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Abstract: The combination of additive manufacturing and conventional metal forming processes
provides the possibility for improvements of forming efficiency and flexibility. Substrate preheating
is an implementable technique to improve the interface adhesion properties of the hybrid forming
method. The present experiment investigates the adhesion of additive manufactured 316 L
steel on P20 and 1045 steel substrates under two substrate temperatures, and the geometrical
characterization, interfacial microstructure and mechanical property of the hybrid specimens were
compared. As a result, it was found that the ratio of deposition height to the width was reduced
and the width was increased under substrate preheating. Tensile results show that the ultimate
strength of 1045 and 316 L hybrid specimens was obviously increased, while the properties of
hybrid specimens P20 and 316 L were similar, under different substrate temperature conditions.
For the hybrid specimens with the metallurgically bonding characteristic, the tensile properties
can reach the level of 316 L depositioned specimens fabricated by laser metal deposition (LMD).
Furthermore, substrate preheating had little effect on the microstructure of the laser metal deposition
zone, and significant influence on the microstructure of the heat affected zone, which was reflected in
the difference of the hardness distribution.

Keywords: substrate preheating; hybrid forming; geometrical characteristics; microstructure;
tensile properties

1. Introduction

In order to improve the building efficiency of current forming technology, integrating additive
manufacturing with conventional manufacturing (metal forming) processes is an economical way
to fabricate large-scaled structures with local precision parts [1]. Some functional structures can be
manufactured by building multilayer sections with laser metal deposition (LMD) on existing substrates
using precision casting or wrought. This includes using a mold with conformal cooling channels [2,3],
component repairing [4], and surface strengthening [5,6]. This hybrid manufacturing process has been
thoroughly discussed for titanium alloy [7] and steel [8].

On the one hand, when steel is used for mold and die (especially high carbon steel), it is difficult
to deposit many layers on conventional manufacturing substrate without defects, as it is an alloy with

Crystals 2020, 10, 891; doi:10.3390/cryst10100891 www.mdpi.com/journal/crystals

http://www.mdpi.com/journal/crystals
http://www.mdpi.com
https://orcid.org/0000-0003-0937-1898
https://orcid.org/0000-0003-2312-1705
http://www.mdpi.com/2073-4352/10/10/891?type=check_update&version=1
http://dx.doi.org/10.3390/cryst10100891
http://www.mdpi.com/journal/crystals


Crystals 2020, 10, 891 2 of 15

high levels of hardness. Simultaneously, the LMD process offers the capability of depositing diverse
material, such as interlayer materials [9] and functionally gradient materials [10,11]. This characteristic
can be utilized to build dense deposition layers on existing substrate without cracks. For hybrid
manufacturing processes, the interfacial adhesion property is in significant need of a high-reliability of
industry applications. Most of the previous studies have concentrated on depositing high-hardness
material with low height on conventional manufacturing steel, which was mainly used in mold
repairing or surface hardening. Chen et al. discussed residual stresses during cladding the P20 tool
on wrought P20 substrate [12], Liu et al. discussed laser clad AerMet100 steel coating on 300 M
steel substrate [13]. Sun et al. formed an AISI 4340 steel coating on an AISI 4140 steel substrate [14].
The former studies were mainly aimed at depositing on a small area (the maximum length of deposition
area was less than 1000 mm) with a small deposition height (deposition layer number was less than 10).

On the other hand, combining conventional manufacturing with the additive manufacturing
process [15–17], which is also called the hybrid forming process, seems to be a reasonable method
for complex mold and die forming [18]. The hardened surface region of molds and dies require
high levels of hardness, which requires a significant martensite phase in microstructure. In general,
the martensitic steel has poor plasticity. In consideration of deposition height, the deposition height
in the hybrid forming process is usually higher than laser cladding. The residual stress increased
with the increasing of deposition area and layers. This increases the tendency for cracking to occur
during the deposition process, especially depositing on high-hardness material. Depositing interlayer
materials with good deformation performance seems to be a useful way for safe adhesion at the
interface of different materials and forming processes. This way, the residual stress at the interface
can be weakened. By successive depositing of interlayer materials and surface-hardened steel on
conventional manufacturing steel substrate, the hybrid formed mold can be realized. The interface
adhesion properties and mechanical properties of interlayer material and conventional manufacturing
steel are necessary research areas.

