interactions as red regions in the dnorm map with
remarkable short distances of 1.959 Å (H5B···H5B) and 2.646 Å (C6···H5C). The latter occurred between
the C–H of one methyl group from a complex unit with the s-triazine π-system from another complex
unit. There are no observable π–π stacking interactions from the shape index and curvedness surfaces
in both complexes.
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3.3. AIM Topology Analysis

The nature and strength of Mn–N and Mn–O interactions in the studied complexes were analyzed
using atoms in molecules (AIM) calculations [44–54]. The electron density (ρ(r)) of the Mn–O and
Mn–N bondings are in the range of 0.028–0.046 and 0.035–0.045 a.u, respectively which are generally
lower than 0.1 a.u indicating weak interactions with closed shell characters (Table 5). With the exception
of the Mn–N(s-triazine), the positive H(r) and V(r)/G(r) < 1 for the rest of Mn–N and Mn–O interactions
are the typical characteristics of the closed shell interactions. The Mn–N(s-triazine) bonds have very
slightly small negative H(r) values and V(r)/G(r) very slightly higher than one indicating that the
Mn–N(s-triazine) bonds have higher covalent characters than the Mn–N(pyrazole). Among the Mn–O
bonds, the equatorial bond which is located trans to the Mn–N(s-triazine) has the highest ρ(r) value
and the highest interaction energy. As clearly seen in Figure 7, the Mn–O distances correlate well with
the ρ(r) values as well as interaction energies (Eint). Similar observation could be noted for the Mn–N
distances where the correlation coefficients (R2) are found to be 0.992 and 0.993, respectively.
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Table 5. Atoms in molecules (AIM) indices (a.u.) for the Mn–O and Mn–N bonds.

Bond P(r) G(r) V(r) Eint
a H(r) b V(r)/G(r) c

1 (MPW1PW91)
Mn1–N1 0.0315 0.0526 −0.0511 16.0302 0.0015 0.9712
Mn1–N7 0.0310 0.0508 −0.0495 15.5195 0.0013 0.9737
Mn1–N5 0.0446 0.0730 −0.0749 23.5085 −0.0019 1.0257
Mn1–O1 0.0348 0.0617 −0.0602 18.8813 0.0015 0.9754
Mn1–O2 0.0423 0.0764 −0.0759 23.8078 0.0006 0.9927
Mn1–O3 0.0392 0.0731 −0.0719 22.5571 0.0012 0.9835

1 (WB97XD)
Mn1–N1 0.0315 0.0524 −0.0507 15.9153 0.0016 0.9689
Mn1–N7 0.0309 0.0506 −0.0491 15.4165 0.0014 0.9714
Mn1–N5 0.0445 0.0729 −0.0746 23.3928 −0.0017 1.0234
Mn1–O1 0.0347 0.0615 −0.0599 18.7798 0.0016 0.9734
Mn1–O2 0.0422 0.0763 −0.0755 23.6955 0.0007 0.9904
Mn1–O3 0.0392 0.0728 −0.0715 22.4445 0.0013 0.9820

2 (MPW1PW91)
Mn1–N1 0.0323 0.0536 −0.0522 16.3859 0.0014 0.9746
Mn1–N7 0.0285 0.0464 −0.0449 14.0784 0.0016 0.9662
Mn1–N5 0.0465 0.0774 −0.0796 24.9777 −0.0022 1.0283
Mn1–O1 0.0339 0.0592 −0.0574 17.9982 0.0018 0.9698
Mn1–O2 0.0446 0.0815 −0.0810 25.4111 0.0005 0.9940
Mn1–O3 0.0404 0.0754 −0.0743 23.3263 0.0010 0.9862

2 (WB97XD)
Mn1–N1 0.0323 0.0533 −0.0518 16.2604 0.0015 0.9724
Mn1–N7 0.0284 0.0462 −0.0445 13.9667 0.0017 0.9638
Mn1–N5 0.0464 0.0772 −0.0792 24.8540 −0.0020 1.0260
Mn1–O1 0.0338 0.0590 −0.0570 17.8993 0.0019 0.9676
Mn1–O2 0.0445 0.0812 −0.0806 25.2873 0.0006 0.9921
Mn1–O3 0.0404 0.0751 −0.0740 23.2066 0.0012 0.9846

a kcal/mol; b total energy density; c potential to kinetic energy density.

Bond orbital analysis (Table 6) of the Mn–N and Mn–O coordination interactions agreed very well
with the experimental bond distances observed experimentally. It is clear that the bond order is the
highest for Mn–N(s-triazine) compared to the Mn–N(pyrazole). Similarly, the equatorial Mn–O bond
has the highest bond order compared to the rest of Mn–O bonds where the order of the Mn–O bond
length is Mn–O(equatorial water) < Mn–O(nitrate) < Mn–O(axial water). The correlation coefficients of
the Mn–N and Mn–O distances with the calculated bond order values are 0.996 and 0.976, respectively.

