





## 







**Figure 2.** (a) Stress-strain curves for nanocrystalline gold simulations of grain size (a) 6 nm and (b) 18 nm with different strain rate.





10Figure 3. Stress-strain curves of nanocrystalline gold simulations with grain size of 6 nm including11the loading and unloading processes with the max strain of 0.4% and 4% under strain rates 10° s<sup>-1</sup> and1210<sup>10</sup> s<sup>-1</sup>, respectively.





14Figure 4. Atomic configurations for nanocrystalline gold of grain size 3.8 nm with a strain rate of 5×10°15s<sup>-1</sup> at tensile strain (a) 0% and (b) 4.5%. Blue, red and green represent grain interiors with fcc, stacking16faults with hcp, and atoms at grain boundaries, respectively.



18 19

**Figure 5.** Grain size for nanocrystalline gold with mean grain size of (a) 3.8 nm and (b) 4.5 nm as a function of grain identifier at a strain rate of 5×10<sup>9</sup> S<sup>-1</sup>.



20



**Figure 6.** Grain size for nanocrystalline gold with mean grain size of (a) 5 nm and (b) 6 nm as a function of grain identifier at a strain rate of 10<sup>9</sup> S<sup>-1</sup>.



![](_page_2_Figure_10.jpeg)

![](_page_2_Figure_11.jpeg)

![](_page_3_Figure_1.jpeg)

![](_page_3_Figure_2.jpeg)

**Figure 8.** Grain size for nanocrystalline gold with mean grain size of (a) 8 nm and (b) 9 nm as a function of grain identifier at a strain rate of 10<sup>7</sup> S<sup>-1</sup>.

![](_page_3_Figure_4.jpeg)

29

30 31

32

**Figure 9.** Atomic configurations for nanocrystalline gold of grain size 7 nm with a strain rate of 10<sup>8</sup> s<sup>-1</sup> at tensile strain (a) 0% and (b) 3.5%. Blue, red and green represent grain interiors with fcc, stacking faults with hcp, and atoms at grain boundaries, respectively.

![](_page_3_Picture_9.jpeg)

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).