Many researchers have paid attention to improving the interfacial adhesion property by optimizing
material composition, substrate preheating and process parameters. Among them, substrate preheating
is a universal and efficient way to realize good interface adhesion when laser cladding hard material,
such as high C martensite steel [19], metallic glass [20] and hypereutectoid steel [21], which has a
tendency to crack because of martensite transformation or composition difference. In these studies,
the preheating in laser additive manufacturing was mostly applied in surface cladding for high-hardness
and easy-cracking steel.

Therefore, in consideration of interlayer material with good ductility and toughness, whether
there was an effect of substrate preheating on the mechanical properties in the laser cladding process
was not clear. The 316 L stainless steel was selected as the interlayer material between higher-hardness
surface material and conventional manufacturing steel, which has been used as the interlayer material
for hybrid formed Hot Stamping Dies [2]. In this paper, the Wrought P20 and 1045 steels formed
by forging were used as the substrate material, which has the integrated mechanical properties to
serve as the base region of the hybrid mold. The influence of substrate preheating on the interfacial
microstructure and mechanical behavior between laser deposition interlayer material and conventional
manufacturing steel was systematically analyzed.

2. Materials and Methods

Commercial 1045 and P20 wrought steel plates, with dimensions of 50 mm × 120 mm × 30 mm
(W × L × T) were used as the substrate. The composition of the P20 steel was as follows: 0.004 C,
0.015 Cr, 0.008 Mn, 0.003 Si, 0.005 Mo and bal. Fe. Wrought 1045 steel was composed of 0.005 C, 0.002 Si,
0.005 Mn and bal. Fe. Prior to the deposition process, the top surface of the substrate was machined and
cleaned with acetone, which was to remove the surface oxide and ensure the same surface roughness of
different samples. Simultaneously, the 316 L stainless steel powders provided by Höganäs (China) Co.,
Ltd. (Dalian, Liaoning, China) were used as the deposition material, the composition of which was
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as follows: 0.006 C, 0.17 Cr, 0.007 Si, 0.015 Mn, 0.128 Ni, 0.026 Mo, and bal. Fe. The average particle
diameter of the powder was 50~150 µm and in a spherical particle morphology.

The laser metal deposition experiment was done with a self-build device as mentioned in
reference [22]. The following process parameters were selected: laser powder 1.6–2 kW, scanning speed
4–6 mm/s, and powder feeding rate 10 g/min, which were the optimized parameters for laser deposition.
Based on the formal experiment using the same device, the deposition height was uniform and no
interfacial defects were found under these process parameters. First, single deposition layers on the
P20 and 1045 steel substrate, with a thickness of 0.5~0.8 mm, were produced under the aforementioned
parameters. The same parameters were used for different substrates to compare the microstructure
and mechanical property difference of hybrid samples with different substrate steel. Second, thin wall
deposition layers samples with the same height as the substrate were produced by zigzag method
with laser powder 1.8 kW, laser spot 3 mm and scanning speed 6 mm/s. In order to control defect
formation, the previous layers’ hatch space was 1.5 mm, while the hatch space of the subsequent layer
was 2 mm. Both single deposition layer and hybrid forming multilayer samples were produced with
substrate temperatures of 25 ◦C and 210± 10 ◦C, respectively. Before the hybrid samples with preheated
substrate were produced, the substrate was heated to 200 ◦C to 220 ◦C by a heater, and thermocouples
were fixed on the top surface to measure the temperature variation. Moreover, a temperature control
system was connected to the thermocouple and heater to control, as in, facilitate/monitor any increase
beyond 200 ◦C but below 220 ◦C. The preheating temperature range of 200 ◦C to 220 ◦C was selected in
consideration of substrate oxidation behavior, and the difficulty of the large-scale part heating process.
All deposition experiments were done in room air.

