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Abstract: Lattice relaxation on wurtzite GaN microdisks grown by plasma-assisted molecular beam
epitaxy was systematically studied. The lattice constants of GaN microdisks were evaluated from
high-resolution transmission electron microscopy, and the anisotropic strain was then analyzed by
observing the microscopic atomic layers. We found that the vertical lattice strain along the c-axis
followed a linear relationship, while the lateral lattice strain along the a-axis exhibited a quadratic
deviation. The lattice mismatch is about 0.94% at the interface between the GaN microdisks and the
γ-LiAlO2 substrate, which induces the anisotropic strain during epi-growth.
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1. Introduction

Group-III nitride compounds have been extensively investigated in recent years due to their
promising applications in spintronic devices [1,2] and optoelectronic lighting sources [3,4]. Because the
lattice constants are quite different among these binary compounds, i.e., AlN (a = 3.11 Å, c = 4.98 Å),
GaN (a = 3.160 Å, c = 5.125 Å) and InN (a = 3.5446 Å, c = 5.7034 Å) [5]. The hetero-structured quantum
wells (QW) made of their ternary alloys, such as AlxGa1−xN/GaN or GaN/InxGa1−xN QWs, always
produce a strain at the hetero-interface due to the lattice mismatch. The lattice-mismatched strain
can induce a piezoelectric field at the hetero-interface of the AlxGa1−xN/GaN QW to enhance the
spin-orbital interaction for spintronic qubit applications [1,2]. However, the lattice-mismatched strain
will also degrade the quality of GaN/InxGa1−xN QWs, and hence degrade its optical performance,
limiting the application of high-indium alloyed GaN/InxGa1−xN QWs [6–8]. This obstacle limits the
application of GaN/InxGa1−xN QW for a full-spectrum LED display. A possible workaround has been
proposed by using blue light from the GaN/InxGa1−xN (x~0.13) QW light-emitting diode (LED) and
mixing with phosphor to produce a white lighting source [3,4]. Currently, the trend of LED displays the
reduction in red-green-blue (RGB) LED pixel size from mini-meters down to micro-meters. There are
two approaches to manufacturing the RGB micro-LED display: one is a direct photo-lithographic
mini-meter/micro-meter process on GaN/InxGa1−xN epi-film, while the other is a direct epi-growth
of GaN/InxGa1−xN microdisk, previously developed by our group [9–11]. In the photo-lithographic
processing approach, one limitation is that the smaller the mini/micro-LED lithographed from epi-film,
the worse the edge damage on the mini/micro-LED that occurs. Therefore, Lo et al. developed a
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3-dimensional (3D), low-temperature, self-assembling, epi-growth of hexagonal c-plane GaN microdisks
on γ-LiAlO2 (LAO) substrates by plasma-assisted molecular beam epitaxy (PAMBE) [9]. The 3D GaN
microdisk can be treated as a nearly free-standing GaN substrate for the further self-assembling growth
of InxGa1−xN/GaN QW [10,11] and RGB LED [12]. Because the size of a 3D GaN microdisk can be
controlled to 1~4 µm with high-quality InxGa1−xN/GaN QWs, a full-spectrum RGB micro-LED display
can be achieved simply by engineering the indium-content of the InxGa1−xN/GaN QW. By doing
so, the existence of lattice-mismatched strain allows for easier manufacture of high-indium content
InxGa1−xN/GaN micro-LEDs but requires theoretical re-calculation of the InxGa1−xN/GaN QW band
structure. In this paper, we study the lattice relaxation of the microstructure on wurtzite GaN
microdisks grown by PAMBE. The strain effect on the GaN microdisk is evaluated from the lattice
relaxation by high-resolution transmission electron microscopy (TEM), and the microscopic atomic
layers are analyzed.