Table 6. Bond order analysis of the Mn–N and Mn–O coordination interactions.

Bond
MPW1PW91 WB97XD MPW1PW91 WB97XD

1 2

Mn1–N1 0.143 0.144 0.142 0.143
Mn1–N7 0.136 0.137 0.122 0.123
Mn1–N5 0.198 0.199 0.206 0.207
Mn1–O1 0.129 0.129 0.119 0.119
Mn1–O2 0.163 0.163 0.170 0.171
Mn1–O3 0.157 0.158 0.159 0.161

Charge calculations of the free ligands allowed us to investigate the charge variations at the
coordinating sites due to the chelation with the Mn(II) cation. It is obvious from the natural charges
listed in Table 7 that all the coordinated donor atoms have more negative charge than those in the free
ligand. The natural charge variation is higher (0.12–0.13 e) for the s-triazine N-site than the pyrazole
(0.08–0.09 e) nitrogen atoms. As a conclusion, the coordination of the pincer ligand with the positively
charged Mn(II) ion produced further polarization in the electron density towards the donor atom.
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Table 7. The calculated natural charge at the N-sites of the free and coordinated pincer ligands using
MPW1PW91(WB97XD) methods.

Atom MorphBPT 1 PipBPT 2

N5 −0.4618(−0.4740) −0.5921(−0.6022) −0.4671(−0.4794) −0.5892(−0.5987)
N1 −0.2237(−0.2271) −0.3163(−0.3191) −0.2243(−0.2275) −0.3042(−0.3069)
N7 −0.2015(−0.2275) −0.3084(−0.3106) −0.2224(−0.2256) −0.3085(−0.3114)

3.4. Antimicrobial Activity

In the current study, the bio-activity of MorphBPT and PipBPT as well as their Mn(II) complexes
were tested as antibacterial and antifungal agents (Supplementary data, Method S2) [32,55–58].
The Mn(II) complexes showed good bio-activities against the target pathogenic microbes more than
original ligand as illustrated from the inhibition zones (mm), which were measured as indicator for
bioactivity of the tested compounds (Table 8) at concentration 200 µg/mL. MorphBPT is completely
inactive against all tested microbes while PipBPT showed good activity against Staphylococcus aureus and
Candida albicans, while completely inactive against Escherichia coli (Table 8). Both Mn(II) complexes have
better antibacterial and antifungal activity than the free ligands against S. aureus, E. coli, and C. albicans.
Moreover, complexes 1 and 2 have better antifungal activity than the standard Fluconazole. In addition,
the studied complexes have comparable antibacterial activity to Gentamycin against S. aureus and
E. coli.

Table 8. Inhibition zones at 200 µg of the tested compounds by agar well diffusion method.

Compound S. aureus E. coli C. albicans
MorphBPT - - -
PipBPT 11 - 12
1 21 17 15
2 27 20 17
Fluconazole - - 14
Gentamycin 28 21 -

The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)
values of all the tested complexes against S. aureus, E. coli, and C. albicans are reported (Table 9).
It is clear that the studied Mn(II) complexes showed good bio-activity against S. aureus and E. coli
as well as the fungus C. albicans. The MIC values are less for [Mn(PipBPT)(H2O)2NO3]NO3 than
[Mn(MorphBPT)(H2O)2NO3]NO3 against S. aureus, while both compounds showed similar antifungal
actions against C. albicans and almost similar bio-activity against E. coli. Similarly, the MBC revealed
these results very well.

Table 9. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)
of complexes 1 and 2.

Microbes
1 2

MIC (µg/mL) MBC (µg/mL) MIC (µg/mL) MBC (µg/mL)

S. aureus 8.3 16.5 6.5 13.5
E. coli 8.3 16.5 8.3 16.8
C. albicans 18.5 100 18.5 100

4. Conclusions

[Mn(MorphBPT)(H2O)2NO3]NO3; (1) and [Mn(PipBPT)(H2O)2NO3]NO3; (2) were synthesized
using self-assembly of the pincer MorphBPT and PipBPT ligands with Mn(NO3)2·4H2O in water-alcohol
mixture. The molecular and supramolecular structures of complexes 1 and 2 were investigated
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using X-ray single crystal diffraction combined with Hirshfeld calculations. Their anti-microbial
activities were compared with the free ligands and with Fluconazole and Gentamycin as standard
agent. Both complexes showed better anti-fungal activity than the standard Fluconazole. Complexes 1
and 2 are biologically more active than the free ligands against S. aureus, E. coli, and C. albicans microbes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/10/931/s1.
Method S1. General method for preparation of ligands. Figure S1. 1H NMR and 13C NMR of compound ligand
MorphBPT. Figure S2. 1H NMR and 13C NMR of compound ligand PipBPT. Method S2. Antimicrobial studies.
Figure S3. Anion–π interactions in 1 and 2. Figure S4. Hirshfeld surfaces mapped over dnorm, shape index
and curvedness.
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