Then, the hybrid forming specimens with single deposition layer were sectioned along the
longitudinal direction for geometrical characterization observation, as seen in Figure 1a. The deposition
width (W1), deposition height (H2), and melt height (H1) under different processing parameters were
measured by a Dino-Lite digital microscope (Taiwan Premier, (Suzhou, (JiangSu), China), for comparing
the geometrical characterization’s difference. The geometric characteristic of the cross-section is an
effective parameter for deposition quality, thermal and subsequently mechanical analysis [23] during
the laser metal deposition process, which could reflect the quality of the deposition layer. Samples of
2.5 mm in width were cut along the longitudinal direction from the multilayer hybrid forming samples.
Microstructure analysis and room temperature test samples were selected, as shown in Figure 1b,
and the microstructure and microhardness were done on the transverse direction section. The unit in
Figure 1b is mm.
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The specimens for microstructure and geometric characterization observation were mounted,
polished, then etched in chloroazotic acid. The substrate steel was etched by a nitric acid–alcohol
solution for optical microscopy observation. The microstructure of those specimens was observed by
stereology microscopy (Stemi 2000, Carl Zeiss AG, Oberkochen, Germany) and optical microscopy
(Axiovert 200 MAT, Carl Zeiss AG, Oberkochen, Germany). Microstructure and fracture surface were
observed by means of Hitachi S-3400 N (Hitachi, Tokyo, Japan) and TESCAN MAIA3 (TESCAN
China, (Shanghai, China) scanning electron microscope (SEM). Elemental analysis was done by energy
dispersive spectrometry (EDS) (TESCAN China, (Shanghai, China)) during the SEM analysis. Based on
the guidelines given in GB/T 228.1-2010, the sizes of tensile test specimens were determined, as shown
in Figure 1b. The RT (room temperature) tensile testing was conducted on the 5582 Instron testing
machine (Instron, Boston, Massachusetts, USA). The hardness was measured by Vickers hardness
tester (AMH43) with an indentation load of 200 g for 15 s. The residual stress was measured by a
Photo-LXRD X-ray diffraction device (P‘Nalytical B.V., Almelo, the Netherlands), and the testing points
are marked in Figure 1.

3. Results and Discussion

3.1. Geometric Characterization

The comparison of these calculated results is listed in Figure 2. The X-axis in Figure 2 represents
laser power (P) and scanning speed (S) under different combination of process parameters. As shown in
Figure 2a,b, the melt height (H1) and deposition width (W1) are significantly increased under the effect
of substrate preheating. However, the deposition height (H2) of specimens with substrate preheating
are slightly lower or equal to the specimens without substrate preheating. Similarly, this result was also
found in laser deposition of 316 L on P20 steel. Evidently, the remolten size of the substrate increased
with the help of substrate preheating, which would lead to the increase of W1 and H1. The calculated
results of W1, H1 and the sum of H1 and H2 are closely related to laser power and scanning speed.
The sum of H1 and H2, which indicates the height of the remolten pool section, is increased as a result
of the increased powder catchment efficiency [24] and remolten zone volume. However, no clear
relationship between H2 and laser powder and scanning speed was found. Similarly, the variation of
W1, H1 and H1 + H2 of 316 L with P20 steel substrate shows the same variation tendency with the
change of process parameters (laser power and scanning speed).

The values of H2 and W1 were assessment indexes of the deposition layer. The statistical results
shown in Figure 2a indicate thatW1 of deposition specimens on 1045 steel substrate ranges from
3.679 to 4.207 mm among the parameters listed in Figure 2; while the range from 3.962 to 4.744 mm
exists for substrate preheating, which is greater than the laser beam diameter (3 mm) as mentioned by
Liu et al. [25]. The W1 ranges of the different materials deposited under various heat input is lower
than the ranges when using substrate preheating. The H2 of deposition specimens on 1045 steel ranges
from 0.481 to 0.792 mm and ranges from 0.489 to 0.679 mm with substrate preheating. This means H2
ranges of the different materials deposited under various heat inputs is greater than the ranges when
using substrate preheating. For specimens under the same heat input, the value of W1 was increased
and H2 was decreased, and the ratio of H2/W1 is decreased under substrate preheating. The H2/W1
ratios of 316 L on 1045 specimens were 0.141 (1600 W, 6 mm/s) and 0.142 (2000 W, 6 mm/s) without
preheating, decreased to 0.127 and 0.121, respectively, under substrate preheating as illustrated in
Figure 3a. Similarly, the H2/W1 ratios of 316 L on P20 specimens decreased to 0.118 (1600 W, 6 mm/s)
and 0.109 (2000 W, 6 mm/s) under substrate preheating, from 0.131 and 0.125, respectively, as illustrated
in Figure 3b. This indicates that the contact angle (illustrated in Figure 3) was reduced under the effect
of substrate preheating. The contact angle was reduced under substrate preheating, which makes the
top surface of the deposition layer smoother than the surface without preheating.
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Figure 3. Morphology of laser metal deposition 316 L on 1045 steel (a) and P20 steel (b).