2. Materials and Methods

Three c-plane (0001) GaN microdisk samples were grown on 1 × 1 cm2 γ-LAO substrates by
PAMBE (Veeco Applied-GEN 930 system (White Bear Lake, Minnesota)) with standard effusion cells
for Ga-evaporation and an rf-plasma cell with 450 W for the N2-plasma source. The LAO substrates
were cleaned with acetone (5 min), isopropanol (5 min), phosphoric acid (1:30) (5 min), de-ionized
water (5 sec), and then were sequentially dried by nitrogen gas. After the cleaning, the LAO substrates
were mounted on a holder and out-gassed in an MBE chamber at 700 ◦C for 10 minutes. Thereafter,
the substrate temperature was decreased to the growth temperature. The detail of the epi-growth can
be accessed in our previous papers [9,10]. The Ga wetting layer was deposited on the LAO substrate
for 5 minutes at, and then the GaN microdisk samples were grown at three temperatures: 620, 630 and
640 ◦C (denoted as samples A, B and C, respectively) with the same (N:Ga) flux ratio of (9.0 × 10−6

torr:6.5 × 10−8 torr) for 70 minutes. Because the surface diffusion of GaN epi-growth is a function of
growth temperature, the effect of different temperature is then under investigation as well. Three GaN
microdisks with a diameter of ~1.5 µm were selected from samples A, B, and C for the study of
microscopic lattice relaxation. The scanning electron microscope (SEM) images from the top view and
a tilted angle of the samples focused on the hexagonal GaN microdisks are shown in Figure 1.

The transmission electron microscope (TEM) specimens were prepared by a dual-beam focus ion
beam (FIB) with a cleavage face along the [1100] direction, as shown by the dashed lines in Figure 1a,d,g.
Based on the ball-stick model of GaN microdisk, as shown in the inset of Figure 1c [9], the lateral width
in the [1100] direction per primitive cell is equal to the spacing between {1100} planes, dM =

√
3a/2,

and this spacing between {0001} planes is just equal to lattice constant c, dc = c, where a and c are the
lattice constants of wurtzite GaN. The edge of oblique surface (1101) is then tilted off the c-axis by the
angle = tan−1(dM/dc) = tan−1(

√
3a/2c ) = 28.1◦ (we used a= 0.3160 nm, and c= 0.5125 nm for the ideal

bulk GaN wurtzite) [5]. The angle of 28◦ can be easily checked on the TEM images of the three samples
shown in Figure 1c,f,i. However, the 3D divergent self-assembling growth of the GaN microdisk will
generate unbalanced stress between {0001} planes during the epi-growth by PAMBE, finally leaving
dangling bonds on the oblique surfaces of (1101) and the top (0001) surface. On the epi-growth of
the GaN microdisk, the unbalanced stress, therefore, yielded a lattice relaxation during the growth
of the layer-by-layer self-assembly. In order to investigate the lattice relaxation, we performed the
high-resolution field-emission TEM measurement (Tecnai F20G2 MAT S-TWIN) at the locations marked
with vertical lines along the c-axis and the lateral line along the [1100] direction, shown in Figure 1c,f,i.
The lattice constants were then calculated from the microscopic TEM images.
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Figure 1. (a,d,g) SEM top-view images of samples A, B, and C, respectively, with the cleavage plane 
along 1100  direction (scale bars are 0.5 μm for A and B, 1 μm for C). (b,e,h) SEM images of (a,d,g) 
at a tilted angle. (c,f,i) TEM images of samples A, B, and C (scale bars are 0.2 μm). Inset of (c) shows a 
ball-stick model of GaN microdisk, and the d-spacing of primitive cell. 

3. Results and Discussion 

The high-resolution TEM measurement was performed for sample A on locations HR01–HR06 
along the c-axis and lateral locations HR07–HR10 along the [1100] direction, shown in Figure 1c. The 
high-resolution TEM image of spot HR01 is shown in Figure 2a1. The d-spacing can be calculated 
from atomic layers by scanning the microscopic structure of this high-resolution TEM image using 
the internal software “DigitalMicrograph” provided by Tecnai, Inc. We scanned ten successive 

Figure 1. (a,d,g) SEM top-view images of samples A, B, and C, respectively, with the cleavage plane
along

[
1100

]
direction (scale bars are 0.5 µm for A and B, 1 µm for C). (b,e,h) SEM images of (a,d,g) at a

tilted angle. (c,f,i) TEM images of samples A, B, and C (scale bars are 0.2 µm). Inset of (c) shows a
ball-stick model of GaN microdisk, and the d-spacing of primitive cell.