3.2. Macrostructure Analysis

Figure 4a,c shows micrographs of hybrid specimens made by LMD 316 L with 1045 and P20
steel, respectively, LMD 316 L with 1045 and P20 steel specimens with substrate preheating are also
respectively shown in Figure 4b,d for comparison. The deposition boundaries are marked by red and
yellow lines in Figure 4. The deposition boundaries of zigzag structure became the adjacent layer,
scanning along the opposite direction. As shown in Figure 4b, LMD 316 L formed metallurgically sound
and dense bonding with 1045 steel under substrate preheating, while defects formed near the bonding
interface and terminated on the bottom melting line of the third deposition layer without substrate
preheating. Unmolten powder was found in the defects zone as shown in Figure 5b, which verifies the
insufficient bonding behavior. Meanwhile, internal stress caused cracking near the interface, as marked
by the yellow dash line Figure 5c. The difference in interface morphology was mainly due to the
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morphology of the deposition layer. Assuming the wider deposition width of the single scanning
path and the smoother surface morphology of one deposition layer under the substrate preheating,
the insufficient bonding behavior between adjacent layers of multiple layers was eliminated. However,
both LMD 316 L with P20 steel specimens have metallurgically bonding characteristics without defects
under different substrate temperatures. Defects were generated by insufficient bonding between the
adjacent deposition tracks. Comparing the difference of deposition width between 1045 and P20 steel
as shown in Figure 2b,d, it is evident that the deposition width on 1045 steel is slightly smaller than P20
steel under the same parameter. The boundaries of different deposition tracks are clearly distinguished
in Figure 4a,c. The height of the deposition track with substrate preheating is larger than other tracks.
This phenomenon is more clearly evident in LMD 316 L with P20 steel.
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Figure 4. Optical macrograph showing the morphologies on the transverse cross section of (a) 316 L
with 1045 without preheating, (b) 316 L with P20 without preheating, (c) 316 L with 1045 preheated to
200 ◦C, (d) 316 L with P20 preheated to 200 ◦C; microstructure of A zone (e), B zone (f), C zone (g),
D zone (h), E zone (i), F zone (j).



Crystals 2020, 10, 891 7 of 15
Crystals 2020, 10, x FOR PEER REVIEW 8 of 17 

 

 

Figure 5. SEM micrographs near the defects zone: (a) defects near interface; (b) unmolten powder; (c) 

crack zone. 

3.3. Interfacial Morphology 

Figure 6 presents the microstructural characteristics of the interface between 316 L deposition 

layer with 1045 and P20 substrate. As shown in Figure 6, the flat structure is presented at the 

interface under the effect of high temperature gradient and low solidification velocity. Fine cellular 

and columnar dendritic have grown perpendicular to the interface, which was caused by 

temperature gradient perpendicular to the bottom of the molten pool. The microstructure of laser 

metal deposition 316 L is mainly composed of δ, γ phases, as reported in the literature [26,27]. The 

matrix phase (dark region in the dendritic region) is the γ austenite phase, and the interdendritic 

phase is δ-ferrite or γ-austenite in reticular distribution morphology. However, it is difficult to 

distinguish the δ-ferrite from the SEM images. In comparison to the deposition microstructure, it is 

apparent that the microstructure morphology of the deposition layer is similar. The average dendrite 

arm space of the microstructure with different substrate temperatures is below 10 μm, while the 

dendrite arm space only minorly increased with the increasing substrate temperature. The impacts 

of substrate preheating on the microstructure of the deposition layer is mild. 

  

Figure 5. SEM micrographs near the defects zone: (a) defects near interface; (b) unmolten powder;
(c) crack zone.

3.3. Interfacial Morphology

Figure 6 presents the microstructural characteristics of the interface between 316 L deposition layer
with 1045 and P20 substrate. As shown in Figure 6, the flat structure is presented at the interface under
the effect of high temperature gradient and low solidification velocity. Fine cellular and columnar
dendritic have grown perpendicular to the interface, which was caused by temperature gradient
perpendicular to the bottom of the molten pool. The microstructure of laser metal deposition 316 L is
mainly composed of δ, γ phases, as reported in the literature [26,27]. The matrix phase (dark region in
the dendritic region) is the γ austenite phase, and the interdendritic phase is δ-ferrite or γ-austenite
in reticular distribution morphology. However, it is difficult to distinguish the δ-ferrite from the
SEM images. In comparison to the deposition microstructure, it is apparent that the microstructure
morphology of the deposition layer is similar. The average dendrite arm space of the microstructure
with different substrate temperatures is below 10 µm, while the dendrite arm space only minorly
increased with the increasing substrate temperature. The impacts of substrate preheating on the
microstructure of the deposition layer is mild.

Nevertheless, the microstructure of the HAZ (heat affected zone) in the substrate is different
between the microstructure of different substrate temperatures. The difference is also found in
specimens of both of 316 L with 1045 and P20 substrate. The unaffected microstructure of 1045 steel
consisting of ferrite and pearlite is shown in Figure 7a; the ferrite is the dark phase etched by a nitric
acid–alcohol solution; and the pearlite phase consists of alternating layers of ferrite (dark region) and
cementite (white phase in long strips). This is consistent with the optical result as shown in Figure 4g,
the white zone is the ferrite, and the dark zone is pearlite. During laser deposition, the ferrite and
pearlite austenitized, cooled rapidly, and then formed a nonequilibrium microstructure during the
cooling process. Rashid et al. [28] reported the HAZ microstructure of mild steel during laser deposition
consisted of martensitic lath plus ferrite and bainite plus ferrite. The resulting HAZ microstructure is
affected by peak temperature and cooling rate [29], which is closely related to the processing parameters
and substrate properties. The resultant microstructure within the scope of this research mainly consists
of pearlite in different morphologies, and the microstructure is refined. The composition of the ferrite
phase in the HAZ is obviously decreased as shown in Figure 4e,f. The HAZ microstructure of 1045 steel
under substrate preheating is coarsened with preheating.
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of P20 under preheating.
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Figure 7. Unaffected microstructure of wrought substrate: (a) 1045 steel; (b) P20 steel.

The unaffected substrate microstructure of P20 steel is composed of tempered martensite, as shown
in Figure 7b. The resultant microstructure at the HAZ experienced different degrees of tempering
during laser deposition, which was also verified by Chen et al. [12]. Carbide precipitated and grew
between martensitic lathes, and the carbide is marked by a purple circle in the highly magnified image



Crystals 2020, 10, 891 9 of 15

shown in Figure 6d. The HAZ microstructure had more carbide phases under substrate preheating, as
shown in Figure 6c,d.

The compositional profiles of the interface between 316 L with 1045 and P20 steel are presented in
Figure 8a,b, respectively. The compositional profiles of the interface under substrate preheating are
shown in Figure 8c,d for comparison. The EDS testing lines are marked in Figure 6a–d. Because of
composition difference between the lower alloyed substrate and the 316 L deposition layer, the contents
of Cr, Ni and Fe elements tend to be found towards sharp decreases at the interface. The width of
the composition variation zone is nearly equal to the width of the flat crystals near the fusion line.
An EDS mapping performed at the fusion zone are shown in Figure 9, which demonstrates that the
clear composition variation happened in the fusion line. The EDS mapping image was from specimens
of laser deposition 316 L on 1045 steel without preheating (the testing region has been marked in
Figure 6a), and the results of the other three specimens were similar in comparison (not shown to avoid
repetition). The composition of the first deposition layer is homogeneous, no macrosegregation is
found. This can be largely attributed to the sufficient mixing in the molten pool and the compositional
difference between the substrate material and the deposition material. Macrosegregation might happen
at the first deposition layer as mentioned by Liu [30]. The composition variation of different wrought
materials under substrate preheating are the same as that without preheating, as shown in Figure 8c,d.
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3.4. Tensile Properties