3. Results and Discussion

The high-resolution TEM measurement was performed for sample A on locations HR01–HR06
along the c-axis and lateral locations HR07–HR10 along the [1100] direction, shown in Figure 1c.
The high-resolution TEM image of spot HR01 is shown in Figure 2a1. The d-spacing can be calculated
from atomic layers by scanning the microscopic structure of this high-resolution TEM image using
the internal software “DigitalMicrograph” provided by Tecnai, Inc. We scanned ten successive lattice
lines along the [1100] direction for dM-spacing and c-axis for dc-spacing, as marked by yellow lines in
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Figure 2a1, and took an average value for the location (e.g., at height z). The examples of scanned lattice
lines are shown in Figure 2a2 (horizontal) and Figure 2a3 (vertical) for dM-spacing and dc-spacing,
respectively. We then obtained the averages dM = 0.2742 nm and dc = 0.52408 nm at HR01, yielding the
angle θ = tan−1(dM/dc) = 27.62◦ near the initial nucleation of GaN atop the LAO substrate. Similar
analyses were repeated for HR02–HR06, some of which are shown in Figure 2b for HR02, Figure 2c
for HR04, and Figure 2d for HR06. For instance, we obtained the average dM = 0.2748 nm and
dc = 0.5237 nm for HR02, giving θ = 27.69◦. For HR04, we obtained average dM = 0.2764 nm and
dc = 0.5241 nm, yielding θ = 27.81◦. For HR06, we obtained average dM = 0.2771 nm and dc = 0.5241 nm,
yielding θ = 27.87◦. The lattice strain is relaxed along the c-axis with the angle spreading from 27.62 to
27.81◦ during the epi-growth from the substrate up to the top surface.
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Figure 2. (a1,b1,c1,d1) High-resolution TEM images at HR01, HR02, HR04, and HR06, with scale bar 
of 5 nm. (a2,a3) The dM- and dc-spacing measurements for (a1). (b2,(b3) The dM- and dc-spacing 
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Figure 2. (a1,b1,c1,d1) High-resolution TEM images at HR01, HR02, HR04, and HR06, with scale bar
of 5 nm. (a2,a3) The dM- and dc-spacing measurements for (a1). (b2,(b3) The dM- and dc-spacing
measurements for (b1). (c2,c3) The dM- and dc-spacing measurements for (c1). (d2,d3) The dM- and
dc-spacing measurements for (d1).

The lateral relaxation at the top surface was also evaluated for HR07–HR10, as shown in
Figure 3a–d, respectively.
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Figure 3. (a1,b1,c1,d1) High-resolution TEM images at HR07, HR08, HR09, and HR10, with scale
bar of 5 nm. (a2,a3) The dM- and dc-spacing measurements for (a1). (b2,b3) The dM- and dc-spacing
measurements for (b1). (c2,c3) The dM- and dc-spacing measurements for (c1). (d2,d3) The dM- and
dc-spacing measurements for (d1).

We obtained the average dM = 0.2778 nm and dc = 0.5240 nm for HR07, giving to θ = 27.93o.
For HR08, average dM = 0.2772 nm and dc = 0.5244 nm, and θ = 27.86o. For HR09, average
dM = 0.2771 nm and dc = 0.5241 nm, and θ = 27.87o. For HR10, average dM = 0.2766 nm and
dc = 0.5242 nm, while θ = 27.82o. The lateral lattice relaxation of the 2D aggregation looks slighter
than the vertical relaxation of 3D stacked growth along the c-axis. We converted the lattice constants
in Å units (i.e., dM =

√
3a/2 and dc = c) of sample A (growth temperature = 620 ◦C) from the measured

d-spacing with standard deviation in Table 1. The vertical lattice relaxation as a function of stacked
height (z) can be easily observed from the plot of constants a and c against stacked height (z) along the
c-axis from HR01 to HR06, as shown by the black squares in Figure 4.