Figure 10 shows the stress–strain curves of specimens selected from LMD built from 316 L with
wrought 1045 and P20 steel. The hybrid samples of 316 L/1045 steel cracked under a lower stress
level. At the same time, there are large differences in mechanical properties among samples 1, 2, 3.
Under substrate preheating, the average ultimate strength of hybrid forming specimens increases from
390 MPa to 557 MPa, and the average elongation increases from 3.8% to 37.3% as shown in Figure 11a.
The weakness of tensile properties is correlated with the interface cracks. However, the stress–strain
curve of 316 L/P20 steel hybrid specimens is similar, whether or not the substrate preheating was done,
as shown in Figure 10b. The average ultimate tensile strength and elongation of hybrid specimens of
316 L with P20 steel are 565.3 MPa and 35.9% respectively, while this changes to 550 MPa and 32%
under substrate preheating, as shown in Figure 11b.
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Figure 11. Static mechanical properties of different hybrid-processed samples: (a) 1045 with 316 L; (b)
P20 with 316 L.
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Figure 12 shows the hybrid formed plate tensile samples. The fracture surfaces of the tensile test
specimens are presented in Figure 13. The white line in Figure 12 represents the interface of 316 L and
substrate, and the shrinkage of the neck is presented in a large magnified image. Fractures of 316 L
with 1045 steel are located in the interface without substrate preheating, whereas the location of the
fracture changes to the LMD zone under substrate preheating. All fractures of 316 L with P20 steel
specimens are in the LMD zone, despite the fractures near the interface. Neck contraction is found on
samples which did not crack in the interface, as shown in Figure 12b–d.
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Figure 12. Hybrid formed plate tensile samples: (a) 316 L with 1045 steel; (b) 316 L with 1045 steel
under preheating; (c) 316 L with P20 steel; (d) 316 L with P20 steel under preheating.

The resulting mechanical properties verify that the tensile strength of hybrid formed specimens
with different substrates are very different. During the laser metal deposition process, some defects
might form as a result of insufficient bonding, which deteriorates the adhesion properties. In this study,
the 316 L and 1045 steel hybrid samples keep the interface bond characteristics safe under substrate
preheating, which increases the bonding properties more so than without preheating. Under substrate
preheating the deposition layer is smooth and wide, which will promote adhesion properties under
the scanning method in the same hatch space. However, the mechanical properties of the hybrid
specimens of 316 L with P20 steel were similar between different substrate temperatures, because no
defects appeared on the interface zone without substrate preheating. The deposition width on 1045
steel was slightly smaller than P20 steel on the same parameter, as verified in Figure 2. As a result,
the hybrid samples of 316 L and P20 can realize safe interface bonding even without the help of
substrate preheating.

The tensile strength properties of hybrid forming 316 L with conventional manufacturing steel
and without interface defects are found to be comparable to that of the laser metal deposition 316 L
in the literature [29], which has ultimate tensile strength (540–625 MPa) and elongation (35–85%).
The tensile strength of wrought 1045 steel and P20 steel is above 600 MPa and 1250 MPa, respectively.
Additionally, the fracture of hybrid specimens occurs on the weakest position on the 316 L side,
away from the interface.
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Representative fractographs of the tensile specimens are shown in Figure 13. Flat fracture surface is
shown in Figure 13a, which was caused by a crack formed during the laser metal deposition. The brittle
fracture with dimple gliding fracture is shown in Figure 13b. Some micro cracks are discovered on
the fracture surface. Conversely, the fracture surface under substrate preheating shows a dimpled
ductile mode of tensile failure. The voids of unmelted powders in the laser metal deposition specimens
could be avoided by using more laser power, however excessive heat input would also result in
severe deformation of the wrought substrate. The fracture surfaces of 316 L with P20 steel, conversely,
are ductile fracture mode free from the influence of substrate preheating. The dimple size observed on
the fracture surface is similar. Some voids were also found, which were caused by incomplete melted
powder, as mentioned by Sun et al. [14] and Yadollahi et al. [31]. The fracture surfaces are consistent
with tensile properties as shown in Figures 10 and 11.
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Figure 13. Scanning electron microscopy photos of the fracture surface of the specimen: (a) flat fracture
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with 1045 under preheating; (d) 316 L with P20, (e) 316 L with P20 under preheating.