We also analyzed samples B (630
◦

) and C (640
◦

) in the same way to evaluate the effect of growth
temperature on the stacked lattice relaxation of GaN microdisk. Some of the high-resolution TEM
images and d-spacing measurements are shown in Figures 5 and 6. Table 2 presents data for the
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obtained average dM and dc values, as well as those for θ. Again, we converted the lattice constants
(a and c) of sample B (630

◦

) from the measured d-spacing, as well as for sample C (640
◦

). TEM Images
corresponding to locations in the range HR11 to HR17 are also presented. Figure 5a1 shows location
HR11 from Figure 1f. Figure 5b1 is HR13, Figure 5c1 is HR15, and Figure 5d1 is HR17.

Table 1. The lattice constants of sample A.

Sample A Lattice Constant a (Å)
Standard
Deviation

of a (Å)
Lattice Constant c (Å)

Standard
Deviation

of c (Å)

HR01 3.168 0.005 5.241 0.015
HR02 3.174 0.004 5.237 0.014
HR03 3.185 0.006 5.242 0.014
HR04 3.191 0.006 5.241 0.008
HR05 3.196 0.007 5.238 0.013
HR06 3.200 0.005 5.241 0.002
HR07 3.208 0.005 5.240 0.018
HR08 3.201 0.009 5.244 0.010
HR09 3.200 0.009 5.242 0.012
HR10 3.194 0.013 5.241 0.011

Table 2. The lattice constants of sample B.

Sample B Lattice Constant a (Å)
Standard
Deviation

of a (Å)
Lattice Constant c (Å)

Standard
Deviation

of c (Å)

HR11 3.165 0.005 5.246 0.003
HR12 3.172 0.005 5.243 0.008
HR13 3.184 0.004 5.237 0.003
HR14 3.191 0.004 5.242 0.001
HR15 3.201 0.003 5.245 0.004
HR16 3.204 0.004 5.248 0.007
HR17 3.206 0.004 5.244 0.007
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Table 3. The lattice constants of sample C.

Sample C Lattice Constant a (Å)
Standard
Deviation

of a (Å)
Lattice Constant c (Å)

Standard
Deviation

of c (Å)

HR18 3.165 0.005 5.239 0.008
HR19 3.178 0.005 5.236 0.008
HR20 3.193 0.005 5.239 0.006
HR21 3.200 0.005 5.244 0.001
HR22 3.204 0.004 5.245 0.004
HR23 3.208 0.004 5.243 0.005
HR24 3.210 0.003 5.246 0.003
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Figure 5. (a1,b1,c1,d1) High-resolution TEM images at HR11, HR13, HR15, and HR17, with scale
bar of 5 nm. (a2,a3) The dM- and dc-spacing measurements for (a1). (b2,b3) The dM- and dc-spacing
measurements for (b1). (c2,c3) The dM- and dc-spacing measurements for (c1). (d2,d3) The dM- and
dc-spacing measurements for (d1).
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Values shown in Tables 1–3 were used to create fitting lines in Figure 4 by plotting constants
a and c against stacked height (z) along c-axis, as shown by blue triangles. Similarly, for sample
C, the obtained dM, dc, and θ values are presented in Table 3, with corresponding TEM images in
Figure 6a1 (HR18), Figure 6b1 (HR20), Figure 6c1 ( HR22), and Figure 6d1 (HR24). Lattice constants
(a and c) for Sample C (640o) are shown by red circles in Figure 4. From the best curve fitting results,
we obtained a linear relationship for lattice constant c: f(z) = c0 + c1z, with c0 = (5.240 ± 0.001)Å and
c1 = (3.213 ± 1.376) × 10−6; and a quadratic variation for lattice constant a: f(z) = a0 + a1z + a2z2,
with a0 = (3.163 ± 0.001)Å, a1 = (5.114 ± 0.356) × 10−5 and a2 = (−1.426 ± 0.222) × 10−8.

The datapoints for all three samples follow the fitting equations within the standard deviations
marked by error bars. The strain (ε) against stacked height (z) can be defined as ε= [f(z) – f(0)]/f(0) during
the epi-growth. This indicates that the awl-shaped hexagonal GaN microdisks were grown under an
anisotropic strain and the effect of temperature (from 620 to 640 oC) results in minor fluctuations in
strain during the epi-growth. From the extrapolation of fitting curves, we obtained the initial lattice
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constants of the GaN microdisk at nucleation interface on the LAO substrate (z = 0 nm): a0 = 3.163 Å
and c0 = 5.240 Å. Because the substrate (γ-LiAlO2) is a tetragonal structure with lattice constants
aLAO = bLAO = 5.169 Å and cLAO = 6.268 Å, it provides a nearly lattice-matched rectangular anionic
basal plane for 2D M-plane GaN (1100) epi-growth, where aLAO � cGaN (within 1.4%) and cLAO �

2aGaN (within 0.9%), as shown in the inset of Figure 7 [13]. In addition, the substrate also provides a
hexagonal anionic basal plane (i.e., oxygen sites in the inset of Figure 7) for 3D c-plane GaN (0001)
microdisk gowth [14].
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Figure 7. PL spectra at room temperature for samples A, B, and C. The inset shows the diagram of
lattice structure for (100) γ-LAO substrate.

By controlling growth parameters, the 3D c-plane GaN (0001) microdisks can be easily achieved
in our PAMBE system [9–11]. Therefore, the edge of the hexagonal basal plane is equal to
(1/2)cLAO = 3.134Å, which offers the hexagonal basis for the nucleation of the GaN microdisk (a0 = 3.163Å)
with a 0.94% mismatch. This mismatch was the origin of the stress for further GaN microdisk growth,
resulting in the strain with a linear relationship to stacked height (z) in lattice constant c and a
quadratic deviation in lattice constant a. We also checked the optical property of the samples by
photoluminescence (PL) measurements at room temperature, as shown in Figure 7. We took PL
measurements with a He-Cd 325 nm laser as a light source and focused the laser beam on center
of microdisk. The detailed analyses can be seen in our previous study in reference [10]. The major
peaks at 3.4 eV referred to the band edge transition of GaN, and exhibited no difference among
samples, and only a slight change occurs in their full width at half maximum (FWHM). The other
peaks (e.g., 2.23 and 3.22 eV) were attributed to the emission of excitons bound to the structured defects
of microstructures [15–17] near the microdisks, as shown in Figure 1b,e,h.

4. Conclusions

We studied the lattice relaxation of self-assembled GaN microdisks grown by PAMBE on a
γ-LiAlO2 substrate. We obtained the anisotropic strain of the GaN microdisk against stacked height
(z); a linear relationship for vertical strain of lattice constant c: f(z) = c0 + c1z, with c0 = 5.240 Å and
c1 = 3.213 × 10−6; and a quadratic variation for lateral strain of lattice constant a: f(z) = a0 + a1z + a2z2,
with a0 = 3.163 Å, a1 = 5.114 × 10−5 and a2 = −1.427 × 10−8. The lattice mismatch is about 0.94% at the
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interface between GaN microdisks and the γ-LiAlO2 substrate, which induces the anisotropic strain
during the epi-growth. The 3D self-assembling 28o growth of GaN microdisk created the unbalanced
stress between {0001} planes, leading to the anisotropic strain during the layer-by-layer self-assembly.
The change in growth temperature (from 620 to 640 ◦C) only slightly influences the lattice relaxation at
the hetero-interface between GaN and LAO substrates, as well as the microstructure of GaN microdisks.
The strain relationship fitting provides important information for the theoretical band calculation,
as well as for engineering InxGa1−xN/GaN QW micro-LEDs.
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