3.5. Microhardness Distribution

The microhardness distributions along the building direction of the laser metal deposition 316
L on P20 and 1045 steel are given in Figure 14a,b, respectively. A schematic about the test point of
hardness distribution is also shown. The mean hardness values of 316 L deposition zones for all
specimens are around 200 HV0.2. In addition, hardness distribution of different deposition layers is
similar. However, sharp changes in hardness are found in the interface between different materials.
The substrate HAZ hardness shows a different transformation phenomenon. The hardness of 1045
steel increases, while the HAZ hardness of P20 steel decreases, when comparing the affected substrate.
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Figure 14. Microhardness profiles along depth direction on the transverse cross section: (a) from 1045
substrate to 316 L steel; (b) from P20 substrate to 316 L steel.

The influence of preheating on the substrate hardness is different between 1045 and P20 steel,
which is closely related to the microstructure transformation. The hardness in 1045 steel HAZ region is
increased, which is because the microstructure was refined and the proeutectoid ferrite disappeared
during austenitization. The variation in characterization of substrate hardness is similar with different
substrate temperatures. Conversely, the HAZ microstructure of P20 substrate experienced severe
tempering after substrate preheating, which makes the HAZ hardness (300–330 HV0.2) lower than
without preheating. The decreasing width of the hardness region is correlated with the HAZ width
under substrate preheating. The hardness of P20 substrate without preheating is slightly decreased
compared to the unaffected substrate hardness (higher than 400 HV0.2).

The stress between first deposition layer and substance was usually the largest one among all
the layers, and the residual stress at the border position of hybrid formed specimens was measured.
The average value of residual stress in 316 L/1045 steel was 280 MPa, while after substrate preheating
the stress decreased to 262 MPa. The average value of stress in 316 L/P20 steel specimens decreased
from 303 MPa to 273 MPa under substrate preheating. Under substrate preheating, the stress of
deposition and substrate was reduced, while in this research, the influence of preheating on the residual
stress was small. The influence of substrate preheating on the thermal and residual stress will be
discussed further by high-scale laser cladding in hybrid forming process. The preheating temperature
higher than 200 ◦C might be more suitable to guarantee safe bonding and a lower stress level, but it is
hard to achieve this in a large scale part.

4. Conclusions

The followings are significant conclusions which can be drawn from this study:

1. Under substrate preheating, the deposition width (W1) was increased and deposition height (H2)
showed little difference. At the same time, the variation amplitude of deposition height (H2) as
heat input increased was weakened, but the variation amplitude of deposition width W1 was
broadened. In addition, the H2/W1 ratio was decreased, making the deposition layer surface
smoother. Similar morphology variation was found with both 1045 and P20 substrates.

2. LMD 316 L formed metallurgically sound and dense bonding with 1045 steel substrate under
substrate preheating, while defects were formed near the bonding interface without substrate
preheating. LMD 316 L with P20 steel specimens have metallurgically bonding characteristic
without defects under different substrate temperature. The microstructure of deposition layers
was similar between different substrate materials and temperatures.

3. The adhesion properties of hybrid formed 316 L with 1045 were obviously decreased without
substrate preheating, and brittle fractures of 316 L with 1045 steel were located in the interface
without substrate preheating. The adhesion properties of hybrid formed 316 L with P20 had
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no relationship with substrate preheating because of the metallurgic bonding characteristic
in the interface. The difference between P20 and 1045 steel substrate was mainly because of
geometrical characterization of deposition layers under the same processing parameters. The level
of hybrid samples without interface defects can reach laser deposition 316 L tensile properties.
When combining laser metal deposition with conventional metal forming for an easy-forming
alloy, preheating realized safe interface bonding, but was not necessary.

4. The sharp changes in hardness were found in the interface between different materials.
The substrate HAZ hardness showed different transformation phenomenon.
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